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We study the electrical conductance of gold nanoconstrictions by controlling the electrochemical po-
tential. At positive potentials, the conductance is quantized near integer multiples of G0�2e2�h� as shown
by well-defined peaks in the conductance histogram. Below a certain potential, however, additional peaks
near 0.5G0 and 1.5G0 appear in the histogram. The fractional conductance steps are as stable and well
defined as the integer steps. The experimental data are discussed in terms of electrochemical-potential-
induced defect scattering and Fermi energy shift, but a complete theory of the phenomenon is yet to be
developed.

PACS numbers: 73.40.Jn, 73.20.Dx, 73.40.Cg, 82.45.+z
The electrical conductance through a narrow constric-
tion with a width of the order of the electron wavelength
is quantized in units of G0 � 2e2�h, where the factor 2
comes from spin degeneracy. This interesting phenome-
non has been observed in semiconductor devices contain-
ing a two-dimensional electron gas in which the width of
the constriction is controlled by applying a voltage to the
gate electrode [1,2]. In three dimensions a similar stepwise
change in conductance has also been observed in atomic
scale metal contacts or nanoconstrictions. These nanocon-
strictions are created by mechanically separating two con-
ductors in contact [3–5] and by electrochemically etching
macroscopic wires down to atomic scale [6].

In this paper, we control the electrochemical potential
of the nanoconstrictions relative to a reference electrode in
electrolyte (Fig. 1) [7]. This is in analogy to the gate elec-
trode potential in semiconductor devices, which changes
the carrier density of the region underneath the gate elec-
trode. By controlling the electrochemical potential, the
charge of the nanoconstrictions can be varied [8]. For
example, lowering the potential raises the Fermi energy
level of the nanoconstrictions, corresponding to a negative
charge or excessive electrons in the nanoconstrictions. The
negative charge is balanced by cations near the nanocon-
striction in the electrolyte. For a macroscopic metal wire,
the excessive electrons give rise to an increase in the den-
sity of electrons over only a distance of a few Å from the
surface. For a nanoconstriction made of a single or a few
atoms, the density changes over a significant volume of
the nanoconstriction and it may, therefore, on the other
hand, have a greater impact on the conductance. At posi-
tive potentials, we observed well-defined peaks near inte-
ger multiples of G0 in the conductance histograms, which
are similar to those in vacuum and in air [9]. However, as
the potential decreases, peaks near half multiples of G0 be-
come increasingly pronounced and coexist with the peaks
at integer multiples of G0. The unexpected findings are
discussed in terms of different models.

The nanoconstrictions in this work were created by
driving a scanning tunneling microscopy (STM) tip into
0031-9007�00�84(22)�5196(4)$15.00
and out of contact with a gold substrate at a typical rate of
40 nm�s in an electrochemical cell. The time response of
a STM I�V converter is about 10 kHz. The tip was made
of gold (99.999%, diameter �0.25 mm) wire, which was
coated with Apiezon wax to eliminate ionic conduction.
The gold substrate was a gold thin film evaporated on
mica in a UHV chamber. The experiment was performed
in an electrochemical cell mounted in a chamber that was
filled with high purity N2 gas to reduce contamination.
The electrochemical potential of the nanoconstrictions
was controlled using a bipotentiostat (Pico-Stat, Molecular
Imaging Co.) with respect to a Ag wire (0.5 mm diameter)
quasireference electrode that was placed �1 mm from
the nanoconstriction. The potential is, however, quoted in
terms of the widely used Ag�AgCl reference electrode,
whose scale is �24.63 V [10] below the vacuum scale in
solid state physics. Thus, the Fermi energy of the nanocon-
striction, EF � 24.63 eV 2 eEAgCl, where EAgCl
is the electrochemical potential of the nanoconstriction
in terms of Ag�AgCl scale. A 0.25-mm-diam Pt wire

FIG. 1. Schematics of a nanoconstriction under
electrochemical-potential control. The potential is controlled
with respect to a reference electrode (RE) in the electrolyte.
The potential difference between the two ends (WE1 and WE2)
of the nanoconstriction is maintained constant (52 mV) during
the experiment. A counter electrode (CE) was also used as in a
standard electrochemical setup. In comparison to a field effect
transistor, the RE, WE1, and WE2 electrodes are analogous to
the gate, source, and drain electrodes.
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was used as a counterelectrode. The electrolyte was
0.1 M NaClO4 prepared from high purity chemicals and
nanopure water. The fractional conductance steps were
also observed in 0.1 M HClO4 electrolyte. The transient
conductance traces were recorded using a 100 MHz
digital oscilloscope (Yokogawa) with a sampling rate
of 100 kHz. The nonideal differential linearity of the
oscilloscope was corrected in the data analysis.

