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Teoretical and numerical studies of fractional conformable stochastic integrodiferential equations are introduced in this study.
Herein, to emphasize the solution’s existence, we provide proof based on Picard iterations and Arzela−Ascoli’s theorem, whilst the
proof of the uniqueness mainly depends on the famous Gronwall’s inequality. Also, we introduce the basic concepts related to
shifted Legendre orthogonal polynomials which are utilized to be the basic functions of the spectral collocation algorithm to
obtain approximate solutions for the mentioned equations that are not easy to be solved analytically. Te substantial idea of the
proposed algorithm is to transform such equations into a system containing a fnite number of algebraic equations that can be
treated using familiar numerical methods. For computational aims, we make a suitable discretization to evaluate the values of the
Brownian motion, the noise term considered in our problem, at specifc points. In addition, the feasibility and efciency of the
proposed algorithm are proved through convergence analysis and mathematical examples. To exhibit the mathematical sim-
ulation, graphs and tables are lucidly shown. Obviously, the physical interpretation of the displayed graphics accurately describes
the behavior of the solutions. Despite the simplicity of the presented technique, it produces accurate and reasonable results as
notarized in the conclusion section.

1. Introduction

Recently, greater growth of fractional calculus has been
developed by many researchers. Since several real-world
phenomena in assorted felds of science are represented
successfully via models involving fractional derivatives,
mathematicians have focused their attention on doing their
best to make deeper studies that improve this branch of
calculus and its properties. Te mathematicians constructed
a variety of defnitions of fractional derivative operators with
their associated integral inverses together with several im-
portant related theories. For example, Hadamard [1] sug-
gested a new approach to fractional derivatives, Khalil et al.
[2] constructed the CFD and presented some related the-
ories, Caputo and Fabrizio [3] developed a fractional

derivative defnition that avoids singularity, and Atangana
and Baleanu [4] provided the fractional ABC derivative and
discussed its properties. In this regard, authors have
employed fractional models for various problems. Ahmed
et al. [5] built a fractional-order model to describe cancer
with two immune efectors. Rihan [6] was concerned with
modeling biological systems in fractional models. Xu [7]
constructed a fractional model of the Volterra type of
population growth. Debnath [8] sheds light on fractional
calculus applications concerning engineering and science
with numerical solutions to fractional problems of particular
types. Te well-posedness and the simulated solutions of the
FDEs occupy a great status in applied analysis and engi-
neering applications. For complicated problems that have no
exact analytic solutions, various operative numerical

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 5104350, 21 pages
https://doi.org/10.1155/2022/5104350

mailto:o.abuarqub@bau.edu.jo
https://orcid.org/0000-0001-9526-6095
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5104350


techniques have been proposed and employed to provide
approximate numerical solutions. Mainly, variational iter-
ation [9], diferential transform [10], spectral collocation
algorithm [11], fnite diference approach [12], and Laplace
resolvent kernel scheme [13] are the most popular used
methods.

More recently, it is noticed that fractional SDEs are more
adapted to natural real-world phenomena than deterministic
ones. Specifcally, the fractional SDEs are FDEs in which one
or more of its terms are stochastic processes.Tese equations
have been used to model natural systems in which the past
afects the present and future as mechanical systems, pop-
ulation growth, and fnancial markets. In the last few years,
various problems in biology, anthropology, economics,
medical models, fnance, and engineering have been mod-
eled in terms of fractional SDEs. Dung [14] studied the
quasi-linear SDEs driven by fractional SBM and its appli-
cation to fnance. Lima [15] employed a fractional SDE
model to utilize COVID-19. Han et al. [16] discussed SDEs
of fractional SBM where the stochastic integral is of Stieltjes
type. Pei et al. [17] established an averaging principle to deal
with SDEs with fractional SBM where the stochastic integral
is of Itô’s type. Te frst issue in solving such equations is to
guarantee the presence and assert the exclusivity of their
suggested solutions under suitable assumptions. Tis has
been the objective of several studies done by many math-
ematicians. Guo et al. [18] introduced fractional SDEs in the
Caputo sense and provided the existence and uniqueness
study of its solution with Caratheodory’s approximation for
the considered equation. Zhan et al. [19] studied the exis-
tence of mild solution, under suitable conditions, for frac-
tional SDEs where the initial conditions are nonlocal.
Moualkia and Xu [20] utilized the Picard iterations’ theory
to emphasize the existence and uniqueness of nonlinear
fractional k − D of SDEs with Caputo derivative of variable

order. Zheng et al. [21] proved the well-posedness of frac-
tional SDEs with stochastic terms of multiplicative white
noise. Ahmaadov and Mahmud [22] utilized the Lipschitz
condition to establish a sequential proof of the existence of
neutral fractional SDEs.

