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Fractional Cauchy problem on random snowflakes

Raffaela Capitanelli and Mirko D’Ovidio

Abstract. We consider time-changed Brownian motions on random Koch (pre-fractal and fractal) domains
where the time change is given by the inverse to a subordinator. In particular, we study the fractional
Cauchy problem with Robin condition on the pre-fractal boundary obtaining asymptotic results for the
corresponding fractional diffusions with Robin, Neumann and Dirichlet boundary conditions on the fractal
domain.

1. Introduction

Many physical and biological phenomena take place across irregular and wild struc-
tures in which boundaries are “large”, while bulk is “small”. In this framework, do-
mains with fractal boundaries provide a suitable setting to model phenomena in which
the surface effects are enhanced like, for example, pulmonary system, root infiltration,
tree foliage, etc.
In this paper, we consider random Koch domains which are domains whose bound-

ary is constructed by mixtures of Koch curves with random scales. These domains are
obtained as limit of domains with Lipschitz boundary, whereas for the limit object,
the fractal given by the random Koch domain, the boundary has Hausdorff dimension
between 1 and 2.
Our attention will be focused on fractional Cauchy problems on the random Koch

domains with boundary conditions.
The literature on fractional Cauchy problems is extensive both from the probability

and the analysis point of view. Here, our aim is not providing a large list of references.
We mention here only few works investigating basic and fundamental aspects: [1,3,
14,17,18,23,26,28,32].
The non-local time operator we deal with is very general and covers a huge class of

non-local (convolution type) operators. Such operators have been recently considered
in the papers [13,31]. From the probabilistic point of view, we consider time-changed
Brownian motions where the time change is given by an inverse to a subordinator
characterized by a symbolwhich is aBernstein function. Thus,with this time-fractional
operator at hand, we study the fractional Cauchy problem with Robin condition on the
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pre-fractal boundary and we obtain asymptotic results for the corresponding fractional
diffusions with Robin, Neumann and Dirichlet boundary conditions on the fractal
domain.
The asymptotic problem we deal with can be illustrated, in the simple case, by

the following parabolic Dirichlet–Robin problem on the interval (0, a), a > 0. More
precisely, we consider the heat equation

∂t un = ∂xxun, t > 0, x ∈ (0, a)

un(t, 0) = 0, t > 0

un(0, x) = f (x), x ∈ (0, a) (1.1)

with Robin boundary condition

∂xun(t, a) + cnun(t, a) = 0, t > 0 (1.2)

where cn > 0, n ∈ N. The solution can be written as follows un(t, x)

= ∑
k≥1 e

−tλ(n)
k φ

(n)
k (x) fk where f (n)

k = ∫
f (x)φ(n)

k (x) dx , k ∈ N. Notice that

φ
(n)
k (x) = sin(x

√
λ

(n)
k ) and

√
λ

(n)
k = z(n)

k are the eigenvalues associated with φ
(n)
k

where z(n)
k are solutions to tan(az(n)

k ) = −z(n)
k /cn , k ∈ N.

Our aim here is to point out the asymptotic behavior of the solution un as n → ∞.
We obtain three different limit problems. If cn → 0, then z(n)

k → zNk = (
π
2 + πk

) 1
a

and therefore un(t, x) → u(t, x) = ∑
k≥1 e

−t (zNk )2 sin(xzNk ) fk where fk = ∫
f (x)

sin(xzNk )dx and u is the solution to (1.1) with Neumann condition

∂xu(t, a) = 0, t > 0.

If cn → ∞, then z(n)
k → zDk = πk

a and therefore un → u where the solution

u(t, x) = ∑
k≥1 e

−t (zDk )2 sin(xzDk ) fk with fk = ∫
f (x) sin(xzDk )dx solves (1.1) with

Dirichlet condition

u(t, a) = 0, t > 0.

If cn → c ∈ (0,∞), then z(n)
k → zRk > 0 : tan(azRk ) = − zRk

c and there-

fore un → u where the solution u(t, x) = ∑
k≥1 e

−t (zRk )2 sin(xzRk ) fk with fk =
∫

f (x) sin(xzRk )dx solves (1.1) with Robin boundary condition

∂xu(t, a) + cu(t, a) = 0, t > 0.

