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Abstract: This paper deals with the fractional calculus of zeta functions. In particular, the study is focused

on the Hurwitz ζ function. All the results are based on the complex generalization of the Grünwald-Letnikov

fractional derivative. We state and prove the functional equation together with an integral representation

by Bernoulli numbers. Moreover, we treat an application in terms of Shannon entropy.
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1 Introduction

In recent years, there has been a relevant interest in fractional calculus of complex variables (see, e.g.,

[1,2]). Nevertheless, there are only a few papers concerning the fractional calculus of zeta functions [3–5].

This depends on the different unsolved problems in the theory of zeta functions. Fractional calculus of

complex functions entails several problems [6], thus it has not grown as fast as real fractional calculus.

Nevertheless, the fractional derivative of zeta functions is fairly easy to compute. In addition to this,

fractional calculus of zeta functions has unveiled new results and applications both in dynamical system

theory and signal processing [7].

The fractional derivative of the Riemann ζ function allows several generalizations. These include, inter

alia, the fractional derivative of theHurwitz ζ function and that of aDirichlet series [8]. Following the approach

ofApostol [9], this paper followsupon fractional analysis of zeta functions. Further studies on the linkbetween

fractional calculus of Riemann zeta function and the distribution of prime numbers can be found in [5,7].

In what follows, we deal with the fractional derivative of the Hurwitz ζ function computing the func-

tional equation. For the fractional derivative of the Riemann ζ function and the relative functional equation,

we refer the reader to [4,5]. More precisely, the generalized Leibniz rule enables the computation of the

functional equation sought. Thus, the fractional derivative of zeta functions seems to play the same relevant

role in fractional calculus that the class of zeta functions plays in pure and applied mathematics. In

addition to this, zeta functions make the definition of a probability distribution on � allowable. Moreover,

the nontrivial zeros of the Riemann zeta function are nowadays one of the most relevant unsolved problems

in mathematics. The distribution of these zeros seems to obey to no mathematical law. Several attempts to

prove the Riemann hypothesis have failed in recent years. Quite recently, some analytic results shed new

light on the Riemann hypothesis [10]. On the other hand, random matrix theory is a fundamental tool in

modern number theory and, more precisely, in the class of zeta functions. For more details we refer the reader
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to [11,12]. This fact suggests to apply the theory of zeta functions to statistical problems (e.g., Shannon

entropy [13]).

In this paper, we show that fractional calculus of zeta functions can provide applications in different

mathematical fields, according to recent results [7,8]. In particular, we derive a functional equation for the

fractional derivative of the Hurwitz ζ function. Likewise, we give an integral representation of this deriva-

tive. Moreover, we prove a connection between fractional calculus of zeta functions and Bernoulli numbers.

Finally, we show that our analytic results find application in the concept of Shannon entropy.

The remainder of the paper is organized into three sections. Section 2 presents some preliminaries on

fractional calculus of zeta functions and Bernoulli numbers. Section 3 is devoted to analytic results on

fractional calculus of zeta functions. Finally, Section 4 concludes the paper with an application in informa-

tion theory.

2 Notation and background

This section is devoted to introduce some notation and definitions needed throughout the rest of the paper.

Let �∈α and �∈n 0 with � �= ∪ { }00 . We use the notation αn to denote the nth falling factorial of α [4].

Moreover, ⌊ ⌋α stands for the integer part of a real number α. Here and subsequently, s denotes a complex

variable.

The Riemann ζ function defined by
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admits several generalizations. In particular, two of the most important ones are, respectively, the Hurwitz

ζ function and Dirichlet series defined by
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Clearly, ( ) = ( )ζ s ζ s, 1 and ( ( ) = ) = ( )F s f n ζ s; 1 . Fractional calculus of Dirichlet series can be found in [8] and

this topic exceeds the scope of this paper. It is worth noting that (2.1) and (2.2)1 exhibit the same analytic

behavior. In fact, these zeta functions either converge in the half-plane >sRe 1. Furthermore, (2.1) and (2.2)1

own a unique analytical continuation to the entire complex plane, except a simple pole (with residue 1) in

=s 1, given [14] by
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Note that (2.3) and (2.4) hold for any �∈s . In the functional equation (2.4), also known as Rademacher’s

formula [15], p and q are integers such that ≤ ≤p q1 . Clearly, (2.4) reduces to (2.3) for = =p q 1.

