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ABSTRACT

We investigate anomalous di�usion on compact Riemannianmanifolds,
modeled by time-changed Brownian motions. These stochastic pro-
cesses are governed by equations involving the Laplace–Beltrami oper-
ator and a time-fractional derivative of order β � (0, 1). We also consider
time dependent random �elds that can be viewed as random �elds on
randomly varying manifolds.

1. Introduction

In recent years, the study of the random �elds on manifolds attracted the attention of many
researchers. They have focused on the construction and characterization of random �elds
indexed by compact manifolds such as the sphere S

2
r = {x ∈ R

3 : |x| = r}, torus, and other
compact manifolds: see, for example, [4,26–28]. In such papers compact manifolds represent
a domain in which the random �eld is observed. The interest in studying random �elds on
the sphere is especially represented by the analysis of the Cosmic Microwave Background
(CMB) radiation which is currently at the core of physical and cosmological research: see, for
example, [10,23]. CMB radiation is thermal radiation �lling the observable universe almost
uniformly [38] and is well explained as radiation associated with an early stage in the develop-
ment of the universe. Formore details on CMB radiation see our recent paper [13]. This paper
extends the results in [13] in two ways. The results in three dimensional sphere are extended
to any n-dimensional compact Riemannian manifold. The second extension is to space frac-
tional operators corresponding to stochastic processes obtained by Bochner subordination of
Brownian motion.

Beside the interest on random �elds, the study of fractional di�usion has attracted the
attention of many researchers recently. The fractional di�usions are related to anomalous
di�usions or di�usions in non-homogeneous media with random fractal structures; see, for
example, [31]. Initial study was carried out by [21,36,45] in which the authors established the
mathematical foundations of fractional di�usions: see, for example, [35] for a short survey on
these results. A large class of fractional di�usions are solved by stochastic processes that are
time-changed by inverse stable subordinators: see, for example, [30,37].
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STOCHASTIC ANALYSIS AND APPLICATIONS 233

Let (M, μ) be a smooth connected Riemannian manifold of dimension n � 1 with Rie-
mannian metric g, and the volume measure μ supported on M. The associated Laplace-
Beltrami operator △ = △

M
in M is an elliptic, second order, di�erential operator de�ned

in the spaceC∞
0 (M). In local coordinates, this operator is written as

△ = 1
√
g

n
∑

i, j=1

∂

∂xi

(

gi j
√
g

∂

∂x j

)

, (1.1)

where {gij} is the matrix of the Riemannianmetric, {gij} and g are, respectively, the inverse and
the determinant of {gij}.

For any y ∈ M, the heat kernel p(x, y, t) is the fundamental solution to the heat equation

∂tu = △u (1.2)

with initial point source at y. Furthermore, p(x, y, t) de�nes an integral kernel of the heat
semigroup Pt = e−t△M and p(x, y, t) is the transition density of a di�usion process on M

which is a Brownianmotion generated by△M. IfM is compact, then Pt is a compact operator
on L2(M). By the general theory of compact operators, the transition density (heat kernel)
p(x, y, t) can be represented as a series expansion in terms of the eigenfunctions of−△M. The
reader is referred to [8, 9, 11, 15].

In this article we consider random �elds on the compact Riemannian manifoldM, espe-
cially 2-manifolds such as torus or the double torus, Möbious strip, cylinder and sphere. We
will construct a new class of time-dependent random�elds indexed by sets of coordinates ran-
domly varying with time in M. Our construction involves time-changed Brownian motion
on the manifoldM for which we study the corresponding Cauchy problem with random and
deterministic initial conditions.

Let Sβ
t be a stable subordinator of index β � (0, 1) with Laplace transform

E exp(−sSβ
t ) = exp(−t sβ ). (1.3)

We de�ne by

Eβ
t = inf{τ > 0 : Sβ

τ > t} (1.4)

the inverse of the stable subordinator Sβ
t of order β � (0, 1). Eβ

t has nonnegative, nonstation-
ary, and nonindependent increments (see [32]).

Our �rst aim is to �nd the unique strong solution to the fractional Cauchy problem

∂
β
t u(x, t ) = △Mu(x, t ), t > 0, x ∈ M; u(x, 0) = f (x), x ∈ M, (1.5)

where f is a well speci�ed initial value, and β � (0, 1). The stochastic solution of this equation
turns out to be a time-changed Brownian motion, in particular, we get

u(m, t ) = E f (Bm

E
β
t

), m ∈ M, t > 0,

where Bm
t is a Brownian motion started atm and Eβ

t is an inverse stable subordinator related
to the time fractional operator ∂

β
t in the sense of Dzhrbashyan–Caputo de�ned in equation

(2.14).
We also consider Cauchy problems involving space fractional operators:

D
�
M f (x) =

∫ ∞

0

(

Ps f (x) − f (x)
)

ν(ds), x ∈ M, (1.6)
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234 M. D’OVIDIO AND E. NANE

where f(x) is a well-de�ned function onM, ν is the Lévy measure (such that �(1�s)ν(ds) <

�) de�ning the Lévy symbol � , and Pt = e−t△ is the heat semigroup in

L2(M) = L2(M, μ) :=
{

f :

∫

M

f 2dμ < ∞
}

. (1.7)

We study the heat-type Cauchy problem onM

∂tu(x, t ) = D
�
Mu(x, t ), t > 0, x ∈ M; u(x, 0) = f (x), x ∈ M, (1.8)

where f is a well speci�ed initial value. The stochastic solution of this equation turns out to be
a time-changed Brownian motion (also called a subordinate Brownian motion), in particular,
we get

u(m, t ) = E f (Bm
S�t

), m ∈ M, t > 0,

where Bm
t is a Brownian motion started atm and S�

t is a positive, nondecreasing Lévy process
with Laplace symbol � with

E exp(−ξS�
t ) = exp(−t�(ξ )). (1.9)

The operator D
�
M

turns out to be the in�nitesimal generator of the semigroup P�
t :=

exp(−tD�
M

), t � 0 on L2(M): see, for example, [1].
In summary, Brownianmotion time changed by an inverse subordinator yields a stochastic

solution to a time fractional Cauchy problem, and Brownian motion time changed by a sub-
ordinator which is a positive, nondecreasing Lévy process, yields a heat type Cauchy problem
with space fractional operator.

Finally, we study the power spectrum of the random �elds that are composed with
time-changed Brownian motions, and �nd out di�erent covariance structures. In particu-
lar, such covariances show di�erent rates of convergence for the covariance of high frequency
components.

1.1. Notations

� Bm
t , t � 0, is the Brownian motion onM started atm;

� T(m),m ∈ M, is a Gaussian random �eld indexed byM;
� St = S�

t , t � 0, is a subordinator with Laplace exponent � ;
� Et = Eβ

t , t � 0, is an inverse to a stable subordinator Sβ
t , t > 0, of order β � (0, 1);

� T�
t (m) = T (Bm

St
), t > 0,m ∈ M;

� T
β
t (m) = T (Bm

Et
), t > 0,m ∈ M, t > 0,m ∈ M;

� T�
t (m) = E[T�

t (m)|FT ], t > 0,m ∈ M;
� Tβ

t (m) = E[Tβ
t (m)|FT ], t > 0,m ∈ M;

� FT is the σ -algebra generated by the random �eld T onM.

