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Fractional calculus as a macroscopic manifestation of randomness
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We generalize the method of Van Hove@Physica~Amsterdam! 21, 517 ~1955!# so as to deal with the case
of nonordinary statistical mechanics, that being phenomena with no time-scale separation. We show that in the
case of ordinary statistical mechanics, even if the adoption of the Van Hove method imposes randomness upon
Hamiltonian dynamics, the resulting statistical process is described using normal calculus techniques. On the
other hand, in the case where there is no time-scale separation, this generalized version of Van Hove’s method
not only imposes randomness upon the microscopic dynamics, but it also transmits randomness to the macro-
scopic level. As a result, the correct description of macroscopic dynamics has to be expressed in terms of the
fractional calculus.@S1063-651X~99!11802-6#

PACS number~s!: 05.40.2a, 05.45.2a, 05.60.2k
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I. INTRODUCTION

The physical paradigm of statistical physics is Browni
motion, which involves diffusion, dissipation, and th
fluctuation-dissipation relation tying the two together. T
dynamical model of this process was provided by Lange
in 1908 using a stochastic differential equation. In spite
this long history, it seems apparent from the nature of r
domness that such macroscopic stochastic equations ar
compatible with the continuous and differentiable charac
of microscopic Hamiltonian dynamics. However, it is wide
believed that Brownian motion can be rigorously deriv
from the totally deterministic Hamiltonian models of clas
cal mechanics. Part of the reason for this conviction ha
do with the wide use made in literature of Van Hove
method@1–3#. In one form or another, many of the attemp
currently made to establish a unified view of mechanics
thermodynamics@4# can be traced back to the method of V
Hove. The result of this method depends on whether
adopt the Heisenberg perspective, corresponding to the
evolution of observables, or the Schro¨dinger perspective
corresponding to the time evolution of the Liouville densi
In the former case, the usual outcome is the derivation fr
mechanics of an ordinary Langevin equation. In the la
case, the adoption of the Van Hove method yields ma
equations. We focus here especially on the conventional
fusion equation, with the diffusion process described b
second-order spatial derivative.

In the Heisenberg perspective, after averaging over
ensemble of realizations of the stochastic force, the re
ation process is described by an exponential function. In
Schrödinger perspective, the mathematical representatio
the diffusion process is given, as we have said, by a sec
order spatial derivative of a density function. Therefore,
mathematical description rests on either ordinary analyt
functions~exponential functions! describing the dynamics, o
on conventional differential operators~second-order deriva
tives! describing the phase space evolution. This is proba
the reason why there is no mention of the fact, and indeed
perception, that the Van Hove method is equivalent to int
PRE 591063-651X/99/59~3!/2603~11!/$15.00
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ducing stochastic dynamics, namely, discrete processes
unpredictable nondifferentiable jumps, in the dominion
continuous and differentiable Hamiltonian dynamics.

Actually the differentiable nature of the macroscopic p
ture is, in a sense, a natural consequence of the microsc
randomness@5,6#, and of the related nondifferentiability a
well, due to the key role of the central limit theorem. Rec
that in the central limit theorem the quantities being add
together are statistically independent, or at most weakly
pendent, in order for the theorem to be applicable and Ga
ian statistics to emerge. Once a condition of time-scale se
ration is established, in the long-time limit the memory of t
nondifferentiable character of microscopic dynamics is lo
and Gaussian statistics result. This also means that use
be made again of ordinary differential calculations on t
macroscopic scale, even if the microscopic dynamics are
compatible with the adoption of ordinary calculus method

On the other hand, in the case where a time-scale sep
tion between macroscopic and microscopic levels of desc
tion does not exist, the nondifferentiable nature of the mic
scopic dynamics is transmitted to the macroscopic level.
illuminating example is given by the paper of Ref.@7#, which
shows that a diffusion process generated by a fluctua
with no time scale at the macroscopic level generates a
fusion process well described by a fractional Laplacian@8,9#.
The paper of Ref.@7# also addresses the intriguing proble
of making a Lévy process, which has an infinite second m
ment, compatible with the dynamical approach to diffusio
The dynamical approach to diffusion rests on steps of fin
length, and consequently results in finite second mome
This problem has been addressed in a variety of w
@10,11#, ranging from taking into account the finite sizeL of
the sample, within which the Le´vy flight takes place@10#, to
the case where the probability density is truncated@11#. We
rather follow the prescriptions of Ref.@7#, which is a form of
Lévy walk, where the individual jumps are not instantaneo
and involve a time cost, thereby making it possible for us
adopt a diffusion picture with finite moments. All this wa
discussed in Ref.@7#, and here the results of Ref.@7# are
made compatible with the infinite moments of the Le´vy sta-
2603 ©1999 The American Physical Society
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tistics by means of the generalized Van Hove method. A
other case where the adoption of a fractional calculus
made necessary concerns the generalization of the expo
tial form of relaxation according to the recent prescriptio
of Nonnenmacher and co-workers@12,13#, involving the
concept of a fractional time derivative. The main aim of th
paper is to prove that the fractional derivative, both the sp
fractional derivative of Ref.@7# and the time fractional de
rivatives of Refs.@12,13# are made compatible with Hamil
tonian deterministic dynamics by means of a generali
version of Van Hove’s method.