Let f be a function analytic inside the region �⊆D and continuous on its contour Cd. The forward

Grünwald-Letnikov fractional derivative of f is defined as follows:
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Remark 2.1. The choice of the fractional derivative (2.5) depends on a relevant prerequisite. In fact, this

derivative satisfies the generalized Leibniz rule:
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where at least one function between f and g in (2.6) is analytic in the region �⊆D . A proof of (2.6) can be

found in [4].

The fractional derivative (2.5) covers a fundamental role in fractional calculus of holomorphic functions.

In fact, (2.6) implies [4] that
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where ≔ ! ! !
+ +

An j k
α α

n j k, ,

n j k

. Note that the functional equation (2.7) can easily be written in terms of sines and

cosines and entails high computational cost. The author dealt with these problems in [5]. In particular, the

method proposed in [5] reduces the computational cost of (2.7) to only one infinite series. This technique

involves the auxiliary function ψ defined as follows:
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Let � �⊆ →f D: be a function such that the fractional incremental ratio in (2.5) is uniformly con-

vergent in D. Then, for any � �∈ ⧹ ⌊ ⌋ = −α α m: 1, we have
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whose proof can be found in [4]. Note that (2.1) and (2.2) fulfill all hypotheses of (2.10).

Let us now recall the main properties of Bernoulli numbers with respect to zeta functions. Bernoulli

polynomials ( )B sn of the complex variable s are defined by the following equation:
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All the numbers ( )B 0n are called Bernoulli numbers and simply denoted by Bn. Therefore,
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It is worth noting that the Riemann ζ function is closely linked to Bernoulli numbers, as next result

points out.

Proposition 2.2. [14,16] Let �∈n 0. The values of the Riemann ζ function for non-positive integers and

positive even numbers are given, respectively, by
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and
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Remark 2.3. From (2.11), we see at once that =B 10 and = − /B 1 21 . The other Bernoulli numbers are given

by the following expansion:
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Indeed, the recursive implementation of (2.13) gives = /B 1 62 , =B 03 , = − /B 1 304 , etc. Moreover, the func-

tional equation (2.3) gives no information on ( + )ζ n2 1 (both members vanish). In the current literature, no

simple formula for positive odd values of ζ is known (see, e.g., [14,17]).

Finally, we note that (2.12) does not hold for =n 0. Thus, we recall that

′( ) = − ( )ζ
π

0
log 2

2
. (2.14)

whose proof can be found in Appendix. Equality (2.14) is often used to show the coherence of new results

with the theory of zeta functions.

3 Analytic results

In this section, we focus on analytic properties of the derivative (3.1)2. In particular, we state and prove the

functional equation. Moreover, we give an integral representation of (3.1)1 in terms of Bernoulli numbers.

It is worth noting that fractional derivatives of (2.1) and (2.2) have already been computed in [3,8] using

a different definition of fractional derivative [6]. Thus, we begin by proving that the definition of fractional

derivative in (2.5) gives the same results.

Theorem 3.1. Let � �∈ ⧹α and < ≤a0 1. Then
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Proof. We proved (3.1)1 in [4]. The rest of the proof can be handled in much the same way. Indeed, let us

prove (3.1)3. From (2.5), we get
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Binomial series expansion gives
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We observe that the limit in (3.2) gives us the indeterminate form 0

0
. L’Hôpital’s rule implies that

− = − =
→ →+ +

n

h

n

h
nlim

1
lim

1
e log .

h

h α

h

h α

iπα α

0 0



















 (3.3)

Substituting (3.3) into (3.2)we get (3.1)3. The proof of (3.1)2 is similar and we thus leave it to the reader. □

Remark 3.2. Convergence of both (3.1)1 and (3.1)2 depends on α (see [3,8]). Accordingly, Theorem 3.1

implies that convergence of (3.1)3 depends on both α and f .

3.1 Functional equation
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Moreover, in view of Corollary 4 in [4], we have
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as desired. □
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Of course, the proof of Theorem 3.3 can be read backwards until (3.5). Therefore, the right-hand side of (3.5)

converges to that of (2.4) as → +α 0 . As a consequence, (3.4) is consistent with the theory of zeta functions.

Now, we are in position to characterize the functional equation (3.4). More precisely, Corollary 3.5 allows us

to express (3.4) in terms of sines and cosines. Furthermore, Theorem 3.6 reduces its computational cost.
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into (3.4) the proof is straightforward. □

Note that the coefficients ahαmn
p q, and bhαmn

p q, in (3.6) are independet of s, as in the case of integer order [9].