2. Preliminaries

Let (M, d, μ) be a manifold with a metric structure where (M, d) is a locally separable met-
ric space and μ is a volume measure supported onM. Let L2(M, μ) be the space of square
integrable real-valued functions onM with �nite norm

‖u‖μ :=
(∫

M

|u(m)|2 μ(dm)

)
1
2

.
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STOCHASTIC ANALYSIS AND APPLICATIONS 235

We are interested in studying the solutions to

△φ + λφ = 0 (2.1)

and heat equation (1.2) from a probabilistic point of view.
The fundamental solution to heat equation (1.2) onM is a continuous function p = p(x,

y, t) onM × M × (0, +∞) with

lim
t↓0

p(·, y, t ) = δy(·), lim
t↓0

p(x, ·, t ) = δx(·), (2.2)

where δm is the Dirac delta function form ∈ M. Furthermore, p is unique and symmetric in
the two space variables. Given a continuous initial datum u0 = f we write

u(m, t ) = Pt f (m) = E f (Bm
t ) =

∫

M

p(m, y, t ) f (y)μ(dy). (2.3)

One immediately veri�es that Pt satis�es the semigroup property: PtPs = Pt + s. We say that
Bm
t , t > 0 is a Brownian motion onM starting atm ∈ M, that is a measurable map from the

probability space (�, F, P) to the measurable space (M,B(M), μ). Furthermore, p(x, y, t)
is the fundamental solution to the heat equation (1.2) with point source initial condition, and
Bm
t , t > 0 is a di�usion with continuous trajectories such that

P{Bm
t ∈ M} =

∫

M

p(m, y, t )μ(dy)

for any Borel setM ⊂ M.

2.1. Eigenvalue problems and heat kernels

We follow the presentation in in Chavel [8, Sec. I.3] for stating the following eigenvalue prob-
lems.

Closed eigenvalue problem: LetM be a compact, connectedmanifold. Find all real num-
bers λ for which there exist a nontrivial solution φ ∈ C2(M) to (2.1).

Dirichlet eigenvalue problem: For ∂M 	= ∅, M̄ compact and connected, �nd all real
numbers λ for which there exist a nontrivial solution φ ∈ C2(M) ∩C0(M̄) to (2.1), satis-
fying the boundary condition

φ = 0

on ∂M.
Neumann eigenvalue problem: For the boundary ∂M 	= ∅, M̄ compact and connected,

�nd all real numbers λ for which there exist a nontrivial solution φ ∈ C2(M) ∩C1(M̄) to
(2.1), satisfying the boundary condition

∂nφ = 0

on ∂M (�n is the outward unit normal vector �eld on ∂M).
Mixed eigenvalue problem: For ∂M 	= ∅, M̄ compact and connected, N an open sub-

manifold of ∂M, �nd all real numbers λ for which there exist a nontrivial solution φ ∈
C2(M) ∩C1(M ∪ N ) ∩C0(M̄) to (2.1), satisfying the boundary conditions

φ = 0 on ∂M, ∂nφ = 0 onN .

on ∂M.
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236 M. D’OVIDIO AND E. NANE

Theorem 1. [8, p. 8] For each one of the eigenvalue problems, the set of eigenvalues consists of a

sequence

0 ≤ λ1 < λ2 ≤ · · · ↑ +∞,

and each associated eigenspace is �nite dimensional. Eigenspaces belonging to distinct eigenval-

ues are orthonormal in L2(M) and L2(M) is the direct sum of all eigenspaces. Furthermore,

each eigenfunction is C� onM.

In the closed and Neumann eigenvalue problems we have λ1 = 0 and in the Dirichlet and
mixed (N 	= M) eigenvalue problems we have λ1 > 0.

Theorem 2. [8] In the case of closed eigenvalue problem, each φj is as smooth as the heat kernel

p. In particular, p � C� implies φj � C� for every j = 1, 2, ���. And in this case

p(x, y, t ) =
∞
∑

j=1

e−λ jtφ j(x)φ j(y) (2.4)

with convergence absolute, and uniform, for each t > 0.

Theorem 3. [8, p. 169] Given a connected manifoldM with piecewise C� boundary and com-

pact closure, there exists a complete orthonormal basis,

{ϕ1, ϕ2, ϕ3, · · ·}

of L2(M) consisting of Dirichlet eigenfunctions of �, with ϕj having eigenvalue λj satisfying

0 < λ1 < λ2 ≤ · · · ↑ +∞.

In particular, each eigenvalue has �nite multiplicity. Each

ϕ j ∈ C∞(M) ∩C1(M̄).

And, in this case, the fundamental solution, the heat kernel, is given by

p(x, y, t ) =
∞
∑

j=1

e−λ jtϕ j(x)ϕ j(y) (2.5)

with convergence absolute, and uniform, for each t > 0.

For each of the four eigenvalue problems, as k → �

(λk)
n/2 ∼ (2π)nk/ωnV (M), (2.6)

where ωn is the volume of the unit disk in R
n, andV (M) is the volume ofM.

Theorem 4. [8, p. 141] For any f ∈ L2(M, μ), the function Ptf(m) converges uniformly, as t↑
+ �, to a harmonic function onM. SinceM is compact, the limit function is constant.

2.2. Brownianmotion onM

Let Pt be a strongly continuous semigroup on L2(M, μ) andA be the in�nitesimal generator
such that

lim
t↓0

∥

∥

∥

∥

Ptu − u

t
− Au

∥

∥

∥

∥

μ

= 0 (2.7)
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STOCHASTIC ANALYSIS AND APPLICATIONS 237

for all u ∈ Dom(A) = {u ∈ L2(M, μ) such that the limit (2.7) exists}.
See Emery [14] for a discussion of processes on manifolds. We have the following result

concerning the operatorA = △ onM.

Proposition 1. LetM be a connected and compact manifold (without boundary!). The stochas-

tic solution to the Cauchy problem
{

∂tu(m, t ) = △u(m, t ), m ∈ M, t > 0
u(m, 0) = f (m), m ∈ M

(2.8)

is represented by the Brownian motion Bm
t , t > 0 starting from m ∈ M at t = 0 with

u(m, t ) = Pt f (m) = E f (Bm
t ) =

∫

M

p(m, y, t ) f (y)μ(dy)

=
∞
∑

j=1

e−tλ jκ j φ j(m), m ∈ M, t > 0, (2.9)

where Pt = exp ( − t△) is the semigroup corresponding to Brownian motion and

κ j =
∫

M

f (y)φ j(y)μ(dy). (2.10)

Let τM(Bm) = inf{t > 0 : Bm
t /∈ M} be the �rst exit time of Brownian motion from M.