In fact, if we make the traditional classical assumpti
that the microscopic dynamics follow the Newton prescr
tion, we also have to address the problem of how to m
this prescription compatible with randomness. The solut
to this problem requires that an extension of the Van Ho
method be discovered. This naturally yields the working h
pothesis that the fractional derivatives, currently used to
scribe macroscopic transport processes@8,12,13#, can be re-
garded as the macroscopic manifestation, in the absenc
time-scale separation, of either nondifferentiable mic
scopic dynamics, an assumption that would violate the ap
cability of Hamiltonian dynamics to this domain, or of
Hamiltonian description that loses differentiability through
kind of filtering described by a generalized Van Hove a
proximation. In other words, just as the Van Hove meth
makes Brownian motion compatible with Hamiltonian d
namics, a generalized Van Hove method is used here
make the macroscopic fractional calculus compatible w
microscopic Hamiltonian dynamics. The main differen
from the case of ordinary statistical mechanics is that in
nonordinary case the nondifferentiable nature of microsco
dynamics, either natural or forced by the adoption of the V
Hove prescription, is transmitted to the macroscopic le
where it takes the shape of fractional derivatives. The m
purpose of this paper is to substantiate this working assu
tion with convincing arguments.

The outline of the paper is as follows. In Sec. II we e
press the Van Hove method in a form equivalent to the
dinary method, but more convenient for the generalizat
that we plan to develop in this paper. In Sec. III we show t
in the Heisenberg picture the generalization of the Van H
method results in the fractional derivatives currently used
Nonnenmacher and co-workers to study polymer dynam
Section IV and Appendix A are devoted to the Schro¨dinger
picture, and show that the Van Hove method in this pict
leads to the fractional derivative introduced by Seshadri
West @8# ~see also West and Grigolini@9#! to describe Le´vy
processes. Section V is devoted to concluding remarks.

II. VAN HOVE LIMIT: AN EXAMPLE
FROM A SPECIFIC MODEL

As pointed out in Sec. I, the Van Hove limit@1# of a
microscopic process turns out to be a key ingredient for
derivation of statistical mechanics from microscopic dyna
ics. We review this limit and how it works in the case of
specific model rather than in general.

Let us start by recalling the meaning of this limit. Co
sider the integrodifferential equation
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d f~ t !

dt
52l2E

0

t

K~ t2t8! f ~ t8!dt8, ~1!

wheref is some quantity of interest,K is a memory kernel,
and l is a parameter. Equation~1! is a typical non-
Markovian equation obtained in studying physical syste
coupled to an environment, and whose environmental
grees of freedom have been averaged over. In this case
parameterl can be regarded as the strength of the pertur
tion induced by the environment on the system of interes

In the literature, wide use is made of the Markov appro
mation @14#, which replaces the integrodifferential equatio
~1! with the rate equation

d f~ t !

dt
52S l2E

0

`

K~ t8!dt8D f ~ t !. ~2!

The Van Hove limit @2# consists of making the limitl
→0, t→` in such a way that the productl2t is kept con-
stant. That is, settingx5l2t and F(x)5 f (t), Eq. ~1! be-
comes

dF~x!

dx
52E

0

x/l2

K~ t8!F~x2l2t8!dt8. ~3!

Now the adoption of the limit

const5x5 lim
l→0
t→`

l2t ~4!

makes it possible for us to replace the time convoluted fo
in Eq. ~1! with

d f~ t !

dt
52l2t f ~ t !, ~5!

where

t5E
0

`

dtK~ t !. ~6!

Equation~5! gives an exponential solution, the same as t
obtained by means of the Markov approximation~2!.

Taking the limit l→0 corresponds to assuming that th
coupling of the system to the environment is weak, while
limit t→` means that the observation time is much larg
than other temporal scales present in the system. Specific
this time must be larger than the microscopic timet. This
remark allows us to reformulate the Van Hove limit in
slightly different way, more suitable for our purposes. Fir
instead of taking thet→` limit, we shall take the limitt
→0. Also, we shall replace the limitl→0 with the equiva-
lent limit V→`, whereV is a coupling constant, to be spec
fied in the following. The quantity to be kept constant
carrying out the limit is just the productV2t. Notice that
connectingV, t, andl asl5Vt makes it possible to keep
V!t21 ~in such a way thatl!1), and at the same time t
setV2→` so as to ensureV2t→const.

The meaning of Eqs.~3!–~5! can be illustrated by adopt
ing this equivalent perspective, and can be shown to b
way of disregarding the time evolution of the system at b
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very short and very long times, where the deviations fr
the exponential relaxation show up@15#. In the Hamiltonian
case the relaxation cannot be rigorously exponential@16#,
thereby preventing a satisfactory connection between mi
scopic dynamics and stochastic physics@17#. We now show
this benefic effect of the Van Hove method with the help
an illustrative example, where the origin of Brownian moti
stems from the average over an initial statistical distribut
@6# rather than from chaos@5#. Consider a chain of 2N11
linear harmonic oscillators all with equal spring constan
and described by the Hamiltonian

H5 (
i 52N

N pi
2

2mi
1

k

2 (
i 52N

N

~qi 112qi !
2, ~7!

wheremi5m if iÞ0 andm05M . Vitali and Grigolini @18#
proved that the correlation function for the momentump0 of
the system of interest,

F0~ t ![
^p0p0~ t !&

^p0
2&

, ~8!

satisfies the integral equation

Ḟ052D1
2E

0

t

F1~ t2t8!F0~ t8!dt8, ~9!

where

D1
252k/M , ~10!

andF1(t) represents the correlation function of the stoch
tic force in the corresponding generalized Langevin equa
~see Sec. III!. The parameterD1 plays the same role as tha
of the earlier mentioned coupling constantV, while t is
given in this specific model by the expression

t[E
0

`

F1~ t !dt5Am

k
. ~11!

