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ABSTRACT 
Fourier transform can be generalized into the fractional Fourier 
transform (FRFT), linear canonical transform (LCT), and simpli- 
fied fractional Fourier transform (SFRFT). They extend the 
utilities of original Fourier transform, and can solve many prob- 
lems that can’t be solved well by original Fourier transform. 

In this paper, we will generalize the cosine transform. We will 
derive fractional cosine transform (FRCT), canonical cosine 
transform (CCT), and simplified fractional cosine transform 
(SFRCT). We will show they are very similar to the FRFT, LCT, 
and SFRFT, but they are much more efficient to deal with the 
even, real even functions. For digital implementation, FRCT and 
CCT can save 112 of the real number multiplications, and SFRCT 
can save 314. We also discuss their applications, such as optical 
system analysis and space-variant pattem recognition. 

I. INTRODUCTION 
Fractional Fourier transform (FRFT) is defined as [I] :  

G$ (4= 0; 

It is the generalization of Fourier transform (4 = d2). It can be 
used for many applications, such as optical system analysis, filter 
design, phase retrieval, pattem recognition, edge detection, etc. 
[2]. FRFT is a useful tool for signal processing. 

FRFT can be further generalized into the linear canonical 
transform (LCT) [3]. It is defined as: 

G P , ~ , C , ~  (.) = O($b.c,d) (g(t>> 

It satisfies the additivity property as below: 
~ ~ 2 , h ? , c 2 ’ d 2 ) ( 0 ~ , h l , c l , d l ) ( g ( t ) ) ) =  Opb3’C3,d3)(g(t)), (3) 

The FRFT is the special case of LCT that { a ,  6 ,  c, d }  = {coscz, 
sina, -sincl, cosa}: 

0; (g( t ) )= &T ~ ~ ~ , s i n ~ , - s i n q , c o s d )  k w ) .  ( 5 )  
And the Fresnel transform is the special case of LCT that {U, b, c, 
d }  = { 1, Ad274 0, 1 }. So LCT can be viewed as the generaliza- 

tion of FRFT and Fresnel transform. All the applications of 
FRFT and Fresnel transform are also the applications of LCT, 
and the LCT is more flexible for these applications. 

Recently, in [4], we have introduced the simplified fractional 
Fourier transform (SFRFT): 

’ 

The SFRFT is the special case of LCT that { a ,  6, c, d }  = {cote, I ,  
-1, 0). We have shown it has the same effects as FRFT, but 
simpler for digital implementation. For many applications, such 
as filter design, we can use SFRFT to substitute the FRFT. 

In this paper, we will generalize the cosine transform (CT): 

G,(w)= CT(g(t))= Fj:cos(wt).g(t) .dt  a . (7) 

Since cosine transform is much similar to Fourier transform, so, 
as the Fourier transform can be generalized into FRFT, LCT, 
SFRFT, we expect ‘the cosine transform can also be generalized. 
In this paper, we will introduce the fractional cosine transform 
(FRCT), canonical cosine transform (CCT), and simplified frac- 
tional cosine transform (SFRCT). We will show FRCT and CCT 
is very efficient to deal with the even functions, and SFRCT is 
very efficient to deal with the real, even functions. For all the 
applications of FRFT and LCT, if the input is even function, we 
can use FRCT and CCT instead of FRFT and LCT. And if the 
input is real, even, we can use SFRCT instead of FRFT and LCT. 

11. DERIVATION OF THE TRANSFORMS 
We remember that the transform results of Fourier transform and 
cosine transform has the relation as below: 

G, (w)= (G, (w)+ G, (- w)) /  2 .  (8) 
So we can derive the fractional and canonical cosine transform 
from the FRFT and LCT by the relations as below: 

Gd (s)= (G; (s)+ G; (-s))/ 2 ,  (9) 
(a ,h,c ,d)  (s) = (Gg,b,c,d) (s)+ Gpb1‘2~) (-s))/ 2 , (10) Gc 

and change the range of integration from (-=-, w) into [0, w) . So 
we can define the fractional and canonical transform as: 

Fractional cosine transform (FRCT): 

.G:b)=O:(g(t)) 
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We can prove they all satisfy the additivity property: 

0: (0: (g(4)= orq (g(t>> 9 (13) 