The heat equation with Dirichlet boundary conditions is as follows:

Proposition 2. LetM be a connected manifold with piecewise C� boundary, and with compact

closure. The stochastic solution to
⎧

⎨

⎩

∂tu(m, t ) = △u(m, t ), m ∈ M, t > 0
u(m, 0) = f (m), m ∈ M

u(m, t ) = 0 m ∈ ∂M, t > 0
(2.11)

is represented by the Brownian motion Bm
t killed on the boundary, t > 0 starting from m ∈ M

at t = 0 with

u(m, t ) = Pt f (m) = E( f (Bm
t )I(t < τM(Bm)))

=
∞
∑

j=1

e−tλ jκ j ϕ j(m), m ∈ M, t > 0, (2.12)

where Pt = exp ( − t△) and

κ j =
∫

M

f (y)ϕ j(y)μ(dy). (2.13)

2.3. Inverse stable subordinators andMittag–Le�er function

The Dzhrbashyan–Caputo fractional derivative [7] is de�ned for 0 < β < 1 as

Dβ
t g(t ) = 1

Ŵ(1 − β)

∫ t

0

dg(r)

dr

dr

(t − r)β
. (2.14)

Its Laplace transform
∫ ∞

0

e−stDβ
t g(t ) dt = sβ g̃(s) − sβ−1g(0) (2.15)
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238 M. D’OVIDIO AND E. NANE

(where g̃ is the Laplace transformof g) incorporates the initial value in the sameway as the �rst
derivative, and Dβ

t g(t ) becomes the ordinary �rst derivative dg(t)/dt for β = 1. When u(t, x)
is a function of time and space variables, then we use ∂

β
t u(t, x) for the Dzhrbashyan–Caputo

fractional derivative of order β � (0, 1),
For a function g(t) continuous in t � 0, the Riemann–Liouville fractional derivative of

order 0 < ν < 1 is de�ned by

D
β
t g(t ) = 1

Ŵ(1 − β)

d

dt

∫ t

0

g(r)

(t − r)β
dr. (2.16)

Its Laplace transform is given by
∫ ∞

0

e−st
D

β
t g(t ) dt = sβ g̃(s). (2.17)

If g( · ) is absolutely continuous on bounded intervals (e.g., if the derivative exists every-
where and is integrable) then the Riemann–Liouville and Dzhrbashyan–Caputo derivatives
are related by

Dβ
t g(t ) = D

β
t u(x, t ) − t−βg(0)

Ŵ(1 − β)
. (2.18)

The Riemann–Liouville fractional derivative is more general, as it does not require the �rst
derivative to exist. It is also possible to adopt the right-hand side of (2.18) as the de�nition of
the Dzhrbashyan–Caputo derivative; see, for example, Kochubei [22].

A stable subordinator Sβ
t , t > 0, β � (0, 1), is (see [5]) a Lévy process with non-negative,

independent and stationary increments with Laplace transform in (1.3).
The inverse stable subordinator Eβ de�ned in (1.4) with density, say lβ , satis�es

P{Eβ
t ≤ x} = P{Sβ

x ≥ t}. (2.19)

We say that a process Xt is a stochastic solution to a Cauchy problem (P1) i� u(x, t ) =
P{Xt ∈ dx}/dx is the unique solution to (P1). According to [3, 12, 33],Eβ

t represents a stochas-
tic solution to

(

D
β
t + ∂

∂x

)

lβ (x, t ) = 0, x > 0 , t > 0, β ∈ (0, 1)

subject to the initial and boundary conditions
{

lβ (x, 0) = δ(x), x > 0,
lβ (0, t ) = t−β/Ŵ(1 − β), t > 0.

(2.20)

Due to the fact that Sβ
t , t > 0 has nonnegative increments, that is nondecreasing paths, we

have that Eβ
t is a �rst passage time. Furthermore, for β → 1 we get that

lim
β→1

Sβ
t = t = lim

β→1
Eβ
t

almost surely ([5]) and, therefore, t is the elementary subordinator.
In what follows, we will write f 	 g and f 
 g to mean that for some positive c1 and c2, c1 �

f/g� c2 and f� c1g, respectively. We will also write f(t)∼ g(t), as t→ �, to mean that f(t)/g(t)
→ 1, as t → �.

Let

Eβ (z) =
∞
∑

n=0

zn

Ŵ(1 + nβ)
(2.21)
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STOCHASTIC ANALYSIS AND APPLICATIONS 239

be the Mittag–Le�er function. By [30, Eq. 3.16] the Laplace transform of Eβ
t is given by

E exp(−λEβ
t ) = Eβ (−λtβ ). (2.22)

Next we state some of the properties of the Mittag–Le�er function. Let β � (0, 1]. As we
can immediately check Eβ(0) = 1 and (see, e.g., [20, 39] )

0 ≤ Eβ (−zβ ) ≤ 1

1 + zβ
≤ 1, z ∈ [0, +∞). (2.23)

Indeed, we have that

Eβ (−zβ ) ≈ 1 − zβ

Ŵ(β + 1)
≈ exp

(

− zβ

Ŵ(β + 1)

)

, 0 < z ≪ 1, (2.24)

and

Eβ (−zβ ) ≈ z−β

Ŵ(1 − β)
− z−2β

Ŵ(1 − 2β)
+ . . . , z → +∞. (2.25)

Thus theMittag–Le�er function is a stretched exponential with heavy tails. Furthermore, we
have that (see [20, formula 2.2.53])

D
β
z Eβ (μzβ ) = z−β

Ŵ(1 − β)
+ μEβ (μzβ ), μ ∈ C. (2.26)

Using Equation (2.18), formula (2.26) takes the form

Dβ
z Eβ (μzβ ) = μEβ (μzβ ), μ ∈ C, β ∈ (0, 1). (2.27)

Hence, in this case, we say that Eβ(μz
β) is the eigenfunction of the Dzhrbashyan–Caputo

derivative operator Dβ
z with the corresponding eigenvalue μ ∈ C.

3. Space-time fractional Cauchy problems

In this section, we study time fractional and space fractional Cauchy problems.

3.1. Time fractional Cauchy problems in compactmanifolds with boundary

Remark 1. We say that �u exists in the strong sense if it exists pointwise and is continuous
inM.

Similarly, we say that Dβ
t f (t ) exists in the strong sense if it exists pointwise and is contin-

uous for t � [0, �). One su�cient condition is that f is a C1 function on [0, �) with |f′(t)| �
c tγ − 1 for some γ > 0. Then by (2.14), the Caputo fractional derivative Dβ

t f (t ) of f exists for
every t > 0 and the derivative is continuous in t > 0.

Let β � (0, 1),M∞ = (0, ∞) × M and de�ne

H�(M∞) ≡
{

u : M∞ → R :
∂

∂t
u,

∂β

∂tβ
u, �u ∈ C(M∞),

∣

∣

∣

∣

∂

∂t
u(t, x)

∣

∣

∣

∣

≤ g(x)tβ−1, for some g ∈ L∞(M), t > 0

}

.

We will write u ∈ Ck(M̄) to mean that for each �xed t > 0, u(t, ·) ∈ Ck(M̄), and u ∈
Ck
b(M̄∞) to mean that u ∈ Ck(M̄∞) and is bounded.
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240 M. D’OVIDIO AND E. NANE

Theorem 5. Given a connected manifoldM with piecewise C� boundary and compact closure.

Let Pt be the semigroup of Brownianmotion {Bm
t } inM killed on the boundary ∂M. Let Et = Eβ

t

be the process inverse to a stable subordinator of index β � (0, 1) independent of {Bm
t }. Let

f ∈ Dom(�) ∩C1(M̄) ∩C2(M)

for which the eigenfunction expansion of �f with respect to the complete orthonormal basis

{ϕn : n ∈ N} converges uniformly and absolutely. Then the unique strong solution of

u ∈ H�(M∞) ∩Cb(M̄∞) ∩C1(M̄)

∂
β
t u(m, t ) = �u(m, t ); m ∈ M, t > 0 (3.1)

u(m, t ) = 0, m ∈ ∂M, t > 0, u(m, 0) = f (m), m ∈ M.

is given by

u(m, t ) = E[ f (Bm
Et

)I(Et < τ(Bm))]

= t

β

∫ ∞

0

Pl f (x)gβ (tl−1/β )l−1/β−1dl =
∫ ∞

0

P(t/l)β f (x)gβ (l)dl.