In the long-time region, the solution to Eq.~9! is given by
@18#

F0~ t !5
12m

122m
expS 2

mv0t

A122m
D

1
2m

p E
0

` sin~xv0t !Ax221

~122m!x21m2
dx

'
12m

122m
expS 2

mv0t

A122m
D

1
m

~12m!2
AS 2

p~v0t !3D sinS v0t2
p

4 D ,

~12!

where

m5m/M ~13!
o-

f

n

,

-
n

and

v0
254k/m. ~14!

The asymptotic approximation~12! shows that the momen
tum autocorrelation function consists of the sum of an ex
nentially decaying term and a nonexponential oscillato
contribution that decays as an inverse power law in tim
Notice thatv0 is a Debye-like cutoff frequency that is re
lated to the microscopic time scalet ast52/v0 . The gen-
eral form of this solution had also been observed and
cussed by Zwanzig@2#.

Now the Van Hove limit expressed in terms of the para
eters of the model becomes

g[ lim
t→0

D1
2→`

D1
2t5 lim

m→0
v0→`

v0m. ~15!

Notice that this limit can be realized assumingm→0 and
M→0 asm1/2. The closer to zero the massm is, the better
the physical conditionM@m is fulfilled ~the better the mac-
roscopic description of the system of interest!. Consequently,
the oscillatory tails in Eq.~12! cancel, and an exact expone
tial relaxation is recovered:

F0~ t !5exp~2gt !. ~16!

The rationale for this result stays in the formal similarity
Eqs.~9! and~1!. Letting, as mentioned before,l5D1t, it is
a simple matter to verify thatl→0 asm1/4, and the ordinary
Van Hove limit ~4! can be applied. More in general, we ca
assume that relation~15! holds true independently of th
model, and we can regard the parametersm andv0 as free
parameters of the theory. If we adopt this view, the expon
tial decay is recovered by making the Van Hove limit
described by the right-hand side of Eq.~15!.

In the following, we shall refer to the Van Hove limit
rather than using the known version of Eq.~4!, as expressed
in our nonconventional form

g[ lim
t→0

D1
2→`

D1
2t[Lim

VH
D1

2t. ~17!

A final remark concerns the fact that the same result@Eq.
~16!# could have been obtained by applying the Markov a
proximation to Eq.~9!. In that case, the basic assumptio
would have been an infinite time-scale separation betw
the microscopic time scalet and the macroscopic scale d
fined as the inverse of the frequencyV252k/M ; that is,

T5AM

2k
. ~18!

Notice that the time-scale separation between the system
interest and bath is rendered infinitely large exactly by
same limits as those used in order to carry out the Van H
limit: m→0 andM→0 asm1/2. This demonstrates that th
Van Hove limit and the Markov approximation are esse
tially equivalent to one another.
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III. HEISENBERG PICTURE: ORDINARY
AND FRACTIONAL RELAXATION

It is well known @19# that the generalized Langevin equ
tion

v̇52D1
2E

0

t

F1~ t2t8!v~ t8!dt81 f ~ t ! ~19!

corresponds to the following hierarchy of correlation fun
tions:

Ḟ i52D i 11
2 E

0

t

F i 11~ t2t8!F i~ t8!dt8. ~20!

Equation~9! is the i 50 case of Eq.~20!.
In order to derive both normal and anomalous relaxat

properties, we are interested in making a nontrivial choice
the correlation functionF1(t). However, we also want ou
choice to be compatible with a completely dynamical a
proach. Therefore, we need to identify the conditions nec
sary to assure that both these constraints are satisfied.
by means of Laplace transforms and the convolution form
Eq. ~20!, it is easy to prove thatF1 can be represented in th
form of a continued fraction:

F̃1~z!5
1

z1
D2

2

z1
D3

2

z1•••

, ~21!

whereF̃1(z) denotes the Laplace transform ofF1(t). This
structure is valid forF1(0)51, and this is a first requiremen
to fulfill. Then we recall that the expansion parametersD i

2

can be expressed in terms of the moments

sn[
^ f 1u~2L !nu f 1&

^ f 1u f 1&
5F1

~n!~0!, ~22!

whereL is the Liouvillian operator driving the time evolutio
of the Liouville density, andu f 1& is the first state in the Mor
chain @19,20#. An elegant way of expressing the paramet
D i

2 in terms of the momentssn has been established b
Grigolini et al. @21#. This implies thatF1(t) must be infi-
nitely differentiable. Finally, the symmetry properties of t
Liouvillian imply that the condition

s2n2150 ~23!

also has to be fulfilled.
Therefore, we decide to focus our attention on the cho

F1~ t !5
Tb

~T21t2!b/2
. ~24!