Generally, SDEs are difcult to be solved analytically and
numerical solutions are employed to aford approximate
solutions of good accuracy. In this regard, researchers have
constructed efective numerical techniques to obtain highly
precise numerical results of diferent types of these equa-
tions; for example, Khodabin et al. [23] used the Taylor
scheme to approximate the exact solutions of appointed type
of stochastic Volterra integral equations, Kamrani [24]
employed the Galerkin−Jacobi method to solve fractional
SDEs numerically, Kouhkani et al. [25] developed the op-
erational Tau method to provide numerical solutions for
fractional SIDEs, Mohammadi [26] utilized the Chebyshev
wavelets to solve a certain class of SIDEs, Cardone et al. [27]
constructed the spectral method for solving fractional SDEs,
Mirzaee and Hoseini [28] introduced the operational
Fibonacci matrices to deal with nonlinear SIDEs, and Asgari
et al. [29] proposed the operational matrix algorithm and
Bernstein polynomials scheme to handle nonlinear SIDEs.

In this study, we are concerned with a specifc form of
fractional SIDEs of the Volterra type where the derivative is
taken to be in the CFD sense. We prove that the existence of
a stochastic process satisfes the given equation using the
idea of Picard iterations with the use of some topological
theorems based on reasonable conditions, and we ensure its
uniqueness. Also, a numerical solution based on the SLPs as
the basis of the well-known spectral collocation technique is
constructed. Indeed, the convergence of the presented al-
gorithm is proved. Anyhow, we study the fractional SIDE of
the following form:

T8U(T ,ω) � F1(T ,U(T ,ω),ω) + λ􏽚
T

0
F2(η,U(η,ω),ω)dBη,

U(0,ω) � U0.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Herein, T ∈ Ι � : [0,T], ω ∈ Ω, λ is a real constant, B �

B(T): T ≥ 0{ } is the SBM built on a given space (Ω, F, P)

wherein the increasing fltration FT􏼈 􏼉0≤ T ≤T is right con-
tinuous. Indeed, Ω is the set of all possible outcomes, and P

is a measure defned on F and satisfes P(FT) � 1. Te
functionsF1 andF2 are given stochastic processes, u is to be
determined, and the initial condition u0 is a given random
variable presumed to be independent of B. Ultimately, T8

denotes the CFD of order 8 with 0< 8≤ 1.
Te spectral collocation method is considered a general

approximate analytical method used to obtain numerical
solutions to various types of diferential equations. It is
simple, accurate, and does not need a highly qualifed
programmer.Temain principle of this method is to convert

extremely difcult diferential problems to systems of al-
gebraic equations which are easy to solve. To achieve this
goal, the unknown function is assumed to be a linear
combination of known base functions with unknown co-
efcients. Ten, the equation is assumed to be satisfed at
reasonable collocation points in the given domain. Te
choice of the base functions and the collocation points afect
the efciency of the method. According to the nice prop-
erties of the Legendre polynomials and their orthogonality,
they are chosen to be the basis functions of the collocation
method in this work. Tis method was previously used in
solving other forms of SDEs as in [30, 31].

Te remnant sections of our research are outlined next.
In Section 2, basic defnitions and fundamental results of the
CFD concept and stochastic processes are given. Te Picard
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iteration idea with the use of some known topological
theorems and suitable assumptions is employed to assert the
existence of a single solution of (1) in Section 3. Te main
aim of Section 4 is to present the SL-SCA and employ it for
solving (1) numerically followed by a discussion of the
convergence study. Section 5 is to provide an algorithm for
the scheme presented in Section 4 and uses it to solve some
illustrative examples that ensure the accuracy and applica-
bility of the SL-SCA. Finally, in Section 6, the highlight and
conclusion are dedicated.

2. Preliminaries and Principal Results

In this essential portion, we survey basic defnitions, no-
tations, and intrinsic results including CFD, stochastic Itô’s
calculus, and some topological spaces which are required for
proving our results. Moreover, utilizing the stochastic Fubini
theorem, the integral representation of (1) is implemented.