Theorem 3.6. Let � �∈ ⧹>α 0 , = − ( ) − /w πq iπlog 2 2q and �∈ ≤ ≤p q p q, : 1 . Then, for any �∈s ,

( )∑ ∑= − ( ) ( − ) −( )

= =

∞
( − ) ( − ) + − ( − ) + − −

( )

ζ s
p

q

α

h
w w s ζ s

m

q
, e e e Γ 1 1 , .α

m

q

h

iπ α h s w i
q
α h s w i π

q
α h

h

1 0

1 1q
πmp
q q

πmp
q

2 2










































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Proof. Let us begin by writing (2.4) in a different form. We observe that

( )( ) ( )( ) + = −− ( − ) − ( )− + ( − ) − ( )+ − +πq
πs πmp

q
2 2 sin

2

2
e e ,s s πq i i s πq i i π1 1 log 2 1 log 2π πmp

q
π πmp

q2

2

2

2









thus the πi2 -periodicity of the complex exponential implies

( )( )∑= ( − ) − −
=

( − ) − ( )− + ( − ) − ( )+ + −ζ s
p

q
s ζ s

m

q
, Γ 1 1 , e e .

m

q
s πq i i s πq i i π

1

1 log 2 1 log 2π πmp
q

π πmp
q2

2

2

2































The auxiliary function in (2.8) allows us to reduce the computational cost of (2.7) (see [5]). In the same

spirit, the function ψq defined by

� �= ( ) ∈ ∈ <+ψ s
m

q
w z s ζ s

m

q
z w w, , , Γ , e , , : Re 0,q q

sw z
q q

q


















 (3.7)

implies that (2.4) can be written as follows:

∑= − − − −
=

ζ s
p

q
ψ s

m

q
w i

πmp

q
ψ s

m

q
w i π

πmp

q
, 1 , , ,

2
1 , , ,

2
.

m

q

q q q q

1

















































On the other hand,

∑= − − − −( )

=
ζ s

p

q
D ψ s

m

q
w i

πmp

q
D ψ s

m

q
w i π

πmp

q
, 1 , , ,

2
1 , , ,

2
.α

m

q

f
α

q q f
α

q q

1















































 (3.8)

From (2.6) we get

∑− = ( − ) −
=

∞
( − ) − ( − ) +

( )

D ψ s
m

q
w z

α

h
w s ζ s

m

q
1 , , , e e Γ 1 1 , .f

α
q q

h

iπ α h
q
α h s w z

h

0

1 q

































 (3.9)

Therefore, the desired result plainly follows from (3.8) and (3.9). □

Remark 3.7. We note that Theorem 3.6 for = =p q 1 gives

∑( ) = ( − ( ) ) ( ( − ) ( − )) = − ( ) − /( )

=

∞
( − ) ( − ) − ( − ) − − ( )ζ s

α

h
w w s ζ s w π iπe e e Γ 1 1 , log 2 2.α

h

iπ α h s w α h s w iπ α h h

0

1 1






(3.10)

The author proved that (3.10) is a simplified form of (2.7). For more details we refer the reader to [5]. Hence,

Theorem 3.6 coherently generalizes recent results in fractional calculus of zeta functions. Moreover, we

observe that the introduction of ψq relies on the fact that

� �= ∈ ∈ <( − ) ( − )D w α w we e e , , : Re 0.f
α s w iπα s w α1 1

As in (3.7), the restriction <wRe 0 in (2.8) implies convergence of ( − )D ef
α s w1 . Finally, we see that replacing

( − )ψ s w z1 , , by ( − / )ψ s m q w z1 , , ,q q , w by wq and ( − )ζ s1 by ( − / )ζ s m q1 , in (2.9), we get the expansion

in (3.9).

3.2 Integral representation

The approach proposed here is based [9] on the following representation:

∫( ) = +
−
− ( + ) ( )

( + )
> −−

∞

+ζ s a a
a

s
s s

φ x

x a
x s,

1

2 1
1 d , Re 1,s

s

0

2

2








(3.11)
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where the function φ2 defined by

∫( ) = ( − ⌊ ⌋ − )φ x t t t1 d ,

x

2

0

(3.12)

is 1-periodic satisfying the condition

( ) = ( − ) ≤ ≤φ x x x x
1

2
1 , 0 1.2

Note that (3.11) is a direct consequence of Euler’s summation formula. Now, we are ready to give an integral

representation of ( )( )ζ s a,α , as next result points out.