Note that the momentssn are nothing but thenth order time
derivatives ofF1(t). Thus it is straightforward to prove via
successive time differentiation of Eq.~24! that the odd mo-
ments vanish. This is an important mathematical prope
necessary to make the relaxation process compatible
-

n
f

-
s-
rst,
f

s

e

ty
ith

Hamiltonian dynamics. An important example of relaxati
incompatible with Hamiltonian dynamics is in fact the exp
nential relaxation: a case exhaustively discussed by Le
his brilliant 1983 paper@16#. This paper proves therefore th
importance of fulfilling the constraints of Eq.~23! for a gen-
eralized Langevin equation to be compatible with Ham
tonian dynamics. This condition is here fulfilled by adoptin
the choice of Eq.~24!.

A. Ordinary statistical mechanics

Ordinary statistical mechanics can be recovered from
generalized Langevin equation~19!, using Eq. ~24! along
with the integrability condition on the power-law index,

b.1. ~25!

The microscopic time scalet is given in this case in terms o
the parameterT,

t5E
0

`

dt
Tb

~T21t2!b/2
5

Ap

2

GS b21

2 D
GS b

2 D T. ~26!

Therefore, the Van Hove~VH! limit in form ~17! is achieved
in the limit T→0,

g5
Ap

2

GS b21

2 D
GS b

2 D Lim
VH

D1
2T. ~27!

This limiting procedure results in exponential relaxation f
the correlation functionF0(t), and allows us to safely inter
pret Eq.~19! as identical to the ordinary Langevin equatio

v̇52gv1 f ~ t !. ~28!

This is the traditional result obtained using the Van Ho
method.

B. Nonordinary statistical mechanics

In the case where the power-law index of the correlat
function is in the interval

0,b,1, ~29!

the nonintegrability of the correlation function~24! prevents
us from adopting the above approach. In the case 0,b,1,
we are forced to look for a different procedure to go from
microscopic to a macroscpic description of the system. T
procedure can be derived in a natural way from the origi
Van Hove limit. Let us consider the limit

Q5 lim
T→0

D1
2→`

D1
2Tb[Lim

GVH
D1

2Tb. ~30!

We shall refer to this limit as to the generalized Van Ho
limit ~GVH!.

Adopting the ansatz~30!, and inserting Eq.~24! into Eq.
~19!, we obtain
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Ḟ052Lim
GVH

D1
2Tb

3E
0

t 1

@T21~ t2t8!2#b/2
F0~ t8!dt8

52QE
0

t 1

~ t2t8!b
F0~ t8!dt8. ~31!

For dimensional reasons, it is convenient to write

Q[V2tb. ~32!

Notice that in general the correlation function is related
the waiting time distributionc(t) of the process under stud
as

F0~ t !512E
0

t

c~ t8!dt8, ~33!

and therefore Eq.~31! can be rewritten

c~ t !5QE
0

t 1

~ t2t8!b
F0~ t8!dt8. ~34!
g

c

o
t
k
e

e

e

Now, we want to compare this last expression with the fr
tional relaxation equation obtained by Glo¨kle and Nonnen-
macher@12#. The fractional relaxation equation for a func
tion FML(t;n) is given by

FML~ t;n!2FML~0;n!5
1

tn

d2n

dt2n
FML~ t;n! ~35!

where the symbold2n/dt2n denotes the fractional integra
~see Appendix A!,

d2n

dt2n
f ~ t !5

1

G~n!
E

0

t f ~ t8!dt8

~ t2t8!12n
. ~36!

The solution of Eq.~35! is known @13# and is given by the
so-called Mittag-Leffler~ML ! function,

FML~ t;n!5FML~0;n!(
k50

`
~21!k

G~nk11!S t

t D nk

, ~37!

which exhibits stretched exponential behavior at short tim
and inverse power-law relaxation at long times.

Setting b512n, it becomes possible to compare th
fractional relaxation equation with Eq.~34! to obtain
c~ t !52QG~12b!t12b@FML~ t;12b!2FML~0;12b!#, ~38!

where the superscript 12b corresponds to the value forn to insert into the form of the solution~see Sec. III B!. Also recalling
Eq. ~32!, we finally obtain, for the waiting time distribution function,

c~ t !52~V2t!G~12b!@FML~ t;12b!2FML~0;12b!#, ~39!
on
the

ble
ted

ble
ects
n
is
f

od.
e-
which maintains the interesting properties of the Mitta
Leffler function earlier pointed out.

It is important to stress that the resulting analytical fun
tion has been used by Glo¨ckle and Nonnenmacher@22# to fit
with a very remarkable accuracy the relaxation curves
stress experiments on glassy material. This suggests tha
dynamical randomness without time-scale separation ta
the shape of a time fractional derivative, and becomes
perimentally detectable at the macroscopic level.

IV. SCHRÖDINGER PICTURE: GAUSSIAN AND LE´ VY
DIFFUSION

Let us now consider the equation of motion for the on
dimensional probability densityp(x,t):

]

]t
p~x,t !5^j2&eqE

0

t

Fj~ t8!
]2

]x2
p~x,t2t8!dt8. ~40!