Now,wewonder if a similar asymptotic behavior holds for the analogue time-fractional
problem. A simple example is given by the problem

∂
β
t un = ∂xxun, t > 0, x ∈ (0, a)

∂xun(t, a) + cnun(t, a) = 0, t > 0
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un(t, 0) = 0, t > 0

un(0, x) = f (x), x ∈ (0, a)

with cn > 0, n ∈ N where ∂
β
t u is the Caputo fractional derivative of u (see formula

(4.5)). The solution can be written as follows

un(t, x) =
∑

k≥1

Eβ(−λ
(n)
k tβ)φ

(n)
k (x) f (n)

k (1.3)

where

Eβ(w) =
∑

k≥0

wβ

�(βk + 1)
, w ≥ 0

is the Mittag-Leffler function and the system {φ(n)
k , λ

(n)
k : k ∈ N} has been introduced

before. By simple arguments, we get that the solution (1.3) uniformly converges to a
function u which turns out to be analogously related to the boundary problems above
(Neumann, Dirichlet, Robin) with the Caputo time-fractional derivative ∂

β
t in place of

the ordinary derivative ∂t . This is due to the fact that we have explicit representation
of the system {φ(n)

k , λ
(n)
k : k ∈ N}.

Following the same spirit, in the present paper, we move on to general domains like
the random snowflakes we have introduced before andwe address the same asymptotic
problem with a general time-fractional operator. In this case, we do not have the
same informations about the associated system and the compact representation of the
solution.Weovercome this difficulty byusing the theoryofDirichlet forms andMarkov
processes. An essential tool will be given by the convergence of forms associated with
time-changed processes.
We remark that the peculiarity in studying the asymptotic behavior of these approx-

imating problems is that one has to deal with an increasing sequence of Lipschitzian
domains which converges in the limit to the domain whose boundary is a fractal.
The plan of the paper is the following: In Sect. 2, we introduce the random Koch

domains; in Sect. 3, we recall the definition of Dirichlet forms with associated base
processes; in Sect. 4, we introduce time-fractional equations and time changes; and
in the last section, we prove our main results. More precisely, in Theorem 5.1 we
solve the asymptotic problem for the time-changed processes and in Theorem 5.2, we
point out some peculiar aspects arising by passing from the ordinary to the fractional
Cauchy problem.

2. Random Koch domains (RKD)

We first introduce the Koch (snowflake) domain, and then, we construct the random
Koch domains. Let �a ∈ (2, 4) with a ∈ I ⊂ N be the reciprocal of the contraction
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factor for the family 	(a) of contractive similitudes ψ
(a)
i : C → C given by

ψ
(a)
1 (z) = z

�a
, ψ

(a)
2 (z) = z

�a
eıθ(�a) + 1

�a
,

ψ
(a)
3 (z) = z

�a
eıθ(�a) + 1

2
+ ı

√
1

�a
− 1

4
, ψ

(a)
4 (z) = z − 1

�a
+ 1

where θ(�a) = arcsin(
√

�a(4 − �a)/2). Let � = IN with I ⊂ N, |I | = N , and let
ξ = (ξ1, ξ2, . . .) ∈ �. We call ξ an environment sequence where ξn says which family
of contractive similitudes we are using at level n. Set �(ξ)(0) = 1 and

�(ξ)(n) =
n∏

i=1

�ξi . (2.1)

We define a left shift S on� such that if ξ = (ξ1, ξ2, ξ3, . . .) , then Sξ = (ξ2, ξ3, . . .) .

For B ⊂ R
2 set

ϒ(a)(B) =
4⋃

i=1

ψ
(a)
i (B)

and

ϒ(ξ)
n (B) = ϒ(ξ1) ◦ · · · ◦ ϒ(ξn) (B) .

The fractal K (ξ) associated with the environment sequence ξ is defined by

K (ξ) =
+∞⋃

n=1

ϒ
(ξ)
n (�)

where � = {P1, P2} with P1 = (0, 0) and P2 = (1, 0). We remark that these fractals
do not have any exact self-similarity; that is, there is no scaling factor which leaves
the set invariant: However, the family {K (ξ), ξ ∈ �} satisfies the following relation

K (ξ) = ϒ(ξ1)(K (Sξ)). (2.2)

Moreover, the spatial symmetry is preserved and the set K (ξ) is locally spatially
homogeneous; that is, the volume measure μ(ξ) on K (ξ) satisfies the locally spatially
homogeneous condition (2.3). Before describing this measure, we introduce some
notations. For ξ ∈ �, we define the word space

W = W (ξ) = {(w1, w2, ...) : 1 � wi � 4}
and, for w ∈ W, we set w|n = (w1, ..., wn) and ψw|n = ψ

(ξ1)
w1 ◦ · · · ◦ ψ

(ξn)
wn . The

volume measure μ(ξ) is the unique Radon measure on K (ξ) such that

μ(ξ)(ψw|n(K (Snξ))) = 1

4n
(2.3)
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for allw ∈ W, (see Sect. 2 in [2]) as, for each a ∈ A, the family	(a) has 4 contractive
similitudes. Let K0 be the line segment of unit length with P1 = (0, 0) and P2 = (1, 0)
as endpoints. We set, for each n ∈ N,

K (ξ)
n = ϒ(ξ)

n (K0),

and K (ξ)
n is the so-called n-th pre-fractal curve.