Theorem 3.8. Let � �∈ ⧹>α 0 and �∈ < ≤a a: 0 1. In the half-plane > −sRe 1, we have

∫

∫ ∫

∑( ) = +
( − )

− ( + ) ( ) ( + )
( + )

+ ( + ) ( ) ( + )
( + )

− ( − ) ( ) ( + )
( + )

( ) −

=

∞ −

+

∞

+

∞ −

+

∞ −

+

ζ s a
a

a
a α

a

s
s s

φ x x a

x a
x

α s
φ x x a

x a
x α α

φ x x a

x a
x

, e
log

2

log

1
1

log
d

2 1
log

d 1
log

d ,

α iπα
α

s
s

j

j
α j

j

α

s

α

s

α

s

1

0
1

0

2

2

0

2
1

2

0

2
2

2















(3.13)

where φ2 is defined by (3.12).

Proof. From (3.11), we get

∫( ) = +
−
− ( + ) ( )

( + )
( )

−
∞

+ζ s a D
a

D
a

s
D s s

φ x

x a
x,

1

2 1
1 d .α

f
α

s f
α

s

f
α

s

1

0

2

2
































(3.14)

The proof consists in computing the three fractional derivatives in the right-hand side of (3.14). First,

replacing n with a in (3.1)1 gives

=D
a

a

a

1

2
e

log

2
.f

α
s

iπα
α

s








Moreover, (2.6) implies
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−
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1

1
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0
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








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
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





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







On the other hand,

−
= !
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( )

+s

j

s

1

1
e

1
,

j
iπj

j 1
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



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and
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−

−a

a

a

1
e
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
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Thus,
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−

=
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a

s
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a

s1
e
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1
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α
s
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1
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0
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Analogously, we have

∫ ∫∑( + ) ( )
( + )

= ( ( + )) ( )
( + )

∞

+
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∞
( )
∞

+
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
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The series above reduces to only three terms since ( ( + )) =( )s s 1 0m for any >m 2. As a consequence,

∫ ∫ ∫

∫

( + ) ( )
( + )

= ( + ) ( ) ( + )
( + )

− ( + ) ( ) ( + )
( + )

+ ( − ) ( ) ( + )
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+
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+
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x
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x
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1 e
log
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2
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2

0

2
2

2




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








This concludes the proof. □

It is worth noting that Apostol proved an integral representation similar to (3.13) for the integer

derivative of the Hurwitz ζ function [9]. Thus, Theorem 3.8 gives a fractional generalization of this result.

Now, we are in position to deal with the consistency of (3.13). To check this, we observe that

∫ ∫∑( ) = +
(− )

+ ( ) ( + )
( + )

− ( − ) ( ) ( + )
( + )
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∞ −
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∞ − ∞ −
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2















Since ( ) = ( )( ) ( )ζ s ζ s, 1α α , we have

( )∫( ) = ( ) ( + )
( + )

− ( − ) ( + )( )
∞ −

−ζ α
φ x x

x
α x x0 e

log 1

1
1 1 log 1 d ,α iπα
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2
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which leads to

∫( ) ⟶ ′( ) = − − ( )
( + )

= − ( )( ) →
∞

+
ζ ζ

φ x

x
x

π
0 0 1

1
d

log 2

2
,α

α 1

0

2

2
(3.15)

where the last equality follows Euler’s summation formula and Stirling’s formula (see Appendix). We

conclude that (3.13) reduces to (2.14) when =s 0, =a 1 and → +α 1 . Accordingly, Theorem 3.8 is consistent

with the theory of zeta functions.

3.3 Link between ( )ζ α and Bernoulli numbers

In the half-plane > −s nRe 2 with �∈n , the Riemann ζ function can be expressed as [9] follows:

∫∑( ) =
−
+ + + −

−
− +
+

( )
=

∞
+
+ +ζ s

s

B

r

s r

r

s n

n
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

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







(3.16)

Of course, B r2 are Bernoulli numbers and

∑( ) = (− ) ( + )!
( )+ +

+
=

∞

+P x
n

π

kπx

k
1

2 2 1

2

sin 2
,n

n
n

k
n2 1

1
2 1

1
2 1

is the periodic Bernoulli function [14]. Note that (3.16) is a consequence of Euler’s summation formula. For

the sake of simplicity, we set

∫

( ) = + −

( ) = ( )
∞

+

Q s
s m

m

I s
P x
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:
1
,

: d ,

m
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














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(3.17)
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therefore, (3.16) can be rewritten as

∑( ) =
−
+ + ( ) − ( ) ( )