=
∞
∑

j=1

Eβ (−tβλ j)ϕ j(x)

∫

M

ϕ j(y) f (y)μ(dy).

Here, gβ is the density of Sβ(1).

Proof. The proof follows by similar arguments as in the proof of Theorem 3.1 in [30]. �

Remark 2. Let f ∈ C2k
c (M) be a 2k-times continuously di�erentiable function of compact

support in M. If k > 1 + 3n/4, then the Equation (3.1) has a classical (strong) solution. In
particular, if f ∈ C∞

c (M), then the solution of Equation (3.1) is in C∞(M). The results in
this remark can be seen in connection with Corollary 3.4 in [30] and the bounds on the eigen-
functions and on the gradients of the eigenfunctions: Let n denote the dimension of M, for
some uniform constants c1, c2 > 0

||ϕ j||∞ ≤ c1λ
(n−1)/4
j ||ϕ j||2

||∇ϕ j||∞ ≤ c2λ
(n+1)/4
j ||ϕ j||2, λ j ≥ 1 (3.2)

see [11] and [43], and the references therein. Intrinsic ultracontractivity of the semigroup Pt

proved in Kumura [25] that bounds each eigenfunction with the �rst eigenfunction can also
be used in the proof of this theorem.

3.2. Time fractional Cauchy problems in compactmanifolds without boundary

Let

H s(M) =
{

f ∈ L2(M) :

∞
∑

l=0

(λl )
2s

(∫

M

φl(y) f (y)μ(dy)

)2

< ∞
}

. (3.3)

Theorem 6. Let β � (0, 1) and s > (3 + 3n)/4. Let M be a connected and compact manifold

(without boundary!). The unique strong solution to the fractional Cauchy problem

{

∂
β
t u(m, t ) = △u(m, t ), m ∈ M, t > 0
u(m, 0) = f (m), m ∈ M, f ∈ H s(M)

(3.4)
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STOCHASTIC ANALYSIS AND APPLICATIONS 241

is given by

u(m, t ) = E f (Bm
Et

) =
∞
∑

j=1

Eβ (−tβλ j)φ j(m)

∫

M

φ j(y) f (y)μ(dy), (3.5)

where Bm
t is a Brownianmotion inM and Et = Eβ

t is inverse to a stable subordinator with index

0 < β < 1.

Proof. The proof follows the main steps in the proof of Theorem 3.1 in [30]. The proof is
based on the method of separation of variables. Let u(m, t) = G(t)F(m) be a solution of (3.4).
Then substituting into (3.4), we get

F(m)Dβ
t G(t ) = G(t )△F(m).

Divide both sides by G(t)F(m) to obtain

Dβ
t G(t )

G(t )
= △F(m)

F(m)
= −c.

Then we have

Dβ
t G(t ) = −c G(t ), t > 0 (3.6)

and

△F(m) = −c F(m), m ∈ M. (3.7)

By the discussion above, the eigenvalue problem (3.7) is solved by an in�nite sequence of
pairs {λ j, φ j : j ∈ N} where φj forms a complete orthonormal set in L2(M). In particular,
the initial function f regarded as an element of L2(M) can be represented as

f (m) =
∞
∑

l=1

κlφl(m), (3.8)

where κl =
∫

M
f (m)φl(m)μ(dm). By Equation (2.27), we see that κ lEβ(−λl(t)

β) solves (3.6).
Sum these solutions κ lEβ( − λl(t)

β)φl(m) to (3.4), to get

u(t,m) =
∞
∑

l=1

κlEβ (−λl(t )
β )φl(m). (3.9)

Since f ∈ H s(M) we get

|κl | ≤ Cλ−s
l

for someC> 0. The fact that the series (3.9) converges absolutely and uniformly follows from

||φl ||∞ ≤ Cλl
(n−1)/4

and the asymptotics in (2.6):

||u||∞ ≤
∞
∑

l=1

|κl |Eβ (−λl(t )
β )||φl ||∞ ≤

∞
∑

l=1

λ−s
l λl

(n−1)/4 < ∞

as s > 1/4 + 3n/4 and λl ∼ Cnl
2/n as l → �.

To show that u ∈ C1(M), we use the following from Theorem 1 in Shi and Xu [43]. : For
all λl � 1

||∇φl ||∞ ≤ C
√

λl ||φl ||∞,
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242 M. D’OVIDIO AND E. NANE

where C is constant depending only onM. This gives

||∇u||∞ ≤
∞
∑

l=0

|κl |||∇φl ||∞ ≤
∞
∑

l=1

λ−s
l λl

n/2 < ∞.

Since s > 1/4 + 3n/4. Hence u ∈ C1(M).
Similarly,

||�u||∞ ≤
∞
∑

l=1

|κl |||�φl ||∞ ≤
∞
∑

l=1

λ−s
l ||λlφl ||∞ < ∞

as s > 3/4 + 3n/4. We next show that ∂
β
t u exists pointwise as a continuous function. Using

[24, Equation (17)]
∣

∣

∣

∣

dEβ (−λtβ )

dt

∣

∣

∣

∣

≤ c
λtβ−1

1 + λtβ
≤ cλtβ−1,

we get

||∂tu||∞ ≤
∞
∑

l=1

|κl |||∂tEβ (−λl(t )
β )||φl ||∞ ≤ ctβ−1

∞
∑

l=1

λ−s
l |λl |||φl ||∞ < ∞

as s > 3/4 + 3n/4. It follows from Remark 1, ∂β
t u exists pointwise as a continuous function

and is de�ned as a classical function. Hence, we can apply the Laplacian andCaputo fractional
derivative ∂

β
t term by term to (3.9) to show

(∂
β
t − �)u(t,m) =

∞
∑

l=1

κl

[

∂
β
t Eβ (−λl(t )

β )φl(m) − Eβ (−λl(t )
β )�φl(m)

]

= 0

The rest of the proof follows similar to the proof in [30, Theorem 3.1]. �

3.3. Space fractional operators

Let Ps = es△ be the semigroup associated with the Laplace operator △ on the manifold M,
and let ν( · ) be the Lévy measure of the subordinator St = S�

t such that ν( − �, 0) = 0,
∫ ∞
0

(s ∧ 1)ν(ds) < ∞ where a�b = min {a, b}. Recall that

�(ξ ) =
∫ ∞

0

(

1 − e−sξ
)

ν(ds) (3.10)

is the so-called Laplace exponent of the corresponding subordinator St = S�
t , t � 0 with

Laplace transform (1.9). The standard way to de�ne fractional di�erential operators is as in
equation (1.6) (see [42]).

Formula (1.6) extends the representation

− (−△M)α f (x) =
∫ ∞

0

(

Ps f (x) − f (x)
)

ν(ds), (3.11)

where in this case ν(ds) = αs−α − 1/Ŵ(1 − α)ds is the Lévy measure of a stable subordinator.
We next discuss the Cauchy problems for the space fractional operators. Recall that the

Lévy measure ν satis�es (e.g., see [1])
∫

(|y|2 ∧ 1)ν(dy) < ∞.
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STOCHASTIC ANALYSIS AND APPLICATIONS 243

Since (|y|2�ϵ) � (|y|2�1) whenever ϵ� (0, 1], it follows that

ν((−ǫ, ǫ)c) < ∞, for all 0 < ǫ ≤ 1

(see, e.g., [1]). Furthermore, we recall that ([16, 17])

|�(ξ )| ≤ c� (1 + |ξ |2), (3.12)

where c� = 2 sup|ξ |≤1 |�(ξ )|, that is � f̂ ∈ L2 where f̂ is the Fourier transform of f. For the
subordinator St, similar calculation leads to

|�(ξ )| < ξ.