(14) 0p.k J ~ A )  (02 A .cI2di) (g(r ) ) )=  0 2 . 6 ) , ~ 3 . d 3 )  (g ( t )>  

where (01, b l ,  C I .  d11, {a2, b2, ~ 2 ~ 4 1 ,  (a3, b3, c3, 4 1  satisfy the 
relation of Eq. (4). It is easy to recover the original function from 
the transform results of SFRCT and CCT: 

g(t)=O,"Gf(s)), g(t)=Oc (d,-b,+,a) ( G F A C , ~ )  ~ r ) ) ,  (15) 

In [ 5 ] ,  they had introduced another type of FRCT. They de- 
rived it by taking the real part of the kernel of FRFT. But for the 
FRCT derived in [5 ] ,  it is hard to recover the original function 
from the transform result. This problem will not exist for the 
FRFT and LCT defined as Eq. (1 l), (1 2). 

If the input function g( t )  is even, then the transform result of 
FRCT is the same as that of the FRFT, and the transform result of 
CCT is the same as that of the LCT e(t) is even): 

@(g(t))=O$(g(t)), O ~ ' b ' c ' d ' ( g ( f ) ) =  O~'b'c'd'(g( t ) )  .(16) 

Although FRCT and CCT have additivity property, and have 
well mathematical definition, but there is some problem. That is, 
for the real input, the output will not be real function. We will 
introduce another type of generalized cosine transform, i.e., 
simplified fractional cosine transform (SFRCT). For SFRCT, if 
the input is real, the output is also a real function. 

We remember that the SFRFT is the special case of LCT that 
{a, b, c, d }  = {cot$, 1, -1, 0 ) .  So we will also derive the SFRCT 
from the special case of CCT that {a, b, c, d }  = {cot$, 1, -1, 0). 
We derive SFRCT as: 

' 0; (g(t))  = Re(fi. Oy'*17-l,o) (g(l))), (17) 
and we suppose the input fimction g(t)  is real. So 

Simplified fractional cosine transform (SFRCT): 

@c (. 1 = o!c (g  (4 
= jr COS(S t)cos( cot @ . t2 / 2)g(t)  dt . (18) 

And its inverse transform is: 

g(t)= ~ s e c ( c o t ( t 2 , ~ ) J ~ c o s ( S t ) G ~ ~ ~ ) d ~ .  (19) 

We note, for the SFRCT, if the input g( t )  is a real function, then 
the transform result will also be real. But, not the same as the 
cases of FRCT and CCT, the SFRCT don't have additivity prop- 
erty. As the FRCT defined in [5] ,  the SFRCT also has the prop- 
erty of real-input-real-output, and has no additivity property. But 
there are some key differences. That is, it is easy to recover the 
original function from the transform result of SFRCT, but this 
work is hard to do for the FRCT defined in [ 5 ] .  Besides, the 
SFRCT will have much simpler digital implementation structure. 

We can prove if the input g(t)  is a real, even function, then the 

transform results of SFRCT and SFRFT will have the relation as: 

G'& (s) = Re(&. G$ (s)) if g(t)  is real, even. (20) 
For SFRFT, if the input is real, then the output is a complex 
function, and the degree of fkeedom of the output is twice of the 
input. It is over-determined. But for SFRCT, it preserves the real 

part of G$ (s) , and treats its imaginary part as redundancy. 

And then, for real input, the output of SFRCT is also a real func- 
tion, and the degrees of freedom of input and output are the same. 
It is reasonable. So we can use SFRCT instead of SFRFT when 
the input is a real, even function. 

In [4], we have stated we can use SFRFT with parameter @ in- 
stead of FRFT with parameter @ and the LCT with alb = cot@ for 
many applications. So together with the above conclusion, we 
can conclude when the input g(t)  is a real, even function, we can 
use SFRCT with parameter $ to substitute the FRFT with pa- 
rameter $ and the LCT with alb = cot$ for many applications. 

. 

111. DIGITAL IMPLEMENTION 
The most important advantage of FRCT, CCT, and SFRCT is 
they are much simpler for digital implementation. We will 
introduce their fast algorithms, and compare their complexities 
with those of the FRFT and LCT. In [6], we have stated when we 
choose the sampling intervals to satisfy AAs = 27rb/P, ( P  is the 
total number of sampling points), then we can use two chirp 
multiplications and one DFT to implement the FRFT and LCT. 
Eqch chirp multiplication requires 3 P  real number multiplica- 
tions, and DFT require P.log2P real number multiplications. So 