2.1. Te CFD Requirements. Te next mentioned defnition
is known to be the simplest and the most natural among all
fractional derivatives defnitions. Although the following
defnitions and results are considered for 0< 8≤ 1, they can
be generalized for any 8 ∈ R.

Defnition 1 (see [2]). Te CFD of order 0< 8< 1 for
F: [0,∞[⟶ R for all t> 0 is

T8(F)(T) � lim
E⟶0

F T + ET
1− 8

􏼐 􏼑 − F(T)

E
. (2)

Defnition 2 (see [2]). Te conformable integral operator of
order 0< 8≤ 1 of F: [0,∞[⟶ R is

I
8
0(F)(T) � 􏽚

T

0
F(η)η8− 1dη. (3)

Lemma 1 (see [2]). Let F,G: [0,∞[⟶ R be two func-
tions and t> 0. Ten, for 0< 8≤ 1 we have the following:

(1) T8(F(T)) � T1− 8F′(T) if F is diferentiable
(2) I8

0T8F(T) � F(T) − F(0) if T8F(t) is continuous
(3) T8I8

0F(T) � F(T) if F is continuous
(4) T8(aF + bG) � aT8(F) + bT8(G) if F,G are 8

-diferentiable with a, b ∈ R

Herein,F is called 8-diferentiable at a fxed point t when
T8(F)(T) exists. Indeed, a function could be 8-diferentiable
for some value of 8 at a point but not diferentiable. For
example, in F(T) � 2

��
T

√
, T0.5(F)(0) � 1, but T1(F)(0)

does not exist.

2.2. Itô’s Calculus. Stochastic calculus is a new subfeld of
mathematics that is concerned with stochastic processes.Te
most useful and applicable stochastic process is the SBM.
Itô’s integral which requires Itô’s lemma is of big importance
and lies in its ability to apply the dominated convergence

theorem that is needed for proving the results of equations
concerning random terms. Following that, we present the
main concepts of stochastic calculus needed in the sequel.

Defnition 3 (see [30]). A real-valued stochastic process
B(T) with T ∈ Ι defnes an SBM if the following subsequence
properties are satisfed:

(1) For all T ∈ Ι, the increment
B(T + H) − B(T) ∼ N(0,H), where N(μ, σ2) de-
notes the normal distribution with mean μ and
variance σ2 wherein H> 0

(2) Distinct increments constructed of B(T) are inde-
pendent for 0≤ T0 ≤ T1 ≤ · · · ≤ TN ≤T

(3) B(T) is almost surely a continuous function of t

(4) B(0) � 0 WP1

Defnition 4 (see [29]). Let V(S,T) symbolize the space of
all functionsF(η,ω): [0,∞[×Ω⟶ R.Ten, we can utilize
Itô’s integral of F as

􏽚
T

0
FψN(η,ω)dBη � lim

N⟶∞
􏽚
T

0
ψN(η,ω)dBη, (4)

where ψN􏼈 􏼉
∞
N�1 is the sequence of elementary functions,

which satisfes

E 􏽚
T

0
F − ψN( 􏼁

2dη⟶ 0 asN⟶∞. (5)

Lemma 2 (see [29]). For F(η,ω) ∈ V(S,T), Itô’s Isometry
is given by

E 􏽚
T

0
F(η,ω)dBη􏼠 􏼡

2

� E 􏽚
T

0
F

2
(η,ω)dη, T ∈ I. (6)

2.3. Spaces andNotations. Let E denote the expected value of
a random variable and G(T ,ω): (Ω,F, P)⟶ R be a
random function; then, the norm of G(T ,ω) is defned as
G(T ,ω)E � (E|G(T ,ω)|2)0.5. Let L2(Ω,R) refers to the
space of each random function G(T ,ω) wherein
E 􏽒

T

0 |G(T ,ω)|2dT <∞. Hereafter, the space of each Ft

-measurable, bounded, and continuous functions realized on
I to L2(Ω,R) is denoted by ∁b � ∁(I, L2(Ω,R)).

Clearly, the metric space (∁b, d) with d � maxT∈IU(T) −

W(T) and U,W ∈ ∁b is separable and complete. Also, the
notation (M2(Ω, ∁b), D) refers to the space of ∁b-valued
random variables equipped with a metric D. Finally, the
functions F1(T ,U,ω),F2(T ,U,ω): I × ∁b ×Ω⟶ R are
assumed to be L2(Ω,R) jointly measurable and continuous
for all T ∈ I,U ∈ ∁b and almost everywhere ω ∈ Ω, and
‖U0‖E<∞. Tis information can be found in [20].