Let us consider the random vector ξ = (ξ1, ξ2, . . .) whose components ξ i take
values on I with probability mass function P : � → [0, 1]. Thus, the construction of
the random n-th pre-fractal curve

K (ξ)
n = ϒ

(ξ)
n (K0)

depends on the realization of ξ with probability P(ξ i = ξi ) for its i-th component.
We assume that {ξ i }i=1,...,n are identically distributed and ξ i ⊥ ξ j for i 
= j ; that is,

we obtain the curve K (ξ)
n with probability

P(ξ |n = ξ |n) =
n∏

i=1

P(ξ i = ξi )

where ξ |n = (ξ1, . . . , ξn) and ξ |n = (ξ1, . . . , ξn). Further on, we only use the
superscript (ξ |n) or (ξ |n) in order to streamline the notation.
The fractal K (ξ) associated with the random environment sequence ξ is therefore

defined by

K (ξ) =
+∞⋃

n=1

ϒ
(ξ)
n (�)

where � = {P1, P2} with P1 = (0, 0) and P2 = (1, 0).
Let �(ξ |n) be the planar domain obtained from a regular polygon by replacing each

side with a pre-fractal curve K (ξ)
n and�(ξ) be the planar domain obtained by replacing

each side with the corresponding fractal curve K (ξ). We introduce the random planar
domains �(ξ |n) and �(ξ) by considering the random curves K (ξ)

n and K (ξ). Examples
of (pre-fractal) randomKoch domains are given in Figs. 1 (outward curves), 2 (inward
curves), 3 (inward curves) by choosing as regular polygon the square.

Since ξ i
law= ξ1, ∀ i , we have that the Hausdorff dimension d(ξ) of the curve K (ξ)

can be obtained by considering the strong law of large numbers and the fact that

ln 4n
∑n

i=1 �ξ i

= ln 4
1
n

∑n
i=1 �ξ i

a.s.→ ln 4

E[ln �ξ1
] , n → ∞.

Then (see [2, Lemma 2.3]),

d(ξ) = ln 4

ln
∏

a∈I (�a)P(ξ1=a)
= ln 4

E[ln �ξ1
] . (2.4)
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Figure 1. Outward curves

Figure 2. Inward curves

Figure 3. Inward curves
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Moreover, the measure μ(ξ) in (2.3) has the property that there exist two positive
constants C1,C2, such that

C1r
d(ξ) ≤ μ(ξ)(B(P, r) ∩ K (ξ)) ≤ C2r

d(ξ)

, ∀ P ∈ K (ξ), (2.5)

where B(P, r) denotes the Euclidean ball with center in P and radius 0 < r ≤ 1
(see [2]). According to Jonsson and Wallin (see [21]), we say that K (ξ) is a d-set with
respect to the Hausdorff measure Hd , with d = d(ξ). The sequence

σ (ξ |n) = �(ξ |n)

4n
, where �(ξ |n) =

n∏

i=1

�ξi (2.6)

is obtained from the realization of ξ |n and therefore, from the realization of the random
variable �(ξ |n) with mean value given by

E[�(ξ |n)] =
n∏

i=1

E[�ξ i
] = (

E[�ξ1
])n .

Thus, for α = E�ξ1
∈ (2, 4) we find the mean value E[σ (ξ |n)] = αn/4n .

The realization ξ |n can be regarded as the vector a|n = (a1, . . . , an) which is a
n-dimensional vector with N different values of I , that is a|n ∈ I n . We introduce the
multinomial distribution

pa|n = n!
N∏

i=1

p�(ai )
i

�(ai )! ,
N∑

i=1

�(ai ) = n,

N∑

i=1

pi = 1

where pi = P(ξ1 = ai ) and write p = {pi }i=1,...,N . Thus, for the realization of the
vector ξ |n we have that

E[1
�(ξ |n)] =

∑

ξ |n
pξ |n1�(ξ |n) with pξ |n = P(ξ |n = ξ |n).

or equivalently

E[1
�(ξ |n) ] =

∑

a|n
pa|n1�(a|n) .