Amount of real multiplications required for FRFT, LCT 
6 P  + P.lOg2P. (21) 
Then we discuss the digital implementation of FRCT. When 

we implement FRCT, we first sample t-axis and w-axis as below: 
t = (n+no)Ar, s = (m+mo)As, n, m = 0, 1, ...., N-1, (22) 

and substitute them into Eq. (1 1). If we choose the values of As, 
At, no, mo properly to make the term cos(csc@st) in Eq. ( 1 1 )  
becomes the kemel of DCT. And then, we can use the fast algo- 
rithm of DCT [7][8] together with the chirp multiplications to 
implement the FRCT. The amount of real number multiplications 
required for DCT is (We suppose the input is a real function): 

for 1" type DCT: 1 - N +  ( ~ / 2 ) . 1 0 g ~ ~ ,  (23) 
for 2nd, Yd type DCT: (N/Z).IO~,N, (24) 
for 4'h type DCT: N + ( N / ~ ) . I O ~ ~ N .  (25)  

For example, if we choose As,,Ar, no, mo as: 
As.Ar = n.sin$/(N-I), no = 0, mo = 0, (26)  

then Eq. (1 1) becomes 

.?A: 
j-coto 

where E(O)=g(O) /2 ,  g ( n ) = e  * g(nA.,) .  (28) 

We note, cos(mnl(N-1)) is just the kemel of 1" type DCT. Thus, 
we can follow the process as below to implement FRCT: 
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(1) Do the chirp multiplication as Eq. (28) to obtain g(m) . 
(2) Then do the 1'' type DCT for g(m) . 
(3) Then multiply the outside chirp term in Eq. (27). 
The 1'' and 3rd steps both requires N-points complex multiplica- 
tions, and the 2"d step requires the 1'' type DCT for complex 
input (i.e., two 1'' type DCT for real input). So if we choose 4s, 
4,, no, mo as Eq. (26), then the amount of real number multipli- 
cations required for FRCT is: 

Since N is just the number of sampling points for t, s 2 0, (see Eq. 
(24)), so N = P12 (P  is the total number of sampling points, in- 
cluding positive axis and negative axis). So 

Amount of real multiplications required for FRCT, CCT: 

It is just about 112 of Eq. (21). So when we deal with the even 
functions, it is much more efficient to use FRCT instead of FRFT, 
and about half of real number multiplications can be saved. 

Similarly, we can also follow the process as above, and im- 
plement the CCT by the DCT. Then the number of multiplica- 
tions required is also the same as Eq. (30), and is about 1/2 of the 
amount of real number multiplications required for LCT. 

So FRCT and CCT are indeed efficient tools to process even 
functions. We can use them instead of FRFT and LCT for many 
of the applications of FRFT and LCT when the input is even. 

Then we discuss the case of SFRCT. We also sample t-axis 
and w-axis as Eq. (22). If we choose 4s, A,, no, mo properly, then 
cos(st) term in Bq. (1 8) will become the kemel of DCT of type I ,  
2, 3, or 4, and then we can implement SFRCT by the fast algo- 
rithm of DCT of type 1 ,2 ,3 ,  or 4. 

For example, we can choose 

6N + 2 + N.log2N. (29) 

6N + 2 + N.logzN 3P + (P/2)10gz(P/2). (30) 

As.At = d ( N - l ) ,  "0 = 0, IQ 0, (32) 
then Eq. (20) becomes: 

the FRFT and LCT. 

where g(O)=-, d o )  g(nA,)=co { - cot4 n 2 A,)(nA,). 2 (33) 2 
So we can implement the SFRCT of type 1 by the multiplication 
of cos(cot@n2A:/2) and the 1" type DCT. Since the input g(nA,) 
is real, so Eq. (33) is the product of two real functions. It requires 
N real number multiplications. And since the input of the Ist type 
DCT is also a real function, so from Eq. (23), the 2nd step require 
l-N+(N/2).log2N real number multiplications. So 

Amount of real multiplications required for SFRCT: 

We also use the fact that N (the number of sampling points used 
for DCT, i.e., the sampling points for t 2 0, as Eq. (22)) is about 
half of P (total number of sampling points) for SFRCT. Eq. (34) 
is not only much less than the complexities of FRFT and LCT 
(see Eq. (21)) (about 1/4), but also less than the complexities of 
FRCT and CCT (see Eq. (30)) (about U2). 

So when the input function is real and even, it is much more 
efficient to use the SFRCT to process these functions than using 

I + (N/2).10gzN (P/4).10g,(P/2). (34) 

IV. APPLICATIONS 
The applications of FRCT, CCT, and SFRCT can be summarized 
briefly. That is, FRFT and CCT can replace the FFWT and 
LCT when the inputs are even functions, and SFKCT can re- 
place FRFT and LCT when the inputs are real, even functions. 