2.4. Integral Representation and Basic Lemmas. Tis section
is to establish an integral form of (1) and state Gronwall’s
inequality which is used in completing the desired proofs.
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Lemma 3. If T(U) is a solution of (1), then its integral form is

U(T ,ω) � U0 + 􏽚
T

0
η8− 1

F1(η,U(η,ω),ω)dη

+
λ
8

􏽚
T

0
T

8
− η8

( 􏼁F2(η,U(η,ω),ω)dBη.

(7)

Proof. Applying (3) for both sides of (1) and using the
stochastic Fubini theorem [32], one gained

U(T ,ω) � U0 + 􏽚
T

0
η8− 1

F1(η,U(η,ω),ω)dη + λ􏽚
T

0
􏽚
τ

0
F2(η,U(η,ω),ω)dBητ

8− 1dτ

� U0 + 􏽚
T

0
η8− 1

F1(η,U(η,ω),ω)dη + λ􏽚
T

0
􏽚
T

τ
η8− 1

dηF2(τ,U(τ,ω),ω)dBτ

� U0 + 􏽚
T

0
η8− 1

F1(η,U(η,ω),ω)dη +
λ
8

􏽚
T

0
T

8
− η8

( 􏼁F2(η,U(η,ω),ω)dBη.

(8)

□

Lemma 4 (see [33]). Let β(T) and μ(T) be two non-negative
continuous functions on Ι and assume that a≥ 0. If μ(T)≤ a +

􏽒
T

0 β(η)μ(η)dη with t ∈ Ι, then Gronwall’s inequality is

μ(T)≤ ae
􏽚
T

0
β(η)dη

.
(9)

3. Existence and Uniqueness Results

Te main target of this section is to establish reasonable
proof of under-growth and Lipschitz assumptions asserting

the existence of a single solution of (1). Our proofs are
performed using the Picard iteration scheme which goes
back to Emile Picard 1856–1941. Some topological theorems
and lemmas are also used. Herein, 8 is presumed to be > 0.5.

Theorem 1. Suppose that the growth condition
E|Fi(η,U(η,ω),ω)|2 ≤Ni(1 + E|U(η,ω)|2) with Ni > 0 and
i � 1, 2 holds; then, (1) has a solution in ∁b.

Proof. Using the integral form (7) and defning the Picard
sequence Un􏼈 􏼉

∞
n�0 on I with U0(T ,ω) � U0 as

UN(T ,ω) � U0 + 􏽚
T

0
η8− 1

F1 η,UN−1(η,ω),ω( 􏼁dη +
λ
8

􏽚
T

0
T

8
− η8

( 􏼁F2 η,UN−1(η,ω),ω( 􏼁dBη, N � 1, 2, . . . , (10)

and let maxi�1,2Ni ≤N∗ for some N∗ > 0.

Step 1: we show that UN􏼈 􏼉
∞
N�0 is well-defned and

measurable for T ∈ Ι. First, we denote

I1 � 􏽚
T

0
η8− 1

F1 η,UN−1(η,ω),ω( 􏼁dη,

I2 �
λ
8

􏽚
T

0
T

8
− η8

( 􏼁F2 η,UN−1(η,ω),ω( 􏼁dBη.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

Since F1 and F2 are assumed to be in L2(Ω,R), and the
kernels η8− 1 and (T8 − η8) are bounded. Ten, the growth
condition asserts that

􏽚
T

0
E η8− 1

F1 η,UN− 1(η,ω),ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
dη<∞,

􏽚
T

o
E T

8
− η8

( 􏼁F2 η,UN− 1(η,ω),ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dη<∞,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

which indicates that Lebesgue’s integralI1 and Itô’s integral
I2 are well-defned. Consequently, the sequence UN􏼈 􏼉

∞
N�0 is

well-defned.
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It remains to prove the measurability of the considered
sequence. Tis can be explained by the measurability of F1
andF2, and the product of measurable continuous functions
is again measurable. So, the maps

ω⟶ I1,

ω⟶ I2,
􏼨 (13)

are measurable. Tus, we deduce the requirement.