This equation refers to the process

ẋ5j, ~41!

and Fj(t) is the autocorrelation function of thej fluctua-
tions. The integrodifferential equation of motion for th
-

-

f
the
es
x-

-

probability density is obtained from the Langevin equati
by adopting the Zwanzig projection operator method in
form discussed by Grigolini@23#, and it is exact under the
following two conditions:~i! the dynamics ofj is indepen-
dent of that ofx, and~ii ! the system producing thej fluctua-
tions is a two-state system.

Notice that~ii ! does not necessarily mean that the varia
j is dichotomous. The case of anomalous diffusion genera
by intermittent maps@24# is an illuminating example, where
the change from a continuous two-state fluctuating varia
to the dichotomous case does not produce significant eff
on diffusion. From the point of view of our generalized Va
Hove limit, however, the difference in the two conditions
essential. As we shall see in Sec. IV A, the replacement oj
with a dichotomous variable with the valuesW and 2W is
an essential ingredient of the generalized Van Hove meth

For reasons which will shortly become clear, it is conv
nient to write the probability distribution at timet2t8 in
terms of the probability distribution at timet as

p~x,t2t8!5E
2`

`

F~x2x8,2t8!p~x8,t !dx8, ~42!

where the functionF is a propagator. Equation~40!, with the
nontrivial choice~24!, becomes
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]

]t
p~x,t !5^j2&eqE

2`

`

dx8E
0

t

dt8

3
Tb

~T21t82!b/2

]2

]x2
F~x2x8,2t8!p~x8,t !.

~43!

We shall discuss both the case of ordinary diffusion,b.1,
and the case of anomalous diffusion, 0,b,1.

A. Ordinary statistical mechanics

Let us assume that the power-law index in the autoco
lation function is

b.1, ~44!

and let us make the choice of a time-independent propag

F~x2x8,2t8!5d~x2x8!. ~45!

Equation~43! then becomes

]

]t
p~x,t !5^j2&eqH E

0

t

dt8
Tb

~T21t82!b/2J ]2

]x2
p~x,t !.

~46!

The microscopic time-scalet of the autocorrelation function
Fj(t), present in Eq.~46!, is finite for b.1, and we can
apply again the conventional Van Hove limit in the form

D5 lim
T→0

^j2&eq→`

^j2&eqT. ~47!

Substituting this expression into Eq.~46!, we obtain the stan-
dard diffusion equation

]

]t
p~x,t !5D

]2

]x2
p~x,t !. ~48!

Note that the case where the correlation functionFj(t) is
exponential, although in conflict with the Hamiltonian co
straints@16#, assists us in further interpreting the meaning
the Van Hove limit. As shown in Appendix B, the use of a
exponential correlation function reduces Eq.~40! to the tele-
graphic equation, whose exact solution, expressed in
proper limit, agrees with the result predicted by the pro
dure here described.

B. Nonordinary statistical mechanics

Let us consider now the case where the power-law in
is in the interval

0,b,1. ~49!

In this case, we define the generalized version of the V
Hove procedure as the recipe leading to the largest com
nent of the diffusion process. Therefore, as a first step,
make the variablej dichotomous, by assigning to it the va
-

tor

f

e
-

x

n
o-
e

uesW and2W with the basic condition that the actual va
ues of the true variable are included in the interv
@2W,W# ~see Fig. 1!.

This leads us to assume, for the form of the propagatoF,

F~x2x8,2t8!5d~Wt82ux2x8u!, ~50!

which is clearly time dependent. Equation~43! then becomes

]

]t
p~x,t !52

Wb11Tb

2 E
2`

`

dx8p~x8,t !

3
b@W2T21ux2x8u2#2b~b12!ux2x8u2

@W2T21ux2x8u2#b/212
.

~51!

It is evident that Eq.~51! differs from Eq.~43! by a correc-
tion term that disappears in the generalized Van Hove lim
The generalized Van Hove limit is defined in this case as

Q5 lim
T→0
W→`

TbW11b, ~52!

and, noticing that this impliesW2T2→0 asW22/b, Eq. ~51!
can be rewritten

]

]t
p~x,t !5

b~b11!

2
QE

2`

`

dx8
p~x8,t !

ux2x8ub12
. ~53!

This form of diffusion equation coincides with the Wes
Seshadri equation@7,8# for a centrosymmetric Le´vy process.
The fact that Eq.~53! allows for a solution in the form of a
Lévy process becomes apparent by taking its Fourier tra
form. Letting

m5b11⇒1,m,2, ~54!

and using Ref.@25#, for the Fourier transform of an invers
power law we obtain

FS 1

uxu11m
;kD 5A2

p
G~2m!ukumcosS 2

pm

2 D . ~55!

Therefore, making use of the convolution theorem for Fo
rier transforms, Eq.~53! becomes

]

]t
f~k,t !52bukumf~k,t !. ~56!

FIG. 1. Sketch of how the distributionP(j) of the j variable is
modified so as to make the variablej fully equivalent to a dichoto-
mous variable.
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Here f(k,t) is the Fourier transform ofp(x,t), that is, the
characteristic function, and the parameterb is given by

b5
b~b11!

A2p
QG~2m!UcosS pm

2 D U.0. ~57!

The solution to Eq.~56!, with the initial conditionf(k,t
50)51, necessary for the inverse Fourier transform to
defined as a probability density, is written as

f~k,t !5e2bukumt, ~58!

which indeed corresponds to the definition of the charac
istic function for a Lévy process.