We notice that

E[1
�(ξ |n) (x)] = 1 = (p1 + · · · + pN )N if x ∈

⋂

�

n⋃

i=1

�(ξ |i). (2.7)

3. Dirichlet forms and base processes

Let E be a locally compact, separable metric space and E∂ = E ∪ {∂} be the one-
point compactification of E . Denote by B(E) the σ -field of the Borel sets in E . (B∂
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is the σ -field in E∂ .) Let X = {Xt , t ≥ 0} with infinitesimal generator (A, D(A)) be
the symmetric Markov process on (E,B(E)) with transition function p(t, x, B) on
[0,∞) × E × B(E). The point ∂ is the cemetery point for X , and a function f on
E can be extended to E∂ by setting f (∂) = 0. The associated semigroup is uniquely
defined by

Pt f (x) :=
∫

E
f (y)p(t, x, dy) = Ex [ f (Xt )], f ∈ C∞(E)

with X0 = x ∈ E where Ex denotes the mean value with respect to the probability
measure

Px (Xt ∈ dy) = p(t, x, dy)

and C∞ is the set of continuous function C(E) on E such that f (x) → 0 as x → ∂ .
Let E(u, v) = (

√−Au,
√−Av) with domain D(E) = D(

√−A) be the Dirichlet
form associated with (the non-positive definite, self-adjoint operator) A. Then, X
is equivalent to an m-symmetric Hunt process whose Dirichlet form (E, D(E)) is on
L2(E) (see the books [15,19]).Without restrictions, we assume that the form is regular
([19, page 143]).
We say that X is the base process. Our aim is to consider time changes of the base

process X . Such random times will be introduced in the next section.

4. Time-fractional equations and time changes

We first introduce the subordinator H = {Ht , t ≥ 0} for which
E0[exp(−λHt )] = exp(−t�(λ))

where � is the symbol of H . The symbol � may be associated also with the inverse
L of H , that is L = {Lt , t ≥ 0} defined as

Lt = inf{s ≥ 0 : Hs > t}, t ≥ 0.

We assume that H0 = 0, L0 = 0. By definition, we also have that

P0(Ht < s) = P0(Ls > t), s, t > 0. (4.1)

The symbol � we consider hereafter is a Bernstein function with representation

�(λ) =
∫ ∞

0

(
1 − e−λz) �(dz), λ ≥ 0 (4.2)

where � on (0,∞) with
∫ ∞
0 (1 ∧ z)�(dz) < ∞ is the associated Lévy measure. We

also recall that

�(λ)

λ
=

∫ ∞

0
e−λz�(z)dz, �(z) = �((z,∞)) (4.3)
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and � is the so-called tail of the Lévy measure. Both random times H, L are non-
decreasing. We do not consider step processes with �((0,∞)) < ∞, and therefore,
we focus only on strictly increasing subordinators with infinite measures. Thus, the
inverse process L turns out to be a continuous process. For details, see the books [5,30].
Wenow introduce the fractional operators and the fractional equations governing the

time-changed process XL = {X ◦ Lt , t ≥ 0}, that is the base process X = {Xt , t ≥ 0}
with the time change L characterized by the symbol �.

Let M > 0 and w ≥ 0. Let Mw be the set of (piecewise) continuous function on
[0,∞) of exponential order w such that |u(t)| ≤ Mewt . Denote by ũ the Laplace
transform of u. Then, we define the operator D�

t : Mw �→ Mw such that
∫ ∞

0
e−λtD�

t u(t) dt = �(λ)̃u(λ) − �(λ)

λ
u(0), λ > w

where� is given in (4.2). Since u is exponentially bounded, the integral ũ is absolutely
convergent for λ > w. By Lerch’s theorem, the inverse Laplace transforms u andD�

t u
are uniquely defined. Notice that

�(λ)̃u(λ) − �(λ)

λ
u(0) = (λũ(λ) − u(0))

�(λ)

λ
. (4.4)

Simple arguments say thatD�
t can be written as a convolution involving the ordinary

derivative and the inverse transform of (4.3) iff u ∈ Mw ∩ C([0,∞),R+) and u′ ∈
Mw, that is,

D�
t u(t) =

∫ t

0
u′(s)�(t − s)ds.