Step 2: we show that UN􏼈 􏼉
∞
N�0 is bounded. With the use

of CSI, Itô’s isometry, and the growth constraint,
(10) gives

E UN(T)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� E U0 + 􏽚
T

0
η8− 1

F1 η,UN− 1(η,ω),ω( 􏼁dη +
λ
8

􏽚
T

0
T

8
− η8

( 􏼁F2 η,UN− 1(η,ω),ω( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 3E U0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 3E 􏽚
T

0
η8− 1

F1 η,Un− 1(η,ω),ω( 􏼁dη
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 3E
λ
8

􏽚
T

0
T

8
− η8

( 􏼁F2 η,UN− 1(η,ω),ω( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 3E U0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 3T􏽚
T

0
η28− 2

E F1 η,UN− 1(η,ω),ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dη +

3λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2
E F2 η,UN− 1(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

≤ 3E U0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 3TN
∗

􏽚
T

0
η28− 2

E UN− 1(η,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 1􏼐 􏼑dη +
3N
∗λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2

E UN− 1(η,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 1􏼐 􏼑dη

≤ 3E U0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 3N
∗
T

T
28− 1

28 − 1
+ 3N
∗
T􏽚

T

0
η28− 2

E UN− 1(η,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dη +

3N
∗λ2

8
2

T
28+1

28 + 1

+
3N
∗λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2
E UN− 1(η,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

� 3E u0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 3N
∗
T

T
28− 1

28 − 1
+
3N
∗λ2

8
2

T
28+1

28 + 1
+ 3N
∗

􏽚
t

0
Tη28− 2

+ λ
t8 − η8

8
􏼒 􏼓

2
􏼠 􏼡E un− 1(η,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

� H1 + H2 􏽚
T

0
Tη28− 2

+ λ
T8 − η8

8
􏼠 􏼡

2
⎛⎝ ⎞⎠E UN− 1(η,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη,

(14)

where
H1 � 3E|U0|

2 + 3N∗T(T28− 1/28 − 1) +

((3N∗λ2/82)(T28+1/28 + 1)) and H2 � 3N∗. Also, for ar-
bitrary p≥ 1, obviously,

max
1≤N≤P

E UN− 1(T ,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ max

1≤N≤P
E UN(T ,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (15)

Terefore, taking the maximum of both sides of (14) one
has

max
1≤N≤P

E UN(T ,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤H1 + H2 􏽚

T

0
Tη28− 2

+ λ
T8 − η8

8
􏼠 􏼡

2
⎛⎝ ⎞⎠ max

1≤N≤P
E UN(T ,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη. (16)

By Gronwall’s inequality, we have

max
1≤N≤P

E UN(T ,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤H1e

H2 􏽚
T

0
Tη28−2

+ λT8
− η8/8( 􏼁

2
􏼐 􏼑dη

≤H1e
H2T

28 (1/(28− 1))+Tλ2/(28+1)82( ) <∞.
(17)
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Since ℘ was arbitrary, we have E|UN(T ,ω)|2 <∞ which
guarantees the boundedness of UN􏼈 􏼉

∞
N�0. Moreover, UN􏼈 􏼉

∞
N�0

is uniformly bounded.

Step 3: we prove the equicontinuity of UN􏼈 􏼉
∞
N�0. Let

0< T1 < T2 <T, T2 − T1 < δ∗, and max0<T<T1 +

E|UN− 1(T ,ω)|2 ≤ ϑ, ϑ> 1. Let ϵ> 0 be given and

choose δ > 0 such that 0< (δ∗)
28 ((1/28 − 1) +

(2λ2δ∗/82(28 + 1)) + (2Tλ2/82))≤ δ and

δ ≤
ϵ

2ϑN
∗. (18)

Employing CSI, Itô’s isometry, and (10), one obtains

UN T2,ω( 􏼁 − UN T1,ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ 2 􏽚

T2

0
η8− 1

F1 η,UN− 1(η,ω)ω( 􏼁dη − 􏽚
T1

0
η8− 1

F1 η,UN− 1(η,ω),ω( 􏼁dη
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+
2λ2

8
2 􏽚

T2

0
T2( 􏼁

8
− η8

( 􏼁F2 η,UN− 1(η,ω),ω( 􏼁dBη − 􏽚
T1

0
T1( 􏼁

8
− η8

( 􏼁F2 η,UN− 1(η,ω),ω( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 2 􏽚
T2

T1

η8− 1
F1 η,UN− 1(η,ω),ω( 􏼁dη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+
4λ2

8
2 􏽚

T2

T1

T2( 􏼁
8

− η8
( 􏼁F2 η,UN− 1(η,ω),ω( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+
4λ2

8
2 􏽚

T1

0
T2( 􏼁

8
− T1( 􏼁

8
( 􏼁F2 η,UN− 1(η,ω),ω( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

.