Equation~53! can also be cast in the form of a fraction
differential equation@9#

]

]t
p~x,t !5~2 i !mbD ~m!p~x,t !, ~59!

whereD (m) is a proper definition of fractional derivative~see
Appendix A!. We see, in conclusion, that with the adoptio
of the generalized Van Hove method the standard diffus
equation yielded by the ordinary Van Hove method is e
pressed in terms of a fractional derivative. More in gene
we expect that the ordinary Fokker-Planck equation can
replaced by a generalized expression resting on fractio
derivatives@9#.

In Sec. V we shall give more support to our convictio
that the generalized form of the Van Hove method, h
adopted to derive the spatial version of fractional derivati
of Eq. ~59!, is intimately related to the Le´vy-Gnedenko theo-
rem@26#. We limit ourselves to point out that the adoption
fractional calculus to deal with processes of anomalous
fusion is becoming more and more popular, and for the
terested reader we quote Refs.@27,28#, whose results, how
ever, must be compared to the conclusion of Ref.@29# as
well as to those of this section with some caution@30#.

V. CONCLUDING REMARKS

The adoption of the Van Hove limit is essentially a s
phisticated way of making the Markov approximation. T
Markov approximation, in turn, establishes the physical c
dition necessary to make Hamiltonian dynamics compat
with stochastic physics. However, when this method is
plied to microscopic dynamics to derive ordinary statisti
mechanics, there is no clear perception of establishing
namic properties inconsistent with Hamiltonian dynami
This is so because, even if the correlation functions are m
exponential by forcing the Markov approximation into m
croscopic dynamics, so as to become incompatible with b
classical@16# and quantum@15# mechanics, they are still dif
ferentiable functions.

From the point of view of a single trajectory, the realiz
tion of the Brownian condition implies, from a rigorou
mathematical point of view, the breakdown of the conditi
of differentiability. However, even in this case the percept
of a conflict with Hamiltonian dynamics is blurred by th
adoption of a statistical perspective. Within the Schro¨dinger-
like picture, namely, the picture where we observe the m
e

r-

n
-
l,
e
al

e
s

f-
-

-
le
-
l
y-
.
de

th

n

-

tion of an ensemble of trajectories rather than that of a sin
trajectory, ordinary diffusion is produced by a dynamical o
erator proportional to a second-order spatial derivati
Again, a condition of ordinary differentiability is ensured.
conclusion, the existence of a time-scale separation betw
microscopic dynamics and the experimental observat
usually made at the macroscopic level, ensures that the
sults of the observation process can be predicted by mean
theoretical prescriptions based on ordinary mathemat
procedures resting on the differentiability assumption.

A totally different condition is generated if the time-sca
separation is not adequate. We have separately discusse
Heisenberg and Schro¨dinger pictures. From the results o
Sec. III, devoted to the Heisenberg picture, we see that w
the condition of time-scale separation is insured, the ordin
Van Hove method can be applied, and standard expone
relaxation follows. In the absence of the condition of tim
scale separation, the method of Van Hove must be gene
ized, and this, in turn, yields a generalization of the expon
tial relaxation, a condition that according to Glo¨ckle and
Nonnenmacher@12,13# turns out to be very efficient for de
scribing such nonstandard physical processes as polyme
namics.

From within the Schro¨dinger picture, discussed in Se
IV, the lack of a time-scale separation, and the consequ
requirement for a generalization of the Van Hove meth
yields the striking replacement of the ordinary Laplacian o
erator with the fractional Laplacian discussed in Appen
A. We have to point out that even in this case randomn
has a very subtle origin, implying a departure from the d
ferentiable condition of Hamiltonian dynamics, and the
placement of the continuous variable responsible for mic
scopic fluctuations with a dichotomous variable. Th
process, changing a two-state physical dynamics, compa
with a Hamiltonian picture, into a nondifferentiable proce
is clearly described by the sketch of Fig. 1. We firmly rest
here that the replacement of a continuous variable pic
with a discrete representation is also done in the case
ordinary statistical mechanics, where this way of forcing ra
domness within differentiable dynamics does not imply
departure from differentiable dynamics at a statistical lev
When the condition of time-scale separation is not availab
the Van Hove procedure of forcing microscopic dynamics
become random has a striking manifestation at the ma
scopic level under the form of the fractional Laplacian
Appendix A.

To stress the main conclusion of the paper, we set a
the non-Hamiltonian cases, and especially those where
chastic processes are assumed to be already at work, w
ever their origin might be. This is where the microscop
dynamics are genuinely not differentiable, and whether
not this lack of microscopic differentiability has macroscop
manifestations depends on whether or not this nondiffer
tiability can be transmitted to the macroscopic level as
result of memory. The present paper also sheds light on
interesting, but less fundamental, issue. A much more imp
tant condition is that where the dynamics are described b
Hamiltonian. In this case the microscopic dynamics are d
ferentiable, and in principle, there would be no microsco
randomness to transmit to the macroscopic level.

However, one of the main tenets of the current literatu
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on the derivation of statistical mechanics from dynam
rests on the conviction that randomness can be gener
from Hamiltonian dynamics either as a consequence of
action of infinitely many degrees of freedom or as a con
quence of chaos. The Hamiltonian of Eq.~7! is an example
of the first kind, and the sense of the Van Hove limit in th
case is that the very short and the very large time scales
beyond the range of observation. Thus, randomness is a
sequence of the observer’s limitations. The physical con
tion illustrated by Fig. 1, conversely, might be related
some way to the case of chaos, in a sense that it is conve
to properly discuss here.