It su�cies to consider formula (3.10) and the fact that

lim
ξ→∞

�(ξ )

ξ
= 0. (3.13)

De�nition 1. Let � be the symbol of a subordinator with no drift. Let f ∈ H s(M) and s >

(3n + 3)/4. Then,

D
�
M f (m) = −

∑

j∈N
f jφ j(m)�(λ j) (3.14)

is absolutely and uniformly convergent. Furthermore,

D
�
M f (m) = −

∫

M

f (y)J(m, y)μ(dy) (3.15)

where

J(x, y) =
∑

j∈N
�(λ j) φ j(x) φ j(y).

if the series converges.

The de�nition above and therefore the convergence of (3.14) immediately follows from
(3.13) and the fact that ‖φ j‖∞ ≤ Cλ

(n−1)/4
j for some C > 0 with λj ∼ j2/n as j → �. In order

to arrive at (3.15), we observe that, for a suitable function f onM for which a series represen-
tation by means of the orthonormal system {φ j} j∈N holds true, we have that

Ps f (x) =
∑

j∈N
e−sλ jφ j(x) f j (3.16)

is the transition semigroup of a Brownianmotion Bt, t� 0, on themanifoldM. We recall that
f j =

∫

M
f (x)φ j(x)μ(dx). Therefore, the semigroup u(x, t) = Ptf(x) solves the heat equation

(1.2). From (3.16), the operator (1.6) takes the form

D
�
M f (x) =

∫ ∞

0

(

Ps f (x) − P0 f (x)
)

ν(ds)

=
∑

j∈N
f jφ j(x)

∫ ∞

0

(

e−sλ j − 1
)

ν(ds) = −
∑

j∈N
f jφ j(x)�(λ j)

and, therefore, we formally get that

D
�
M f (x) = −

∑

j∈N
f jφ j(x)�(λ j) = −

∑

j∈N

(∫

M

f (y)φ j(y)μ(dy)

)

φ j(x)�(λ j)
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244 M. D’OVIDIO AND E. NANE

= −
∫

M

f (y)

⎛

⎝

∑

j∈N
�(λ j)φ j(x)φ j(y)

⎞

⎠μ(dy) = −
∫

M

f (y)J(x, y)μ(dy).

Remark 3. Let us consider the kernel of the subordinate Brownian motion Bx(S(t))

q(x, y, t ) =
∫ ∞

0

p(x, y, s) P{St ∈ ds} =
∑

j∈N
e−t�(λ j )φ j(x)φ j(y), (3.17)

where p(x, y, s) is the kernel (2.4) which is the transition density of Brownian motion and S is
a subordinator with

− ∂t Ee−ξSt

∣

∣

∣

t=0+
= �(ξ ). (3.18)

In this case, the subordinate semigroup is given by

P�
t f (x) =

∫ ∞

0

Ps f (x) P{St ∈ ds} =
∑

j∈N
e−t�(λ j )〈 f , φ j〉μφ j(x) (3.19)

where Ps is the transition semigroup of Brownian motion given in equation (3.16).

Theorem 7. The solution to Equation (1.8) can be written as u(x, t ) = E f (Bx
St
) = P�

t f (x)

where Bx
St
, t � 0 is a subordinate Brownian motion on M and St = S�

t is a subordinator with

Laplace exponent (3.10).

This is the so-called Bochner subordination of Brownian motion with a subordinator St
which implies that Bx

St
is also a Lévy process onM. See more on the Bochner subordination

in [42].

4. Random �elds onM

Let us consider the Gaussian random �eld T(m), m ∈ M where M is a compact manifold
with the following properties:
A.1) T has almost surely continuous sample paths;
A.2) T has zero mean, ET (m) = 0;
A.3) T has �nite mean square integral,

E

[∫

M

T 2(m)μ(dm)

]

< ∞; (4.1)

A.4) T has continuous covariance function

K (m1,m2) = ET (m1)T (m2). (4.2)

It is well known (see, e.g., [19]) that there exist constants ζ 1 � ζ 2 � ��� � 0 and continuous
functions {ψ j} j∈N onM such that the following properties are ful�lled:
B.1) {ψ j} j∈N are orthonormal in L2(M, μ);
B.2) {ψ j, ζ j} j∈N form a complete set of solutions to the Fredholm-type equation

∫

M

K (m1,m2)ψ j(m1)μ(dm1) = ζ j ψ j(m2), ∀ j ∈ N; (4.3)

B.3) the following holds true

K (m1,m2) =
∑

j∈N
ζ jψ j(m1)ψ j(m2) (4.4)
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STOCHASTIC ANALYSIS AND APPLICATIONS 245

and the series is absolutely and uniformly convergent onM × M;
B.4) there exists a sequence {ω j} j∈N of Gaussian random variables (ωj ∼ N(0, 1),�j) such

that the following Karhunen–Loeve expansion holds

T (m) =
∑

j∈N

√

ζ jω jψ j(m) (4.5)

and the series converges in the integrated mean square sense onM.
The reader can consult [2].
We introduce the following spectral representation for the random �eld T.

Theorem 8. Let {φ j} j∈N and {ψ j} j∈N be the orthonormal systems previously speci�ed. Let T(m),

m ∈ M be the random �eld for which A.1–A.4 are ful�lled.

(1) The representation

T (m) =
∑

j∈N
φ j(m) c j (4.6)

where

c j =
∑

i∈N

√

ζiωi〈φ j, ψi〉μ, j ∈ N

(with ωj ∼ N(0, 1), �j) holds in L2(dP
dμ) sense, i.e.

lim
N→∞

E

⎡

⎣

∫

M

⎛

⎝T (m) −
N

∑

j=1

φ j(m) c j

⎞

⎠

2

μ(dm)

⎤

⎦ = 0. (4.7)

(2) The Fourier random coe�cients {c j} j∈N are Gaussian r.v.’s such that

c j ∼ N

(

0,
∑

i∈N
ζi|〈φ j, ψi〉μ|2

)

, j ∈ N. (4.8)

Furthermore,

E[ck cs] =
∑

i∈N
ζi 〈φk, ψi〉μ 〈φs, ψi〉μ. (4.9)

Proof. We consider the orthonormal system {φ j} j∈N on L2(M, μ) and the fact that the
Karhunen–Loeve expansion

T (m) =
∑

j∈N

√

ζ jω jψ j(m) (4.10)

holds true since A.1–A.4 are ful�lled (the series converges in the integratedmean square sense
onM). In force of these facts, we can write

ψ j(x) =
∑

i∈N
θi jφi(x), where θi j = 〈ψ j, φi〉μ (4.11)

and {ψ j} j∈N is a set of continuous functions on M satisfying B.1–B.4. Therefore, we obtain
that

T (m) =
∑

j,i∈N

√

ζ j ω j θi j φi(m) =
∑

i∈N

⎛

⎝

∑

j∈N

√

ζ j ω j θi j

⎞

⎠φi(m). (4.12)
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246 M. D’OVIDIO AND E. NANE