=
− + +ζ s

s

B

r
Q s Q s I s

1

1

1

2 2
.

r

n
r

r n n

1

2
2 1 2 1 2 1 (3.18)

Obviously, ( )Q sm is a polynomial in s of degree m, thus �∈m 0 in (3.17). In 1985, Apostol showed [9] the

following link between the integer derivative ( )ζ k and Bernoulli numbers:

∑ ∑( ) = (− ) !
( − )

+ ( ) − ( ) ( )( )
+

=
−
( )

=
+
( )

+
( − )ζ s
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1 2
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r
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k j

1
1

2
2 1

0

2 1 2 1








 (3.19)

which holds in the half-plane > −s nRe 2 with �∈n . In the special case =n 1 we get

′( ) = − + − ( )ζ I0 1
1

12

1

3
0 ,3 (3.20)

and similarly for any ≥k 2 it follows

( ) = − ! − ( ) − ( − ) ( ) − ( − )( − ) ( )( ) ( − ) ( − ) ( − )ζ k
k
I

k k
I k k k I0

3
0

1

2
0 1 2 0 .k k k k

3
1

3
2

3
3 (3.21)

Thus, (3.20) and (3.21) imply successive closed form evaluations for the family of integrals �
( )( )( )

∈I 0
m

m3 0
.

For more details, we refer the reader to [9]. Now, we are able to generalize (3.19) for a fractional order of

differentiation.

Theorem 3.9. Let � �∈ ⧹>α 0 . In the half-plane > −s nRe 2 with �∈n , we have
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+ ( ) − ( ) ( )( )
+

=
−
( )

=
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+
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





 (3.22)

with Qm and Im as in (3.17).

Proof. From (3.18), the linearity of Df
α implies that
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
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







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


 (3.23)

We claim that

= >D α
1

2
0, 0.f

α







(3.24)

In fact, we have

∑ (− ) = (− ) − =
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~
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k α k
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1 1
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Γ 1
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1
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n

k
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α
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









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which leads us to (3.24). It remains to compute the term
−

D
s

1

1
f
α







in (3.23). We recall that the binomial

series expansion implies that ( ) =− −D e e ef
α st iπα st for � �∈ ⧹>α 0 . Thus,

∫ ∫−
= [ ] = = ( + )

( − )
> −

∞
−

∞
−

+D
s

D t t t
α

s
α

1

1
e e d e e e d e

Γ 1

1
, 1.f

α t
f
α st iπα t α st iπα

α

0 0

1








(3.25)

Note that (3.25) holds for > −α 1. This condition agrees with the hypothesis of positivity on α. Finally,

substituting (3.25) and (3.24) into (3.23), we get (3.22). This completes the proof. □

Remark 3.10. We note that (3.19) differs from (3.22) in only two respects: the order of differentiation and

the upper limit of second summation, where k is replaced by∞, respectively.
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The importance of Theorem 3.9 lies in the link between ( )ζ α andBernoulli numbers. Similar to Theorem 3.8,

the consistency of (3.22) plainly follows from (3.19).

4 An application in information theory

We conclude this paper with an application in terms of Shannon entropy. It is worth pointing out that the

results of this section are based on results due to Guiasu [13].

Let �= { ( ) ∈ }π n nΠ : be a probability distribution on �, i.e. ( ) ≥π n 0 for any �∈n and

�

∑ ( ) =
∈
π n 1.

n
(4.1)

A measure of the global amount of uncertainty related to the probability distributionΠ is given by Shannon

entropy H defined as follows:

�

∑= − ( ) ( )
∈

H π n π nlog .
n

Clearly = ( )H H Π . Many modern techniques in number theory are based on statistics. In particular, non-

trivial zeros of the Riemann ζ function can be viewed as a statistical distribution (see, e.g., [18,19]). The

Riemann ζ function can be used to maximize H subject to constraints (4.1) and

�

∑ ( ) = >
∈
π n n χ χlog , 0.

n
(4.2)

More precisely, Guiasu proved that the unique solution of the previous problem is given by

�( ) =
( )

∈
−

π n
n

ζ x
n, ,

x

(4.3)

where x is the unique real number such that >x 1 and

�

∑= −∈
χ

p

p

log

1
.

p
x (4.4)

The proof is based on the properties of Shannon entropy [13]. Analogously, fractional calculus of zeta

functions can also be used to maximize H , as stated below.