Let us consider the well-known case of a map resulting
intermittency @31#, for instance, that introduced by Geis
and Thomae@32#. The motion under study is characterize
by a long permanence in conditions of regular motion w
bursts of chaotic dynamics concerning the transition fr
one laminar region to the other. This is not a genuin
Hamiltonian dynamics, and the generator of intermittency
in fact a map. According to the general discussion of R
@31#, similar properties can also be exhibited by genuin
Hamiltonian systems such as the attractive model of the e
carton two-dimensional potential investigated by Geis
Zacherl, and Radons@33#. Another interesting model of the
same type is the three-dimensional Hamiltonian flow m
recently studied by Zaslavsky, Steven, and Weitzner@34#.
This paper, as well as that of Ref.@33#, can be regarded as a
example of Hamiltonian derivation of the Le´vy processes,
and, consequently, according to the point of view adopted
this paper, an example of a dynamical process describe
the macroscopic level by a fractional derivative in spite of
Hamiltonian, and, consequently, differentiable nature.

It has to be stressed, however, that the theory behind
macroscopic derivation should be applied to a numer
treatment of these processes: This theory does not have
thing to do with the ideally exact solution of a dynamic
model resting on a continuous treatment, and the assump
of differentiability at any order. The numerical treatment
characterized by round-off errors and, more importantly, b
discrete time representation, which forces the system to
part from the conditions ideally established by its Ham
tonian property. The intermittency of these systems is su
cient to create at least temporary conditions
nondifferentiability which are then transmitted to the mac
scopic level and changed, in the way described in this pa
into fractional derivatives. The generalized version of t
Van Hove method serves the basic purpose of introduc
conditions of microscopic nondifferentiability without leav
ing the theoretical treatment and without entering the leve
the numerical solution. In the case of the dynamical
proach to Le´vy processes, the meaning of the generaliz
Van Hove method is closely related to the Le´vy-Gnedenko
generalized central limit theorem@26#. This is so because
forcing the fluctuating variable to become rigorously d
chotomous imposes enough coarse graining on the syste
as to produce randomness. We also note that in the ca
,b,2, T is proportional to the mean time duration th
map spends in one laminar region. Consequently, ift@T, the
number N[t/T, which is very large, corresponds to th
number of uncorrelated space transitions of intensityux
2x8u, with probability 1/ux2x8u11b, made by the system
s
ted
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The Lévy-Gnedenko theorem insures that forN tending to
infinity a Lévy diffusion process is generated. From a phy
cal point of view this has the same effect as forcingT to zero.

We think that at this stage we are also in the right posit
to establish an appealing connection with exciting results
the research work of Refs.@5,6#. Although some doubts are
expressed by the authors of Ref.@6# on the role of chaos in
generating Brownian motion~a role which might be suffi-
cient but not necessary, as, in a sense, it is also shown by
chain model of Sec. II!, we are inclined to believe that th
connection established by the authors of Ref.@5# between
Brownian motion and chaos is very attractive. However
applies to the condition of time-scale separation, which
expected to generate ordinary statistical mechanics. This
per is devoted, on the contrary, to studying dynamical ca
where this time-scale separation is missing, and con
quently, nonordinary statistical mechanics is generated. T
might generate the wrong impression that the method
analysis adopted in Ref.@5#, based on the use of th
Kolmogorov-Sinai entropy@35#, cannot be applied to the dy
namical systems with no time-scale separation. Actually
has been recently shown@36# that the Kolmogorov-Sinai en
tropy can be generalized so as also to be made efficient in
case of fractal dynamics. Furthermore, it was also rece
shown@37# that the same entropic arguments naturally le
to the same form of spatial fractional derivative as that of E
~59!. This means that the Van Hove generalized method
cussed in this paper is expected to establish a natural br
between the nonextensive entropy of Tsallis@38# and the
fractional derivative of Eq.~59!, much in the same way a
the ordinary Van Hove method makes Hamiltonian dynam
compatible with the standard diffusion equation of Eq.~48!,
and so with ordinary extensive thermodynamics behind
@39#.
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APPENDIX A

We want to define the integrals and derivatives used in
fractional calculus introduced in the text. First of all, let
recall the Riemann-Liouville definition of fractional integra
Let us assumeb>0 and, following Ref.@40#, let us define
the b fractional integral of the functionf (x) to be

d2b

dx2b
f ~x!5

1

G~b!
E

c

x f ~y!dy

~x2y!12b
. ~A1!

We also define theb fractional derivative of the function
f (x) as

db

dxb
f ~x!5

1

G~n2b!

dn

dxn Ec

x f ~y!dy

~x2y!b2n11
, ~A2!

where n is the smallest integer larger thanb, that is, n
5@b#11. The constantc in the limits of the integrals is
usually set to 0~Riemann definition! or to 2` ~Liouville
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definition!. It is easy to show that for ab integer both defi-
nitions reduce to the ordinary definitions of derivative a
integral.