(19)

Taking the expectation of both sides, one has

E un t2,ω( 􏼁 − un t1,ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

E UN T2,ω( 􏼁 − UN T1,ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ 2􏽚

T2

T1

η28− 2dη􏽚
T2

T1

E F1 η,Un− 1(η,ω),ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dη

+
4λ2

8
2 􏽚

T2

T1

T2( 􏼁
8

− η8
( 􏼁

2
E F2 η,UN− 1(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dη

+
4λ2

8
2 T2 − T1( 􏼁

28
􏽚
T1

0
E F2 η,UN− 1(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

≤
2

28 − 1
T2( 􏼁

28− 1
− T1( 􏼁

28− 1
􏼐 􏼑 􏽚

T2

T1

E F1 η,UN− 1(η,ω),ω( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dη

+
4λ2

8
2 􏽚

T2

T1

T2( 􏼁
8

− η8
( 􏼁

2
E F2 η,UN− 1(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

+
4λ2

8
2 T2 − T1( 􏼁

28
􏽚
T1

0
E F2 η,UN− 1(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη
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≤
2

28 − 1
T2 − T1( 􏼁

28− 1
N
∗

􏽚
T2

T1

1 + E UN− 1(η,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑dη

+
4N
∗λ2

8
2 􏽚

T2

T1

T2 − η( 􏼁
28 1 + E UN− 1(η,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑dη

+
4N
∗λ2

8
2 T2 − T1( 􏼁

28
􏽚
T1

0
1 + E UN− 1(η,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑dη

≤
2N
∗ϑ

28 − 1
T2 − T1( 􏼁

28

+
4λ2N∗ϑ

8
2
(28 + 1)

T2 − T1( 􏼁
28+1

+
4Tλ2N∗ϑ

8
2 T2 − T1( 􏼁

28

≤ 2N
∗ϑ δ∗( 􏼁

28 1
28 − 1

+
2λ2δ∗

8
2
(28 + 1)

+
2Tλ2

8
2􏼠 􏼡

≤ 2N
∗ϑδ. (20)

By (18), one gets E|UN(T2,ω) − UN(T1,ω)|2 ≤ ϵ which
proves the equicontinuity of UN􏼈 􏼉

∞
N�0.

Step 4: by the results gained in Steps 2 and 3, Arzela-
Ascoli’s theorem assures that UN􏼈 􏼉

∞
N�0 is a

compact subset of ∁b. In addition, Step 2 asserts
the boundedness of the sequence UN􏼈 􏼉

∞
N�0 which

indicates that UN ∈M2(Ω, ∁b). Applying Pro-
horov’s theorem, one gets the totally D

-boundedness of the sequence UN􏼈 􏼉
∞
N�0 in

M2(Ω, ∁b). Tus, UN􏼈 􏼉
∞
N�0 has a D-Cauchy

subsequence UNM
􏽮 􏽯

∞
N�0 denoted by UM􏼈 􏼉

∞
M�1 [34].

Ten, Skorokhod’s representation lemma [35]

assures the existence of a convergence sequence
WM􏼈 􏼉
∞
M�1 in M2(Ω, ∁b) that has the same dis-

tribution as UM􏼈 􏼉
∞
M�1 such that the following

subsequence properties are satisfed:

(1) D(WM,UM) � 0, M � 1, 2, . . .

(2) WM⟶ U WP1 as M⟶∞ for some continuous
Fz-measurable random variable U in M2(Ω, ∁b)

Te abovementioned properties ensure the boundedness
ofWM andUWP1. Now, it remains to prove thatU, the limit
of WM􏼈 􏼉

∞
M�1, satisfes (1). For this end, we consider the

following:

E WM(T ,ω) − U(T ,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� E 􏽚
T

0
η8− 1

F1 η,WM(η,ω),ω( 􏼁 − F1(η,U(η,ω),ω)( 􏼁dη +
λ
8

􏽚
T

0
T

8
− η8

( 􏼁 F2 η,WM(η,ω),ω( 􏼁 − F2(η,U(η,ω),ω)( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 2E 􏽚
T

0
η8− 1

F1 η,WM(η,ω),ω( 􏼁 − F1(η,U(η,ω),ω)( 􏼁dη
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+
2λ2