We notice that when �(λ) = λ (that is, the ordinary derivative), we have that a.s.
Ht = t and Lt = t .
We also notice that for�(λ) = λβ , the symbol of a stable subordinator, the operator

D�
t becomes the Caputo fractional derivative

D�
t u(t) = 1

�(1 − β)

∫ t

0

u′(s)
(t − s)β

ds (4.5)

with u′(s) = du/ds.
For �(λ) = (λ + η)β − ηβ , with η ≥ 0 and β ∈ (0, 1), the operator D�

t becomes
the Caputo tempered fractional derivative

D�
t u(t) = 1

�(1 − β)

∫ t

0

u′(s)
(t − s)β

e−η(t−s) ds

with u′(s) = du/ds.
For explicit representation of the operator D�

t , see also the recent works [13,31].
Let X be the process with generator (A, D(A)) introduced above. In the present

work, we consider the time-fractional equation

D�
t u = Au, u0 = f ∈ D(A). (4.6)
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The probabilistic representation of the solution to (4.6) is written in terms of the
time-changed process XL , that is

u(t, x) = Ex [ f (XL
t )] =

∫ ∞

0
Ps f (x)P0(Lt ∈ ds), x ∈ E, t > 0. (4.7)

We notice that (4.7) is not a semigroup; indeed, the random time L is not Markovian
and therefore, the composition XL is not a Markov process.
The fractional Cauchy problem has been investigated by many authors by consider-

ing Caputo derivative and only recently, by taking into accountmore general operators.
The following theorem has been obtained in [11] for Feller processes (not necessar-
ily Feller diffusions, see [11]), and we mention here such a result for the reader’s
convenience.

Theorem 4.1. The function (4.7) is the unique strong solution in L2(E) to (4.6) in
the sense that:

(1) ϕ : t �→ u(t, ·) is such that ϕ ∈ C([0,∞),R+) and ϕ′ ∈ M0,
(2) ϑ : x �→ u(·, x) is such that ϑ, Aϑ ∈ D(A),
(3) ∀ t > 0, D�

t u(t, x) = Au(t, x) holds a.e in E
(4) ∀ x ∈ E, u(t, x) → f (x) as t ↓ 0.

In [13], the author proves existence and uniqueness of strong solutions to general
time-fractional equations with initial datum f ∈ D(A). In [16], the authors establish
existence and uniqueness for weak solutions and initial datum f ∈ L2. The result in
Theorem 4.1 has been proved in a general setting, that is by considering a generator of
a Feller process as in [13] but following a very different approach. We notice that the
condition on the initial datum f must be better specified for the compact representation
of the solution, and this is the case investigated in [17], for instance, (the domain has no
boundary) or the case investigated in [14] (with Dirichlet condition on the boundary).
In the next section, we will study continuous base processes time changed by con-

tinuous random times, and thus, we do not stress the fact that the previous result holds
for Feller process (right continuous with no discontinuity other than jumps).

5. Main results

We consider the pre-fractal RKD �(ξ |n) defined in Sect. 2, and we construct the set
�(ξ |n) \ B where B ⊂ �(ξ |1) is a ball.

Then, we consider Brownian diffusions on the random Koch domain �(ξ |n) \ B.
Let Xn = {Xn

t , t ≥ 0} with Xn
0 = x ∈ �(ξ |n) \ B be a sequence of planar Brownian

motions for a given ξ ∈ �. Let (An, D(An)) be the generator of Xn , in particular
An = � and

D(An) =

{u ∈ H1(�(ξ |n) \ B) : �u ∈ L2(�(ξ |n) \ B), u|∂B = 0, (∂nu + cnσ
(ξ |n)u)|∂�(ξ |n) = 0}
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where cn ≥ 0, n(x) denote the inward normal vector at x ∈ ∂�(ξ |n) and σ (ξ |n) is
defined in (2.6). It is well known that there is one-to-one correspondence between the
infinitesimal generator of Xn and the closed symmetric form (En, D(En) (see [19,
Theorem 1.3.1]).
We recall that a form (En, D(En) can be defined in the whole of L2(F,m) by setting

En(u, u) = +∞ ∀ u ∈ L2(F,m) \ D(En). Similarly, forms E , E can be defined in
the whole of L2(F,m) by setting E(u, u) = +∞ ∀ u ∈ L2(F,m) \ D(E).

For the convenience of the readers, we recall the definition of convergence of forms
introduced by Mosco in [27], denoted by M-convergence.