An equivalent definition makes use of Fourier transfo
@41#. Let us consider a functionf (x) with Fourier transform
f̂ (k):

f̂ ~k!5
1

A2p
E

2`

`

f ~x!eikxdx, ~A3!

f ~x!5
1

A2p
E

2`

`

f̂ ~x!e2 ikxdk. ~A4!

The nth derivative off (x) can be written as

D ~n! f ~x!5F21@~2 ik !nf̂ ~k!;x#, ~A5!

and a possible way of generalizing this expression to thb
derivative of f (x) is

D ~b! f ~x!5F21@~2 ik !b f̂ ~k!;x#. ~A6!

Equation~A6! is equivalent to the convolution product

D ~b! f ~x!5
1

A2p
E

2`

`

d~b!~x2y! f ~y!dy, ~A7!

where

d~b!~x![
1

A2p
E

2`

`

~2 ik !be2 ikxdk. ~A8!

It is possible to calculate an explicit representation of in
gral ~A8!, and the results are@41#

D1
~b! f ~x!5

1

G~n2b!

dn

dxn E2`

x f ~y!dy

~x2y!b2n11
, ~A9!

D2
~b! f ~x!52

1

G~n2b!

dn

dxn Ex

` f ~y!dy

~x2y!b2n11
,

~A10!

where againn5@b#11, and the1 (2) corresponds to
evaluating integral~A8! in the upper~lower! complex k
plane. It is apparent that Eq.~A9! coincides with the Liou-
ville definition of the fractional derivative

D1
~b! f ~x![

db

dxb
f ~x!. ~A11!

A different way of generalizing Eq.~A5! is the following.
Let us start from the definition of second derivative

D ~2! f ~x!5F21@~2k2! f̂ ~k!;x#, ~A12!

and let us generalize it as

D ~2b! f ~x!5F21@~2k2!b f̂ ~k!;x#. ~A13!

Equation~A13! is equivalent to the convolution product
-

D ~2b! f ~x!5
1

A2p
E

2`

`

c~b!~x2y! f ~y!dy, ~A14!

where

c~b!~x![
~21!b

A2p
E

2`

`

uku2be2 ikxdk. ~A15!

If

0,b,1, ~A16!

integral ~A15! can be evaluated explicitly@25#:

c~b!~x!5
~21!b

A2/pG~22b!cos~bp!

1

uxu2b11
, ~A17!

and setting 2b5m(⇒0,m,2), we obtain

1

uxum11
52

2b~21!m/2

m~m21!Q
c~m!~x!. ~A18!

Now using Eqs.~54!, ~A14!, and ~A18!, Eq. ~53! can be
expressed in terms of the fractional derivativeD (m). This
gives Eq.~59!. Notice that Eq.~59! is consistent with Eq.
~56!, since

F@c~m!~x!;k#5~2k2!m/25 i mukum. ~A19!

APPENDIX B

Our aim is now to show that the conventional Van Ho
limit produces, in the case of exponential relaxation for t
correlation function, the same result as the traditional
proach. Let us consider the following equation of motion f
the probability densityp(x,t):

]

]t
p~x,t !5^v2&eq E

0

t

Fv~ t2t8!
]2

]x2
p~x,t8!dt8. ~B1!

Equation~B1! is the same as Eq.~40! and the bath variable
now denoted withv, is not dichotomous. Assuming

Fv~ t !5e2gt, g5
1

t
~B2!

and differentiating both sides of Eq.~B1!, we obtain

]2

]t2
p~x,t !52g

]

]t
p~x,t !1^v2&eq

]2

]x2
p~x,t !, ~B3!

whose Fourier transform is given by

]2

]t2
p̂~k,t !1g

]

]t
p̂~k,t !1^v2&eqk

2p̂~k,t !50. ~B4!

Both Eqs.~B3! and~B4! correspond to the telegraphic equ
tion. Considering the condition

ṗ̂~k,0!50, ~B5!
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the exact solution of~B4! is written as

p̂~k,t !5AFea1~k!t2
a1~k!

a2~k!
ea2~k!tG , ~B6!

with A to be specified according to the normalization con
tion, anda6 given by

a652
g

2
6

g

2
A12

4^v2&eqk
2

g2
. ~B7!

Assuming now

4^v2&eqk
2

g2
!1, ~B8!

solution ~B6! can be expanded in a Taylor series, giving

p̂~k,t !5AFexpS 2
^v2&eqk

2

g
t D2

^v2&eqk
2/g

g2^v2&eqk
2/g

3expS 2gt1
^v2&eqk

2

g
t D1OS ^v2&eq

2

g3 D G .

~B9!
r

ee

or

W

-

Note that setting condition~B8! is compatible with the Van
Hove limit resting on settingg→`. At this stage we have to
apply to Eq.~B9! the Van Hove limit, which in addition to
setting g→` also rests on making the limit̂v2&eq→` in
such a way that

D5Lim
VH

^v2&eq

g
. ~B10!

We note that this procedure makes the termsO(^v2&eq
2 /g3)

disappear, so as to recover the ordinary diffusion equa
solution

p̂~k,t !5Ae2Dk2t. ~B11!

On the other hand, the same result can be obtained by ap
ing the Van Hove limit directly to the equation of motio
~B1! with the assumption~B2!, and also making use of bot
Eqs.~42! and ~45!. This proves that ordinary Brownian dif
fusion rests on the Van Hove limit.
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