8
2 E 􏽚

T

0
T

8
− η8

( 􏼁 F2 η,WM(η,ω),ω( 􏼁 − F2(η,U(η,ω),ω)( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 2􏽚
T

0
η28− 2dη􏽚

T

0
E F1 η,WM(η,ω),ω( 􏼁 − F1(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη
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+
2λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2
E F2 η,WM(η,ω),ω( 􏼁 − F2(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

≤
2T28− 1

28 − 1
􏽚
T

0
E F1 η,WM(η,ω),ω( 􏼁 − F1(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

+
2λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2
E F2 η,WM(η,ω),ω( 􏼁 − F2(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη. (21)

By the continuity of F1 and F2, it appears that for given
ε> 0, ∃i≥ 0 with i integer such that, for M> i,

􏽚
T

0
E F1 η,WM(η,ω),ω( 􏼁 − F1(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη≤T

ϵ
2
,

􏽚
T

0
T

8
− η8

( 􏼁
2
E F2 η,WM(η,ω),ω( 􏼁 − F2(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη≤

T
28+1

28 + 1
ϵ
2
.

(22)

Hence, for all T ∈ Ι, one has

􏽚
T

0
η8−1

F1 η,WM(η,ω),ω( 􏼁dη � ⟶ 􏽚
T

0
η8−1

F1(η,U(η,ω),ω)dη, (23)

􏽚
T

0
T

8
− η8

( 􏼁F2 η,WM(η,ω),ω( 􏼁dBη⟶ 􏽚
T

0
T

8
− η8

( 􏼁F2(η,U(η,ω),ω)dBη. (24)

With the property D(WM,UM) � 0 within M � 1, 2, . . .

mentioned in Step 4, (10) yields

WM(T ,ω) � U0 + 􏽚
T

0
η8− 1

F1 η,WM−1(η,ω),ω( 􏼁dη +
λ
8

􏽚
T

0
T

8
− η8

( 􏼁F2 η,WM−1(η,ω),ω( 􏼁dBη. (25)

Letting M⟶∞, relations (23)–(25), and the property
WM⟶ U WP1 shows that

U(T ,ω) � U0 + 􏽚
T

0
η8− 1

F1(η,U(η,ω),ω)dη

+
λ
8

􏽚
T

0
T

8
− η8

( 􏼁F2(η,U(η,ω),ω)dBη.

(26)

Consequently, (26) demonstrates that U(T ,ω) is a
random solution of (1) as required. □

Theorem 2. Under the Lipschitz assumption
E|F2(η,W(η,ω),ω) −F2(η,U(η,ω),ω)|2 ≤LE|W(η,ω)

−U(η,ω)|2 with L> 0 the solution of (1) is unique.

Proof. Let W(T ,ω) and U(T ,ω) be two solutions to (1).
Ten, using the integral form (7), one has

8 Mathematical Problems in Engineering



E|W(T ,ω) − U(T ,ω)|
2

� E 􏽚
T

0
η8− 1

F1(η,W(η,ω),ω) − F1(η,U(η,ω),ω)( 􏼁dη +
λ
8

􏽚
T

0
T

8
− η8

( 􏼁 F2(η,W(η,ω),ω) − F2(η,U(η,ω),ω)( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 2E 􏽚
T

0
η8− 1

F1(η,W(η,ω),ω) − F1(η,U(η,ω),ω)( 􏼁dη
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+
2λ2

8
2 E 􏽚

T

0
T

8
− η8

( 􏼁 F2(η,W(η,ω),ω) − F2(η,U(η,ω),ω)( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 2􏽚
T

0
η28− 2dη􏽚

T

0
E F1(η,W(η,ω),ω) − F1(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

+
2λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2
E F2(η,W(η,ω),ω) − F2(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

≤
2T28− 1

28 − 1
􏽚
T

0
E F1(η,W(η,ω),ω) − F1(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

+
2λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2
E F2(η,W(η,ω),ω) − F2(η,U(η,ω),ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη.

(27)

Again, by the Lipschitz condition, one has

E|W(T ,ω) − U(T ,ω)|
2 ≤

2T28− 1

28 − 1
L 􏽚

T

0
E|W(η,ω) − U(η,ω)|

2dη

+
2λ2

8
2 L 􏽚

T

0
T

8
− η8

( 􏼁
2
E|W(η,ω) − U(η,ω)|

2dη

� 2L 􏽚
T

0

T
28− 1

28 − 1
+ λ

T8 − η8

8
􏼠 􏼡

2
⎛⎝ ⎞⎠E|W(η,ω) − U(η,ω)|

2dη.