By comparing (4.12) with the (4.6), we can immediately see that

ci =
∑

j∈N

√

ζ j ω j θi j (4.13)

term by term and ci is the Fourier random coe�cient in the series expansion involving the
orthonormal system {φi}i∈N. On the other hand, from (4.10), we have that

c j =
∫

M

T (m)φ j(m)μ(dm) =
∑

i∈N

√

ζi ωi

∫

M

ψi(m) φ j(m) μ(dm), (4.14)

which coincides with (4.13). We know that ωj ∼ N(0, 1) and, therefore,

ci ∼ N

⎛

⎝0,
∑

j∈N
ζ j θ

2
i j

⎞

⎠ . (4.15)

From (4.4) and (4.5) we can immediately verify that ωj for all j ∈ N are independent random
variables, thus we write E[ω j ωi] = δ

j
i which is the Kronecker’s delta symbol

δ
j
i =

{

1, i = j,

0, i 	= j.
(4.16)

Result (4.9) comes from the fact that

E[ck cs] =
∑

i, j∈N

√

ζi
√

ζ j E[ω j ωi] 〈φk, ψi〉μ 〈φs, ψ j〉μ

=
∑

i, j∈N

√

ζi
√

ζ j δ
j
i 〈φk, ψi〉μ 〈φs, ψ j〉μ

and the claim appears.
From the completeness of the system {φ j} j∈N, we also obtain that

E

⎡

⎣

∫

M

⎛

⎝T (m) −
N

∑

j=1

φ j(m) c j

⎞

⎠

2

μ(dm)

⎤

⎦ = E

∥

∥

∥

∥

∥

∥

T (m) −
N

∑

j=1

φ j(m) c j

∥

∥

∥

∥

∥

∥

2

μ

= E‖T (m)‖2μ −
N

∑

j=0

Ec2j,

where

E‖T (m)‖2μ =
∫

M

E[T (m)]2μ(dm) =
∑

j∈N
ζ j (4.17)

and

N
∑

j=0

Ec2j =
N

∑

j=0

∑

i∈N
ζi |〈φ j, ψi〉μ|2. (4.18)

Indeed, we have that

E[T (m)]2 = K (m,m) (4.19)
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and
∫

M

K (m,m)μ(dm) =
∑

j∈N
ζ j

∫

M

|ψ j(m)|2μ(dm) =
∑

j∈N
ζ j. (4.20)

Formula (4.18) can be rewritten as

N
∑

j=0

∑

i∈N
ζi |〈φ j, ψi〉μ|2 =

N
∑

j=0

∑

i∈N
ζi 〈φ j, ψi〉μ 〈φ j, ψi〉μ

=
〈〈

∑

i∈N
ζi ψi(u) ψi(z),

N
∑

j=0

φ j(u)φ j(z)

〉

μ(du)

〉

μ(dz)

,

where, as usual,

〈 f , g〉μ =
∫

M

f (y)g(y)μ(dy).

By observing that

lim
N→∞

N
∑

j=0

φ j(u)φ j(z) = δ(u − z), (4.21)

by the completeness of {φ j} j∈N, we get that

lim
N→∞

N
∑

j=0

∑

i∈N
ζi |〈φ j, ψi〉μ|2 =

∑

i∈N
ζi ‖ψi‖μ =

∑

i∈N
ζi.

By collecting all pieces together, we obtain that

lim
N→∞

E

⎡

⎣

∫

M

⎛

⎝T (m) −
N

∑

j=1

φ j(m) c j

⎞

⎠

2

μ(dm)

⎤

⎦ = 0

and this concludes the proof. �

Remark 4. We observe that, if φj = ψ j for all j that is, {φj} is an orthonormal system of eigen-
functions with eigenvalues λj, j � 0 and solves the Fredholm-type equation (4.3) depending
on ζ j, j � 0, then we have that

c j =
√

ζ j ω j ∼ N(0, ζ j).

4.1. Cauchy problemswith random initial conditions

We recall that the random �eld T ∈ L2(M) on the manifoldM can be written as

T (m) =
∑

j∈N
φ j(m) c j (4.22)

where the Fourier random coe�cients are given in Theorem 8.

Theorem 9. The solution to
(

∂t − D
�
M

)

u(m, t ) = 0 (4.23)

subject to the random initial condition

u(m, 0) = T (m) ∈ L2(M) (4.24)
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248 M. D’OVIDIO AND E. NANE

is the time-dependent random �eld onM written as

u(m, t ) = T�
t (m) =

∑

j∈N
e−t�(λ j )φ j(m) c j. (4.25)

Proof. By comparing (4.22) with (4.25), we immediately see that (4.24) is veri�ed. Let us con-
sider the fractional operator

D
�
Mu(m, t ) = −

∫

M

u(y, t )J(m, y)μ(dy),

where the following expansion holds (u ∈ L2(M))

u(x, t ) =
∑

j∈N
e−t�(λ j )φ j(m) c j, x ∈ M, t > 0.

We can write

D
�
Mu(m, t ) = −

∑

j∈N
e−t�(λ j )c j

∫

M

φ j(y)J(m, y)μ(dy)

=
∑

j∈N
e−t�(λ j )c j D

�
Mφ j(m) (4.26)

where (see formula (1.6))

D
�
Mφ j(m) =

∫ ∞

0

(

Ps φ j(m) − φ j(m)
)

ν(ds)

=
∫ ∞

0

(

Eφ j(B
m
s ) − φ j(m)

)

ν(ds)

Since

Eφ j(B
m
s ) =

∑

i∈N
e−sλiκi φi(m) 〈φ j, φi〉μ,

where 〈φ j, φi〉μ = δ
j
i and

κi =
∫

M

δ(y)φi(y)μ(dy) = 1. (4.27)

we get (see formula (2.9) as well)

Ps φ j(m) = e−s λ jφ j(m). (4.28)

By collecting all pieces together, we get

D
�
Mφ j(m) =

∫ ∞

0

(

e−s λ jφ j(m) − φ j(m)
)

ν(ds)

= φ j(m)

∫ ∞

0

(

e−s λ j − 1
)

ν(ds)

= −φ j(m) �(λ j),

where we have used the representation (3.10) of the symbol � . In light of this, formula (4.26)
takes the form

D
�
Mu(m, t ) = −

∑

j∈N
e−t�(λ j )c j φ j(m) �(λ j)
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STOCHASTIC ANALYSIS AND APPLICATIONS 249

and, therefore,
(

∂t − D
�
M

)

u(m, t ) = 0.

We also notice that
∑

j∈N

∥

∥

∥
�(λ j)e

−t�(λ j ) c j φ j

∥

∥

∥

∞
≤

∑

j∈N
�(λ j)e

−t�(λ j ) |c j| ‖φ j‖∞ < ∞ (4.29)

since � is a Bernstein function. �

4.2. Special manifolds

We give some examples of manifolds in the following sections.

... ThemanifoldM ≡ Rn.

For the special case �(z) = |z|α , we obtain the fractional Laplacian

D
�
Rn f (x) = Cd(α) p.v.

∫

Rn

f (y) − f (x)

|x − y|α+d
dy = −(−△Rd )

α f (x), x ∈ Rd, (4.30)

where ”p.v.” stands for the ”principal value” being the integral above singular near the origin
and Cd(α) is a normalizing constant depending on d and α.

... ThemanifoldM ≡ S2

We consider the unit (two dimensional) sphere

S2 =
{

z ∈ R
3 : |z| = 1

}

=
{

z ∈ R
3 : z = (sinϑ cosϕ, sinϑ sinϕ, cosϑ), ϑ ∈ [0, π], ϕ ∈ [0, 2π]

}

with

μ(dz) = sinϑ dϑ dϕ.