From Eq. (1 6), the transform results of FRCT and CCT are 
the same as those of FRFT and LCT when the inputs are even. 
Form Eq. (20), we know for real, even inputs, SFRCT with pa- 
rameter $ has very close relation with the SFRFT with parameter 
$, and hence has very close relation with the FRFT with pa- 
rameter $ and LCT with a/b = cot$. And together with the dis- 
cussion about digital implementation in Sec. 3, we can conclude: 
( 1 )  When the input is even, we can use FRCT and CCT instead 

of FRFT and LCT, and there are about half of real number 
multiplications can be saved. 

(2) When the input is real and even, we can use SFRCT instead 
of FRFT and LCT, and there are about 3/4 of real number 
multiplications can be saved. 
So the most important utility of FRCT, CCT, and SFRCT is 

they can substitute the FFWT and LCT when the input is even. 
Thus, the applications of FRCT, CCT, SFRCT are the same as the 
applications of FRFT and LCT. The applications of FRFT and 
LCT are filter design, optical system analysis, radar system 
analysis, solving differential equations, phase retrieval, multi- 
plexing, space-variant pattem recognition, edge detection, etc. 
They are also the applications of FRCT, CCT, and SFRCT. 

We will give two examples, one is optical system analysis, 
and the other is space-variant pattem recognition. 
I 

f , ' (X,  input y )  1 ............... g r,,,rlle$=h _...___.......... ......,,..._ ..d2 ......._,..., 4;~) 
Fig. 1 

and output can be expressed as.by LCT 

Optical system with one spherical lens, two free spaces. 
For the optical system as Fig. 1, the relation between the input 

(S?Y)A(Xt Y b ? Y  fo(p,q)= &"p" p" K ~ . b . U . d ) ( p , X ) K ~ . b . c . d )  -- 

and cp is some constant phase, k = 27d4 and 

In the case that the input is even for both x-axis and y-axis: 

then we can use the CCT with the same parameters to substitute 
the LCT for both x-axis andy-axis, ana change Eq. (35) as: 

f;k Y )  =f;(-x, 1% f;k Y )  =f;(x, -YL ( 3 8 )  

f, (p ,  q )  = t?'P 6 6 Kpb,',d) 01, X Z y g , b , c , d )  (4, y )A  (x, y ). dxdy 
c 

(39) 
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where rp is some constant phase, the values of { U ,  6, c,  d }  are the 
same as Eq. (36), and Kfib3c*d)@,  x) is the kernel of CCT 

The value off,@, q)  calculated from Eq. (39) is the same as the 
value off,@, q)  calculated from Eq. (39 ,  but the complexity of 
digital implementation of Eq. (39) is much less, because the 
complexity of CCT is only about 1/2 of the complexity of LCT. 

Then we will discuss the application of space-variant pattern 
recognition. In [9], they had illustrated how to use FRFT for 
space-variant pattern recognition. They use fractional correlation: - 
4>= O~~,(X(tXy(t))=FT[Xt!(s).YF(sII (41) 

where XF (s)= 0; (x( t ) ) ,  Y: (s)= 0; b(t)). (41a) 
Then we can choose x( t )  as the reference pattern, and choose y( t )  
as the input object. And then, we can use the inequality as below: 

to determine whether the input object matches the reference 
pattern. Eq. (42) will be satisfy only when 

If the input object doesn’t match the reference pattern, or the 
difference of locations is too large, then Eq. (42) will not satisfy, 
and the input object will not be recognized as the desired pattern. 
So FRFT can be used for space-variant pattern recognition. 

In fact, if the reference pattern is real and even, we can use 
SFRCT instead of FRFT for the application of space-variant 
pattern recognition. In this case, Eq. (41) is changed as below: 

Max(!z(t)l) > threshold (42) 

and ltol < R. (43) y ( t )  = “(t - 4))  3 

Z(t)=O~CR(x(rXy(t))=CTIX~c(s).y~c(sI1 (44) 

where X2c (s) = 02c (x(t )), Y{c (s) = O!c ( y ( t ) ) .  (44a) 
Although the input object y(t)  may not be an even function, but 
we can prove this won’t cause any problem when we use SFRCT 
instead of FRFT for y(t)  in this application. Then, we can also 
use the inequality of Eq. (42) to determine whether the input 
matches the reference pattern. We find, as the case when we use 
FRFT, Eq. (43) is still the condition that Eq. (42) is satisfied. We 
can use q to control the value of R. If ltanql is large, then R is also 
large (when q = d 2 ,  R + -). If ltanql is small, then R is small. 