Definition 1. A sequence of forms {En(·, ·)} M-converges to a form E(·, ·) in L2(F)

if

(a) For every vn converging weakly to u in L2(F)

lim En(vn, vn) ≥ E(u, u) , asn → ∞. (5.1)

(b) For every u ∈ L2(F), there exists vn converging strongly in L2(F) such that

lim En(vn, vn) ≤ E(u, u) , as n → ∞ . (5.2)

In our framework, we consider the pre-fractal form En(·, ·) on L2(�(ξ) \ B) by
defining

En(u, u) =
⎧
⎪⎨

⎪⎩

∫

�(ξ |n)\B
|∇u|2 dxdy + cnσ (ξ |n)

∫

∂�(ξ |n)
|u|2ds for u|

�(ξ |n)\B ∈ H1(�(ξ |n) \ B), u|∂B = 0

+∞ otherwise .

We now introduce the time-changed process XL ,n = Xn ◦ L , and we study the
asymptotic behavior of XL ,n depending on the asymptotics for cn . The process XL ,n

can be considered in order to study the corresponding time-fractional Cauchy problem
on �(ξ |n) \ B

D�
t u = Anu, u0 = f ∈ D(An).

Let D be the set of continuous functions from [0,∞) to E∂ = �(ξ) ∪ ∂ which are
right continuous on [0,∞) with left limits on (0,∞). We denote by ∂ the cemetery
point, that is En

∂ is the one-point compactification of En = �(ξ |n), n ∈ N. Let D0 be
the set of non-decreasing continuous function from [0,∞) to [0,∞).

Proposition 5.1. (Kurtz, [24]. Random time change theorem). Suppose that Xn, X
are in D and Ln, L are in D0. If (Xn, Ln) converges to (X, L) in distribution as
n → ∞, then Xn ◦ Ln converges to X ◦ L in distribution as n → ∞.

Proof. The proof follows from part b) of Theorem 1.1 and part a) of Lemma 2.3
in [24]. Lemma 2.3 gives convergence for strictly increasing time changes. Since H
is strictly increasing, we use part c) of Theorem 1.1 and find results for L which is
non-decreasing and continuous. Then, part b) holds for the random time changes Ln .

�
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Theorem 5.1. As n → ∞,

X L ,n → XL in distribution in D ξ − a.s. on �(ξ).

In particular, as cn → c ≥ 0,

(i) if c = 0, then X L is reflected on ∂�(ξ), that is the process driven by

D�
t u = �Nu, u0 = f ∈ D(�N )

where

D(�N ) = {u ∈ H1(�(ξ) \ B) : �u ∈ L2(�(ξ) \ B), u|∂B = 0, (∂nu)|∂�(ξ) = 0};
(ii) if c ∈ (0,∞), then X L is (elastic) partially reflected on ∂�(ξ), that is the process

driven by

D�
t u = �Ru, u0 = f ∈ D(�R)

where

D(�R) = {u ∈ H1(�(ξ) \ B) : �u ∈ L2(�(ξ) \ B), u|∂B = 0, (∂nu + cu)|∂�(ξ) = 0};
(ii) if c = ∞, then X L is killed on ∂�(ξ), that is the process driven by

D�
t u = �Du, u0 = f ∈ D(�D)

where

D(�D)={u ∈ H1(�(ξ) \ B) : �u ∈ L2(�(ξ) \ B), u|∂B=0, u|∂�(ξ)=0}.
Remark 5.1. We point out that the condition on the boundary ∂�(ξ) must be meant in
the dual of certain Besov spaces (for details, see [8,25] and the references therein).

Proof. Fix ξ ∈ �. First, we prove the M-convergence in L2(�(ξ) \ B) of the Dirichlet
forms En .
The case of finite limit has been addressed in Theorem 5.2 in [9]: In particular, it

has been proved that if cn → c ≥ 0, then the sequence of forms En(·, ·) M-converges
in the space L2(�(ξ) \ B) to the form

Ec(u, u) =
⎧
⎨

⎩

∫

�(ξ)\B
|∇u|2 dxdy + c

∫

∂�(ξ)
|u|2dμ(ξ) for u|

�(ξ)\B ∈ H1(�(ξ) \ B), u|∂B = 0

+∞ otherwise
.

The last form Ec, for c ∈ (0,∞), is associated with the semigroup ([6,15])

Ex [ f (Xt )] = Ex [ f (∗Xt )Mt ] (5.3)

where the multiplicative functional Mt is associated with the Revuz measure given by
the perturbation of the form Ec. Thus, (5.3) is the solution to ∂t u = �Ru, u0 = f ∈
D(�R).