Theorem 4.1. Let � �∈ ⧹α . The maximization of Shannon entropy H subject to the constraints in (4.1) and

�

∑ ( ) = > +
∈

−π n D n χ x αlog , 1 ,
n

f
α x

α (4.5)

has a solution given by

�( ) =
( )

∈
−

( )π n
D n

ζ x
n, .

f
α x

α
(4.6)

The proof of Theorem 4.1 is similar in spirit to [13], that is (4.3). Furthermore, (3.1)1 implies that

� � �= ∈ ⧹ ∈−D n
n

n
α ne

log
, , .f

α x iπα
α

x
(4.7)

As a consequence, the right-hand side of (4.7) is complex. Put differently, (4.7) generalizes the integer case.

In fact, let �∈m . Replacing α bym, the right-hand side of (4.7) gives the derivative ( )− ( )n x m . Being = ±e 1iπm ,

the integer derivative of −n x is real. Conversely, the fractional derivative of real-valued functions can also be

complex.
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Remark 4.2. We note that >x 1 implies that >χ 0 in (4.4). Moreover,

�

�

∑
( ) = ∈

∈

π n

n

n
k

k

n

log

log
, .

α

x

k

α

x

Accordingly, ( ) ≥π n 0 for any �∈n and (4.1) holds. Moreover, > +x α1 implies convergence of (4.6).

Obviously, (4.5) shows that �∈χα , thus making impossible to replace the positivity condition in (4.2).

Remark 4.3. Let � be the operator of statistical mean with respect toΠ. It is worth noting that � ( ) =n χlog .

Likewise, � ( ) =−D n χlog f
α x

α.

Clearly, the solution in (4.6) holds for any fixed �∈ > +x x α: 1 . Note that Theorem 4.1 does not prove uni-

queness of the solution (4.6). This depends on the lack of a relation equivalent to (4.4) for χα. We recall that

uniqueness of (4.3) follows [13] from

�

∑ −
= − ′( )
( )

>
∈

p

p

ζ x

ζ x
x

log

1
, 1.

p
x

Let us compute the values of H when π is given by (4.3) and (4.6). For the sake of simplicity, we denote the

solution in (4.3) and (4.6) by πζ and πα, respectively. Of course, we have

( ) = ( ) − ′( )
( )
= ( ) +H π ζ x x

ζ x

ζ x
ζ x xχlog log .ζ (4.8)

and, on the other hand,

� �

( )∑ ∑( ) = −
( )

− = −
( )

+( )
∈

− − ( )
( )

∈

− − ( )H π
ζ x

D n D n ζ
ζ x

D n D n ζ
1

log log
1

log log ,α α
n

f
α x

f
α x α

α
n

f
α x

f
α x α

that is,

( ) = −( )H π ζ χlog .α
α

α (4.9)

Moreover,

⟶ ′( )
( )
= −→ +

χ x
ζ x

ζ x
xχ,α

α 0

therefore, (4.8) and (4.9) imply that

⟶( ) ( )
→ +

H π H π .α

α

ζ

0

We finally note that there is a lack of study on the relation between the distribution of prime numbers and
( )ζ α . The author proved [5] that

�

∑ ∑( ) + < < < −( )

∈ =

∞

−~ζ s
p

p
α s α

log
, 1 Re 0, 1,α

p t

α t

st
0

where the symbol~means that both sides above converge or diverge together. Thus, fractional calculus of

zeta functions and classical theory of zeta functions seem to have similar behaviors with respect to the

prime distribution.
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Appendix

Proof of (3.15)

Proof. Note that (3.15) immediately follows from

∫+ ( ) = ( )
∞
φ x

x
x

π
1 d

log 2

2
.

1

2

2

Euler’s summation formula [9] implies

∫ ∫∑ = + + ( )
=

k x x
n φ x

x
xlog log d
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2
d ,

k

n
n n

1
1 1

2

2

and so

∫! = + − + + ( )
n n n n

φ x

x
xlog

1
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log 1 d .

n
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2

2






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Some algebraic manipulations give

∫+ ( ) = !
+ /

φ x

x
x

n

n
1 d log

e
.

n
n

n

1

2

2 1 2

Getting the limit in the last equality as → ∞n , we have

∫+ ( ) = !
∞

→∞ + /
φ x

x
x

n

n
1 d log lim

e
.

n

n

n

1

2

2 1 2

Definition (3.12) implies that ∣ ( )∣ ≤φ x2

1

8
, thus the improper integral above converges absolutely. Moreover,

Stirling’s formula entails that

! =
→∞ + /

n

n
πlim

e
2 .

n

n

n 1 2

The proof is complete. □
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