The sphere S2 is an example of a compact manifold without boundary. For λl = l(l + 1) and l
� 0, the spherical harmonics

Ylm(ϑ, ϕ) =
√

2l + 1

4π

(l − m)!

(l + m)!
Qlm(cosϑ)eimϕ

solve the eigenvalue problem

△S21
Ylm = −λl Ylm, l ≥ 0, |m| ≤ l, (4.31)

where

△S21
= 1

sinϑ

∂

∂ϑ

(

sinϑ
∂

∂ϑ

)

+ 1

sin2 ϑ

∂2

∂ϕ2
, ϑ ∈ [0, π], ϕ ∈ [0, 2π], (4.32)

is the spherical Laplace operator and

Qlm(z) = (−1)m(1 − z2)m/2 d
m

dzm
Ql(z)

are the associated Legendre functions with Legendre polynomials de�ned as

Ql(z) = 1

2l l!

dl

dzl
(z2 − 1)l .

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ta
 S

tu
d
i 

la
 S

ap
ie

n
za

] 
at

 2
3
:5

0
 1

8
 F

eb
ru

ar
y
 2

0
1
6
 



250 M. D’OVIDIO AND E. NANE

For a detailed discussion see, for example, [29]. We have that

E(T (x)T (y)) = K (x, y) =
∑

l∈N
Cl

2l + 1

4π
Ql(〈x, y〉), (4.33)

where

〈x, y〉 = cos d(x, y) (4.34)

is the usual inner product in R3 (d(x, y) is the spherical distance) and Cl, l � 0 is the so called
angular power spectrum of T satisfying

∫

S21

K (x, y)Ylm(y)μ(dy) = Cl Ylm(x). (4.35)

We recall that (addition formula)

+l
∑

m=−l

Ylm(x)Y ∗
lm(y) = 2l + 1

4π
Ql(〈x, y〉)

and we recover (4.33) from (4.4). Thus, ζ l = Cl (and λl = l(l + 1) as pointed out before) for
all l � 0. Furthermore,

T (x) =
∑

l∈N

∑

|m|≤l

clmYlm(x) (4.36)

where clm are Gaussian r.v.’s (since T is Gaussian). Therefore, due to the fact that {Ylm} rep-
resents an orthonormal system of eigenfunctions of △S2 solving the Fredholm-type integral
equation (4.3), then θi j = δ

j
i in (4.11) and we get that

clm =
√

Clωl ∼ N(0,Cl ), for all |m| ≤ l and l ≥ 0.

Also we observe that

q(x, y, t ) =
∑

l∈N

+l
∑

m=−l

e−t�(λl )Ylm(x)Y ∗
lm(y) =

∑

l∈N
e−t�(λl )

2l + 1

4π
Ql(〈x, y〉) (4.37)

is the kernel solving the fractional equation

∂tu = D
�
S2
u. (4.38)

For �(z) = zα we get that

D
�
S2
u = −(−△S2 )

αu. (4.39)

It is worth mentioning that spherical random �elds have been considered by many authors in
order to study cosmicmicrowave background (CMB) radiation in the theory explained by the
Big Bang model. In particular, CMB radiation is a radiation �lling the universe almost every-
where and it can be a�ected by several anisotropies. Our aim in this direction is to explain
such anisotropies by considering our coordinates changed random�eld onM = S21. This fact
should become clear later on, in Remark 5. Here, the characterization of the angular power
spectrum turns out to be very important. Indeed, such a study allow to explain many aspects
such as Sachs–Wolfe e�ect or Silk damping e�ect for instance. For a deep discussion on this
topic we refer to [29] or [13].
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STOCHASTIC ANALYSIS AND APPLICATIONS 251

... ThemanifoldM ≡ T2: torus

We now consider the compact (two-dimensional) manifold T2 which is the quotient of the
unit square Q = [0, 1]2 ⊂ R2 by the equivalence relation

(x, y) ∼ (x + 1, y) ∼ (x, y + 1)

equipped with the quotient topology. It is well known that the Laplace-Beltrami operator on

the n-torus is written as △Tn =
∑n

j=1
∂2

∂x2j
where xj is a variable such that, for all j, it describes

the circle S1 = {eix j : −π < x j < π}. An integrable function f on Tn is, therefore, written as

f (x) =
∑

k∈Zn
fk e

i(k·x), x ∈ Tn,

where k · x = �jkjxj and

fk = 1

(2π)n

∫

Tn
f (x)e−i(k·x)μ(dx).

The heat kernel on Tn takes the form

p(x, t ) = 1

(4π)n/2

∑

k∈Zn
exp

(

−|x − 2πk|2
4t

)

(4.40)

and the transition semigroup is, therefore, written as

Pt f (x) =
∫

Tn
p(x − y, t ) f (y)μ(dy). (4.41)

Also in this case we can study the di�erential operator −�( − △). See, for example, [6] or
[40], where the authors investigate the fractional power of the Laplace operator on the torus.

5. Time-changed Brownianmanifolds

In this section we introduce the time-dependent random �eld

Tt (m) = T (Bm
t ), m ∈ M, t > 0, (5.1)

which can be conveniently written as

Tt (m) =
∑

j∈N
φ j(B

m
t ) c j, (5.2)

where Bm
t , t � 0 is a Brownian motion onM started atm ∈ M and T is the random �eld on

M with representation (4.6). In this section, we study the compositions involving both the
subordinate and the time changed Brownian motions leading to the time-dependent random
�elds

T�
t (m) = T (Bm

St
), m ∈ M, t > 0, α ∈ (0, 1) (5.3)

and

T
β
t (m) = T (Bm

Et
), m ∈ M, t > 0, β ∈ (0, 1). (5.4)

Recall thatDt is a subordinator with symbol� whereas Et = Eβ
t is an inverse to a stable subor-

dinator of index β � (0, 1) de�ned by the formula (1.4). We assume that the random times St
and Et are independent from Bm

t . In the following results, we obtain coordinate changed ran-
dom �elds starting from the random �elds (5.3) and (5.4) indexed by di�erent time-changed
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252 M. D’OVIDIO AND E. NANE

Brownian manifolds. We consider the sets {Bm
St
} ⊂ M and {Bm

Et
} ⊂ M as new sets of indices

for the random �eld T.

5.1. Space–time fractional equations with random initial conditions

In this section we relate the solutions to Equations (4.23) and (3.4) (with random initial con-
dition) with the coordinate changed random �elds introduced so far.

Lemma 1. The random �eld in (4.25) can be represented as

T�
t (m) = E

[

T (Bm
St
)

∣

∣

∣
FT

]

, (5.5)

where FT is the σ -�eld generated by the random �eld T.

Proof. First we write (see (4.6))

T (Bm
St
) =

∑

j∈N
φ j(B

m
St
) c j.

Thus,

E

[

T (Bm
St
)

∣

∣

∣
FT

]

=
∑

j∈N
E

[

φ j(B
m
St
) c j

∣

∣

∣
FT

]

,

where we recall that

c j =
∫

M

T (m)φ j(m)μ(dm)

and, therefore,

E

[

T (Bm
St
)

∣

∣

∣
FT

]

=
∑

j∈N
E
[

φ j(B
m
St
)
]

c j.