Figure 2(a) shows the conductance histograms at various
potentials. At positive potentials, well-defined peaks ap-
pear near integer multiples of the G0. These peaks persist
even when the potential is raised to �1 V, where oxidation
of gold begins to take place. By decreasing the potential
to 20.5 V, a peak appears near 0.5G0, which increases
rapidly in height and even surpasses the peak near 1G0 be-
low 20.8 V. The fractional conductance peak is about as
sharp as the 1G0 peak in the histograms. Carefully exam-
ining the histograms below 20.5 V reveals a small peak
near 1.5G0 (arrows). de Heer et al. have observed frac-
tional conductance near G � 1

2G0, 2
3G0, 3

4G0, . . . as weak
peaks superimposed on pronounced integer peaks in the
histograms [11]. The fractional conductance peaks in this
work are different in several ways: They occur only
near half multiples of G0, and they are as pronounced as
the integer peaks and are electrochemical-potential depen-
dent. The electrochemical-potential-dependent fractional
conductance quantization is illustrated more clearly by the
correlation histograms [Fig. 2(b)] which show the proba-

FIG. 2. (a) Conductance histograms of gold nanoconstrictions
at various potentials. Each histogram was obtained from over
one thousand conductance traces. (b) Correlation histograms
that show the occurrence of steps at various conductance values
in the presence of a step near 0.5G0. The correlation histograms
were constructed from those conductance traces that have a step
near 0.5G0.
bility of each conductance step in the presence of the
0.5G0 step. The correlation histograms are constructed by
selectively counting the conductance traces that have steps
near 0.5G0. These histograms clearly show that the frac-
tional and integer conductance steps have a high proba-
bility to appear simultaneously in each of the conductance
measurements. Therefore, the occurrence of the fractional
conductance steps is not due to a simple shift of the integer
steps by 0.5G0 (see also inset of Fig. 3). Instead, the con-
ductance appears to be quantized with a spacing of 0.5G0.

The fractional conductance steps do not show up in
every conductance trace, but their population increases
rapidly when decreasing the potential below 20.5 V. This
trend is demonstrated in Fig. 3 which plots the ratio of
the fractional step population to the integer step popula-
tion from several experiments. Although there is a large
fluctuation, due to a limited number of samples, from run
to run, the general trend of rapid increase in the population
of the fractional steps below 20.5 V is reproducible.

In order to quantify how well defined the fractional con-
ductance steps are, we have extracted the step length and
smoothness (Fig. 4) [12]. The step length measures the
distance over which a nanoconstriction can be elongated
before its conductance jumps to another step. Because
each conductance jump corresponds to a rearrangement
in the atomic configuration of the nanoconstriction, this
quantity provides information about the stability of each
atomic configuration upon elongation. The step length is
obtained from the time duration of a conductance step and
the elongation rate is controlled by the STM piezoelectric
transducer. At positive potentials, the step length exhibits
well-defined peaks near integer multiples of G0 [Fig. 4(a)],
demonstrating that the atomic configurations with integer
values of conductance not only occur more frequently but

FIG. 3. The ratio of the number of steps near 0.5G0 to that
near 1G0 as a function of the electrochemical potential. Differ-
ent symbols represent data points obtained in several different
experiments. The solid line is a guide for the eye. Inset: a
typical conductance trace that shows both fractional and integer
conductance steps.
5197



VOLUME 84, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 29 MAY 2000
FIG. 4. (a) Step length distribution as a function of the po-
tential. (b) Step smoothness distribution as a function of the
potential.

also last longer upon elongation than an arbitrary configu-
ration. Lowering the potential to 20.5 V, additional peaks
at the fractional values begin to appear. Therefore, the
atomic configurations corresponding to fractional conduc-
tance steps also last longer upon elongation than an arbi-
trary atomic configuration.

The smoothness measures how well defined each step is.
The quantity is defined as the full width at half maximum
of the peaks in the derivatives of the conductance traces.
At positive potentials, well-defined dips appear near the
integers, which shows that the steps near integer multiples
of G0 are more well defined than a step with an arbitrary
conductance [Fig. 4(b)]. By decreasing the potential, how-
ever, dips at 0.5G0 and 1.5G0 begin to appear, showing
clearly that the fractional conductance steps are also better
defined.

Our observations can be summarized as follows: (1)
The repeated conductance measurements of gold nanocon-
strictions under electrochemical-potential control contain
traces with conductance steps near half multiples of G0.
(2) The percentage of the traces with the fractional steps
increases rapidly as the electrochemical potential of the
nanoconstrictions is lowered below 20.5 V. (3) The
fractional conductance steps are as well defined as those
integer steps. (4) The atomic configurations of the
nanoconstrictions with the fractional conductance values
appear to be more stable upon elongation than those with
arbitrary conductance values. Below we discuss the origin
of the experimental observations.