Vol. 21 (2021) Fractional Cauchy problem on random snowflakes 2135

For c = 0, the form Ec is associated with

Ex [ f (Xt )] = Ex [ f (∗Xt )]

solution to ∂t u = �Nu, u0 = f ∈ D(A).
Now, we prove that if cn → ∞, the sequence of forms En M-converges on L2(�(ξ))

to the form

E∞(u, u) =
⎧
⎨

⎩

∫

�(ξ)\B
|∇u|2 dxdy for u|�(ξ)\B ∈ H1

0 (�(ξ) \ B)

+∞ otherwise.

First, we prove condition (a) of Definition 1. Up to passing to a subsequence, which
we still denote by vn , we can suppose that

vn|�(ξ |n)\B ∈ H1(�(ξ |n) \ B), (5.4)

and, for every n,

||vn||H1(�(ξ |n)\B) � c∗, (5.5)

with c∗ independent of n. First, we extend vn by Jones extension operator (Theorem
1 in [20]) and after, we restrict it to the domain �(ξ) \ B : More precisely, we extend
vn to a function v∗

n = ExtJ vn|�(ξ)\B, such that

||v∗
n ||H1(�(ξ)\B) � CJ ||vn||H1(�

(ξ)
n \B)

� CJc
∗. (5.6)

We point out that the constant CJ independent of n (see Theorem 3.4 in [9]) that is
the norm of extension operator is independent of the (increasing) number of sides.
Then, there exists v∗ such that the sequence v∗

n weakly converges to v∗ in H1(�(ξ) \
B) : For the uniqueness of the limit in the weak topology, we obtain that v∗ = u and,
in particular, u ∈ H1(�(ξ) \ B). Since the sequence v∗

n weakly converges to u in
H1(�(ξ) \ B), we have that

lim
∫

�(ξ |n)\B
|∇vn|2 dxdy ≥

∫

�(ξ)\B
|∇u|2 dxdy. (5.7)

From the compact embedding of H1(�(ξ)) in Hα(�(ξ)) ( 12 < α < 1), we have that

||v∗
n − u||Hα(�(ξ)\B) → 0 (5.8)

and by using Trace theorems (see [21] and [10]), we obtain that

σ (ξ |n)

∫

∂�(ξ |n)

|vn|2ds → k
∫

∂�(ξ)

|u|2dμ(ξ) (5.9)

when n → ∞ (see Theorem 2.1 in [9]). We stress the fact that the value of σ (ξ |n)

plays a crucial role in the previous limit.
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Now, if cn → ∞, for any k > 0 there exists n1 such that, for all n > n1, cn ≥ k.
Then,

cnσ
(ξ |n)

∫

∂�(ξ |n)

|vn|2ds ≥ kσ (ξ |n)

∫

∂�(ξ |n)

|vn|2ds → k
∫

∂�(ξ)

|u|2dμ(ξ) (5.10)

when n → ∞. Dividing for k and letting k → ∞, we obtain that
∫

∂�(ξ)

|u|2dμ(ξ) = 0 (5.11)

and so u = 0 on ∂�(ξ). By combining (5.7), (5.9), (5.11), we have proved condition
(a) of Definition 1.

In order to prove condition (b) of Definition 1, we can assume that u ∈ H1
0 (�(ξ)\B)

without loss of generality: Then, the choice of vn = u suffices to achieve the result.
So we have proved the M-convergence of the forms En(·, ·) on L2(�(ξ) \ B) to the
form E∞ when cn → ∞.
From the M-convergence of the forms En(·, ·) on L2(�(ξ) \ B), by using the results

in the recent paper [11], we obtain the convergence of the time-changed processes.
More precisely, from the M-convergence of the forms we have the strong con-

vergence of semigroups. From Theorem 17.25 (Trotter, Sova, Kurtz, Mackevičius)
in [22], we have that strong convergence of semigroups (Feller semigroups) is equiv-
alent to weak convergence of measures if Xn

0 → X0 in distribution. Then, we obtain

that Xn d→ X in D.
From Proposition 5.1, we have that

∀ ξ ∈ �, Xn ◦ L =: XL ,n → XL := X ◦ L on �(ξ)

in distribution as n → ∞ in D.
From the pointwise convergence, we get that ξ−a.s.

XL ,n → XL on �(ξ)

in distribution as n → ∞ in D. �
Let us consider now the process XL on E . We point out some peculiar aspects of

XL and the corresponding lifetimes.