We have that

E
[

φ j(B
m
St
)
]

= Pt φ j(m),

where Pt = exp(tD�
M

) is the semigroup associated with the problem in Theorem 9. As in
formula (4.28), we get that

Pt φ j(m) = e−t�(λ j )φ j(m) (5.6)

and

E

[

T (Bm
St
)

∣

∣

∣
FT

]

=
∑

j∈N
e−t�(λ j )φ j(m) c j,

which is the spectral representation of Tα
t . �

Next we introduce the space of random �elds onM given by

H
s
F (M) =

⎧

⎨

⎩

T such that (4.6) holds and
∑

j∈N
(λ j)

2s
Ec2j < ∞

⎫

⎬

⎭

, (5.7)

that is, Hs
F (M) ⊂ L2(M).
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STOCHASTIC ANALYSIS AND APPLICATIONS 253

Theorem 10. For s> (3+ 3n)/4, the solution to the problem (3.4) with random initial condition

Tβ
0 (m) = T (m) ∈ H

s
F (M), m ∈ M is written as

Tβ
t (m) =

∑

j∈N
Eβ (−tβλ j) φ j(m) c j, m ∈ M, t ≥ 0, (5.8)

where

c j =
∫

M

T (x)φ j(x)μ(dx), j ∈ N

and (5.8) holds in L2(dP
dμ) sense, that is,

lim
L→∞

E

⎡

⎣

∫

M

⎛

⎝Tβ
t (m) −

L
∑

j=1

Eβ (−tβλ j) φ j(m) c j

⎞

⎠

2

μ(dm)

⎤

⎦ = 0. (5.9)

Proof. We use the same arguments as in the proof of Theorem 6 and Theorem 8. The initial
condition is satis�ed by taking into account that Eβ(0) = 1, see formula (2.21). �

Lemma 2. The random �eld in Equation (5.8) can be represented as

Tβ
t (m) = E

[

T (Bm
Et

)

∣

∣

∣
FT

]

, (5.10)

where FT is the σ -�eld generated by the random �eld T.

Proof. As in proof of Lemma 1, we can write

T (Bm

E
β
t

) =
∑

j∈N
φ j(B

m

E
β
t

) c j,

where we use also the superscript β in order to underline the connection with Theorem 6. As
before, we have that

E

[

T (Bm

E
β
t

)

∣

∣

∣
FT

]

=
∑

j∈N
E

[

φ j(B
m

E
β
t

)
]

c j.

From (3.5) and the orthogonality of {φj}, we have that

E

[

φ j(B
m

E
β
t

)
]

= Eβ (−tβλ j) φ j(m)

and, therefore,

E

[

T (Bm

E
β
t

)

∣

∣

∣
FT

]

=
∑

j∈N
Eβ (−tβλ j) φ j(m) c j,

which coincides with the spectral representation (5.8). �

5.2. Spectrum for time-changed random�elds

We recall that, for the random Fourier coe�cients we have that

E[ckc j] =
∫

M

∫

M

K (x, y)φk(x)φ j(y)μ(dx)μ(dy)

=
∑

i∈N
ζi

∫

M

∫

M

ψi(x)ψi(y)φk(x)φ j(y)μ(dx)μ(dy) =
∑

i∈N
ζi θkiθ ji
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254 M. D’OVIDIO AND E. NANE

as pointed out before. For k = j, we get the spectrum

C j = Ec2j =
∑

i∈N
ζi θ

2
ji, j = 0, 1, 2, . . . . (5.11)

From the fact that
∫

M

T 2(x)μ(dx) =
∑

j∈N
c2j,

since T ∈ L2(M), we get that

∑

j∈N
Ec2j = E

(∫

M

T 2(x)μ(dx)

)

< ∞

and, therefore, in particular, if

Ec2j = C j ∼ j−γ , γ > 2 (5.12)

then this ensures summability and T is a square integrable random �eld onM.
We present the following results concerning the spectrum of the random �elds introduced

so far.

Theorem 11. Let c�j (t ), t� 0, j ∈ N be the spectrum of (5.5) and suppose that cj’s satisfy (5.12).

Then,

E[c�j (t )]2 = C je
−2t�(λ j ) ≈ j−γ e−t�( j2/n), as j → ∞. (5.13)

Proof. We obtain that
∫

M

T�
t (m)φ j(m)μ(dm) =

∑

i∈N
cie

−t�(λi)

∫

M

φi(m)φ j(m)μ(dm),

= c je
−t�(λ j )

where

c�j (t ) = c je
−t�(λ j )

is the spectrum of T�
t . From (2.6) and (5.12), formula (5.13) immediately follows. �

Theorem12. Let cβj (t ), t� 0, j ∈ N be the spectrum of (5.10) and suppose that cj’s satisfy (5.12).

Then,

E[cβj (t )]
2 = C j[Eβ (−tβλ j)]

2 ≈ j−γ (1 + tβ j2/n)−2, as j → ∞. (5.14)

Proof. We have that
∫

M

Tβ
t (m)φ j(m)μ(dm) =

∑

i∈N
ciEβ (−tβλi)

∫

M

φi(m)φ j(m)μ(dm) = c jEβ (−tβλ j)

= cβj (t ).

From (2.6), (5.12), and (2.23) we get (5.14). �

From the fact that

L2(M) =
∞
⊕

j=1

H j, (5.15)
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STOCHASTIC ANALYSIS AND APPLICATIONS 255

whereH j, j= 1, 2, … are orthogonal eigenspaces, we have that for a given j, c�j represents the

variance of T� explained by its projection on H j. Therefore, the set {c�j : j ∈ N} gives us a
complete information about the variance of T� . The same holds for Tβ if we consider the set
{cβj : j ∈ N}.

Remark 5. We recall some symbols of the subordinators introduced before:
� �(z) = zα : stable subordinator, ν(dy) = dyαy−α − 1/Ŵ(1 − α);
� �(z) = bz + zα : stable subordinator with drift, ν( · ) as above and b > 0;
� �(z) = ln (1 + z): gamma subordinator, ν(dy) = dy y−1e−y;
� �(z) = ln (1 + zα): geometric stable subordinator, ν(dy) = dyαy−1Eα( − y) where Eα is
the Mittag–Le�er function.

If we consider the sum of an α1-stable subordinator X and an α2-geometric stable subor-
dinator Y, then we get that

E exp
(

−λ j(Xqt +Ypt )
)

= exp
(

−qt�X (λ j) − pt�Y (λ j)
)

= e
−qtλ

α1
j (1 + λ

α2
j )−pt

and, therefore, for the spectrum of (5.5) we obtain that

E[c�j (t )] ≈ j−γ− 2pt
n α2 exp(−qt j

2
nα1 ) (5.16)

for large j. Obviously, for p = 0 or q = 0, we have qualitatively di�erent behaviour for the
covariance structure of cαj and, therefore, of the corresponding �eld T

α . Thus, we can describe
di�erent covariance structures of a random �eld by considering its angular power spec-
trum. In particular, the angular power spectrum exhibits an exponential and/or polynomial
behaviour depending on these covariance structures.Our result relates the coordinates change
with the form of the angular power spectrum.

Remark 6. We notice that c�j (t ) and cβj (t ) approach to zero as t → �. Furthermore, the ran-

dom solutions (5.5) and (5.10) converge to the random variables T�
t (m)

t→∞−→ φ0(m)c0 and

Tβ
t (m)

t→∞−→ φ0(m)c0 under the assumption that λ0 = 0 and therefore �(λ0) = 0 and Eβ( −
λ0)= 1. Thus, the steady-state solution in both cases turns out to be a random variable onM
with law given by c0 (see also Theorem 4).
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