Given the pronounced peaks at multiples of 0.5G0, it
is tempting to interpret the data in terms of a lift in spin
5198
degeneracy. However, this is unlikely because gold is non-
magnetic and the experiment was carried out in the absence
of external magnetic field. A recent theory predicted that
nanowires of simple nonmagnetic metals undergo a transi-
tion to a spin-polarized magnetic state at critical radii [13].
Even if the transition occurs in the gold nanoconstrictions,
the magnetic domains at both sides of a nanoconstriction
are expected to be random in the absence of external mag-
netic field. This would mean a transmission between 0 and
1, which cannot explain the conductance steps near mul-
tiples of 0.5G0. Furthermore, this model fails to explain
why the spontaneous spin polarization depends on the elec-
trochemical potential. A successful model must be able
to explain the dependence of the fractional conductance
on the electrochemical potential. To a first order approxi-
mation of a metal-electrolyte interface, the electrolyte is
considered as a continuous medium, and the electrochemi-
cal potential changes the charge and Fermi energy of the
nanoconstriction [8]. A more accurate picture must in-
clude the redistribution of the discrete ions surrounding
the nanoconstriction as a function of the electrochemical
potential. Each picture is considered below to explain the
electrochemical-potential-induced fractional conductance.

We first consider the change of the Fermi energy and
charge of the nanoconstriction in terms of a microscopic
model [14] that relates the conductance to the microscopic
parameters of atoms at the nanoconstriction. The model
predicts a direct link between valence orbitals and the num-
ber of conduction channels in one-atom contacts, which
has been confirmed by recent experimental work for both
monovalent and multivalent atoms [15]. For monova-
lent metals, such as Au, Na, and Ag, the theory predicts
well-defined quantum steps at integer multiples of G0 be-
cause of the existence of resonant states. The conductance
through a resonant state is given by [16]

G � G0
4DLDR

�EF 2 ´a�2 1 �DL 1 DR�2 , (1)

where EF is the Fermi energy level, ´a is the position of
the resonant state, and DL and DR describe couplings be-
tween the atom at the nanoconstriction and the leads. The
requirement of charge neutrality at the nanoconstriction
keeps the Fermi energy at the center of the resonant state
or EF � ´a, and results in a half-filled resonant state. G
for the half-filled state is near G0 even for a very asym-
metric coupling (e.g., when DL�DR � 2). By changing
the electrochemical potential, charge neutrality no longer
holds and the Fermi energy level shifts away from the cen-
ter of the resonant state, which leads to fractional conduc-
tance steps. This model provides a natural explanation of
the fractional steps at negative potentials. However, if one
considers that the electrochemical potential was changed
gradually in the experiment, one would expect a continu-
ous shift in the conductance step position. This is contrary
to the experimental observation that only peak heights in
the conductance histogram change, but not the positions.
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We now turn to the effect of electrochemical-potential-
induced counterion redistribution surrounding the
nanoconstriction on the conductance. At negative electro-
chemical potentials, cations, such as Na1 in NaClO4 and
H1 (H3O1) in HClO4, are expected to accumulate on the
nanoconstriction, and they may act as disorders to scatter
the conduction electrons and thus change the conductance
of the nanoconstriction. The effect of disorders in the
conductance quantization has been treated in a number of
theoretical works [17–19].

Brandbyge et al. [19] have calculated electron transport
in metallic nanoconstrictions in the presence of both local-
ized scatterers and corrugated boundary using a jelliumlike
model. They concluded that, depending on their locations,
localized scatterers smear and downshift the conductance
steps selectively, but we observed no smearing-out in the
steps. In the case of a corrugated boundary, they found
that, depending on the length scale of the corrugation,
the conductance steps might be substantially downshifted
without suffering from severe smearing. This model has
two difficulties: (1) The conductance steps are shifted to
nearly half multiples of G0 while the model predicts arbi-
trary shifts, depending on the degree of disorder. (2) Well-
defined integer steps remain unchanged in the presence of
the pronounced fractional steps.

By using a tight-binding approximation, Garcia-
Mochales and Serena have found that disorders in a
nanoconstriction give rise to an effective resistance in
series to the nanoconstriction [18]. Consequently, each
peak in the conductance histogram shifts to a lower
conductance value by an amount that increases as the
conductance increases, which is, however, not what was
observed here.

de Heer et al. [11] have shown that the elastic scattering
of the electrons by the disorders in the nanoconstrictions
can lead to an effective conductance of nmG0��n 1 m�,
where n and m are integers. The result is equivalent to the
breakdown of a nanoconstriction into two nanoconstric-
tions in series. This model was first used by them to ex-
plain weak peaks near 1�2G0, 2�3G0, 3�4G0, etc., in their
carefully measured conductance histogram. If we assume a
symmetric distribution of the counterions, then m is equal
to n, and the model leads to conductance peaks near 0.5G0
and 1.5G0, which explains the observation here. Of course,
because the effect of disorder in conductance quantization
is model dependent, one cannot yet claim that a complete
understanding of the fractional conductance observed here
has been reached, and further studies are clearly needed.

In summary, we have studied quantum transport through
Au nanoconstrictions under electrochemical-potential con-
trol. At positive potentials, the conductance is quantized
near the integers even if the potential approaches the oxida-
tion potential of Au. However, by decreasing the potential
towards 20.5 V, fractional conductance steps appear in
coexistence with the integer steps. The fractional steps are
as stable and well defined as the integer steps. We have
discussed the observation in terms of Fermi energy shift
and electron scattering by disorders, but a complete theory
is yet to be developed.
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