Theorem 5.2. Let us consider the Cauchy problems

∂tw = Aw, w0 = f ∈ D(A) (5.12)

and

D�
t u = Au, u0 = f ∈ D(A) (5.13)

with � such that

lim
λ→0

�(λ)

λ
∈ (0,∞).

We have that, ∀ x ∈ E:
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– if �′(0) < 1, then
∫ ∞

0
u(t, x)dt <

∫ ∞

0
w(t, x)dt,

– if �′(0) > 1, then
∫ ∞

0
u(t, x)dt >

∫ ∞

0
w(t, x)dt,

– if �′(0) = 1, then
∫ ∞

0
u(t, x)dt =

∫ ∞

0
w(t, x)dt.

Proof. The solution to (5.12) has the following probabilistic representation

w(t, x) = Ex [ f (Xt )] = Ex [ f (∗Xt )Mt ]
where Mt = 1(t<ζ) is the multiplicative functional written in terms of the lifetime ζ of
the process X on E . Then, we consider the part process X of ∗X where ∗X0 = x ∈ E .
It is well known that Mt characterizes uniquely the associated semigroup ([6]), that is
the solution w. We also have that

Ex

[∫ ζ

0
f (Xs)ds

]

=
∫ ∞

0
w(t, x)dt =: w(x)

is the solution to the elliptic problem on E

−Aw = f.

From Theorem 4.1, we have that the time-changed process XL can be considered in
order to solve the problem (5.13), that is

u(t, x) = Ex [ f (XL
t )] = Ex [ f (∗XL

t )1(t<ζ L )]

where ζ L is the lifetime of XL . As before, we introduce the

u(x) :=
∫ ∞

0
u(t, x)dt = Ex

[∫ ζ L

0
f (XL

s )ds

]

which is the solution to the elliptic problem associated with the fractional Cauchy
problem (5.13). We are able to obtain the key relation between w and u by taking into
consideration the following plain calculations. First, we recall (4.7) where Ps f (x)
here is given by w(s, x) with w(s, x) → f (x) as s → 0. Moreover (see [12]),

∫ ∞

0
e−λtP0(Lt ∈ ds)dt = �(λ)

λ
e−s�(λ)ds. (5.14)
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We have that

u(x) = lim
λ→0

∫ ∞

0
e−λt u(t, x)dt

=[by (4.7)]
= lim

λ→0

∫ ∞

0
e−λt

∫ ∞

0
w(s, x)P0(Lt ∈ ds) dt

=[by (5.14)]
= lim

λ→0

∫ ∞

0
w(s, x)

�(λ)

λ
e−s�(λ)ds

=
(

lim
λ→0

�(λ)

λ

)∫ ∞

0
w(s, x)ds.

That is

u(x) =
(

lim
λ→0

�(λ)

λ

)

w(x)

and this gives a connection between solutions of elliptic problems introduced above
in the proof. Since � is a Bernstein function with �(0) = 0, we get the result. �

The characterization given in the previous result admits a probabilistic interpretation
in terms ofmean lifetime of the base and time-changed processes. The problems (5.12)
and (5.13) with f = 1E are associated with w(x) = Ex [ζ ] and u(x) = Ex [ζ L ] as
described in the previous proof, and the mean lifetime says howmuch the time change
L modifies the base process X . By following the definition given in [12] and the
relation between w and u, we say that X is delayed or rushed on E by L . An example
is given by the tempered fractional derivative ([4,29]) associated with the symbol
�(λ) = (λ + η)β − ηβ with η > 0 and β ∈ (0, 1). We get that

Ex [ζ L ] = βηβ−1Ex [ζ ]

that is, if βηβ−1 < 1, then the process X is rushed by L , whereas if βηβ−1 > 1, then
the process X is delayed by L .

The previous discussion on either delayed or rushed processes holds according to
specific regularity conditions on the boundary ∂E . Wemust have that supE w(x) < ∞
which is the characterization of trap domains (written here for X with generator A)
given in [7] for the Brownian motion. By applying the result in [7], it follows that the
following proposition holds true.

Proposition 5.2. For ξ ∈ �, the domains�(ξ |n), n ∈ N are non-trap for the Brownian
motion.

Since the previous statement holds pointwise for any contraction factor, we imme-
diately obtain the following general statement.
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Proposition 5.3. For the �-valued random vector ξ , the domains �(ξ |n), n ∈ N are
ξ−a.s. non-trap for the Brownian motion.
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