We give an example as below. We choose the reference: 

and plot it in Figs. 2(a), 3(a). Then we choose the inputs as: 

Then we choose q = d2, and calculate z(t) by Eq. (44), and plot 
(z(t)( in Figs. 2(c), 3(c). Since in this case, the value of R in Eq. 
(43) is infinite, so no matter how large the displacement is, the 
value of Max(k(t)l) will not be attenuated. Then we choose q = 

0 . 4 5 ~ ,  and plot (z(t)l in Figs. 2(d), 3(d). In this case, the value of 
R in Eq. (43) is finite. So even when the input is same as the 
reference, but if the displacement is too large, as the case of Fig. 
3 (to = 14), the value of Max(t(t)l) will be attenuated. 

Thus, when Itanql + -, we do the space-invariant pattern 
recognition. When ltanql is finite, we do the space-variant pattern 
recognition. This is the same as the case when we use FRFT [9], 
but the complexity of computation is much less (just about 114). 

x ( t )  = A(t / 1.6) , (45) 

Fig. 2(b): y( t )  = x(t -2) , Fig. 3(b): y( t )  = x(t - 14) . (46) 

1 

0 5  

0 

0 4  

0 2  

0 

1 
1 0  2 0  

( a )  r e t e r e n c e  p a t t e r n  

0 1 0  2 0  
( c )  c o r r e l a l i o o  for  g = p i l 2  

::p1 1 
0 

0 1 0  2 0  
( d )  correlat ion f o r  q = O  4 5 p l  

Fig. 2 Space-variant pattern recognition, displacement = 2. 

I I I I 

0 1 0  2 0  0 1 0  2 0  
( a )  r e f e r e n c e  p a l t e r n  ( b )  i n p u t o b p c t ,  1 0 = 1 4  

0 1 0  2 0  
(C) C O r r e l a I l o n  for  q = p , / 2  

0 1 0  2 0  
( d )  corre la lcon far  g = O  4 5 p l  

Fig. 3 Space-variant pattern recognition, displacement = 14. 

V. CONCLUSION 
In this paper, we have introduced the fractional, canonical, and 
simplified fractional cosine transforms (FRCT, CCT, SFRFT). 
The complexities of FRCT and CCT are 1/2 of those of the FRFT 
and LCT, and the complexity of SFRCT is 1/4 of those of the 
FRFT and LCT. We can use FRCT and CCT to replace FRFT 
and LCT when the input is even, and use SFRCT to replace 
FRFT and LCT when the input is real and even. 

We have also derived the fractional, canonical, and simplified 
fractional sine and Hartley transforms in [lo]. 

REFERENCES 
V. Namias, J. Inst. Maths. Applics., v. 25, p 241-265, 1980. 
H. M. Ozaktas, M. A. Kutay, and D. Mendlovic, Advances 
in Imaging and Electron Physics, vol. 106, Ch. 4, 1999. 
K. B. Wolf, “Integral Transforms in Science and Etigineer- 
ing”, Ch. 9, New York, Plenum Press, 1979. 
S. C. Pei and J. J. Ding, ‘Simplified Fractional Fourier 
transform’, to appear in J.  Opt. Soc. Am. A ,  2000. 
A. W. Lohmann, D. Mendlovic, Z. Zalevsky, and R. G. 
Dorsch, Opt. Commun., vol. 125, p 18-20, Apr. 1996. 
S. C. Pei and J. J. Ding, IEEE Trans. Signal Processing, vol. 
48, no. 5, p. 1338-1353, May 2000. 
B. G. Lee, IEEE Trans. Acoust., Speech, Signal Processing, 
vol. ASSP-32, p. 1243-1245, Dec. 1984. 
C. W. Kok, vol. 45, no. 3, p. 757-760, March 1997. 
A. W. Lohmann, Z. Zalevsky, and D. Mendlovic, Opt. 
Commun., vol. 128, p. 199-204, Jul. 1996. 

[lo] S. C. Pei and J. J. Ding, ‘Fractional, canonical, and simpli- 
fied fractional cosine, sine, and Hartley transforms’, sub- 
mitted to IEEE Trans. Signal Processing. 

3548 