(28)

Applying Gronwall’s inequality on (28), one yields

E|W(T ,ω) − U(T ,ω)|
2 ≤ 0. (29)

Hence, W(T ,ω) � U(T ,ω) for all T ∈ Ι. So, the
uniqueness has been proved. □

4. Numerical Solution and
Convergence Analysis

Unlike the deterministic FDEs, which have deterministic so-
lutions, fractional SIDEs solutions are continuously stochastic
processes. Aside from diferences, solving fractional SIDEs
numerically is based on similar techniques that are used for
deterministic ones. Herein, the SL-SCA is discussed in detail
and employed to grant the numerical solutions of (1). It is
indispensable to focus on the fact that each trajectory provided
by the presented method is just one realization of the exact
stochastic process satisfying (1). To confrm the convergence of
the presented algorithm when solving (1), we construct a
theorem and apply Gronwall’s inequality in proving it.

4.1. Adaptive SL-SCA for Fractional SIDEs. Te spectral
collocation technique is considered one of the most appli-
cable numerical methods that provide high-precision nu-
merical solutions for various types of FDEs.Temain idea of
its algorithm is to derive a system of a fnite number of
algebraic equations by assuming the unknown function to be
a truncated series of some suitable basis functions with
unknown coefcients. Because of the simplicity, smooth-
ness, and orthogonality properties of the Legendre poly-
nomials, they are selected to be the base functions of the
algorithm discussed in the current section.

To fulfll the goal of approximating the unknown
function U(T ,ω) in (1), we frst present a review of the SLPs
and state a theorem that asserts the ability to approximate
unknown functions by SLPs expansions. In this sense, the
unknown functionU(T ,ω) in (1) is replaced by a fnite series
of SLPs resulting in a residual error function Res(T) which is
assumed to be zero at a suitable choice of collocation points.
In addition, the fnite series satisfes the initial conditions.
Accordingly, (1) is converted to a facilely solvable system of
algebraic equations. For simplicity of notation, the variableω
is dropped and we write U(T), F1(T ,U(T)), and
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F2(T ,U(T)) instead of U(T ,ω), F1(T ,U(T ,ω),ω), and
F2(T ,U(T ,ω),ω), respectively.

Legendre polynomials are known to be built on [−1, 1].
Utilizing appropriate change of variables, Legendre poly-
nomials can be restricted to [0, 1] and then called the SLPs.

Tey satisfy the orthogonality property concerning the
weight function w(T) � 1. SLPs can be expressed in a re-
cursive formula [36] but the most efcient formula is the
following analytical series [37]:

KP(T) � 􏽘
P

Q�0
(−1)

P+Q 1
(P − Q)!(Q!)

2 (P + Q)!T
Q

, P � 0, 1, . . . . (30)

Te orthogonality property of SLPs over [0, 1] is

􏽚
1

0
Ki(T)KP(T)dT �

(2i + 1)
− 1

, i � P,

0, i≠P.

⎧⎨

⎩ (31)

Defnition 5 (see [38]). For allU,W ∈ L2[0, 1] the functional
of L2[0, 1] is

U|W � 􏽚
1

0
U(T)W(T)dT ,

UL2
�

����
U|U

􏽰
.

⎧⎪⎪⎨

⎪⎪⎩
(32)

Theorem 3 (see [36]). Let PN � Pi, i≤N􏼈 􏼉, where Pi is a
polynomial of degree i. Ten, for W ∈ L2[0, 1], there is a
unique polynomial q∗N ∈ PN such that

W − q
∗
NL2

� infqN∈PN
W − qNL2

, (33)

where q∗N(T) � 􏽐
N
i�0 ciφi(T) with ci � (W|φi/‖φi‖L2

) and the
sequence φi􏼈 􏼉

N

i�1 is an orthogonal basis for PN in the L2 space.
Since they satisfy the orthogonality property, the SLPs

form an orthogonal basis for PN in L2 space. Tus, the
previous theorem asserts that U(T) ∈ L2[0, 1] can be
uniquely approximated by a truncated series of the SLPs as
follows:

U(T) � UN(T)

� 􏽘
N−1

P�0
λPKP(T),

(34)

where λP � (2P + 1)U(T)|KP(T) with P � 0, 1, . . . , N − 1.
Using the linearity property of the CFD, one can easily

verify that the approximation of the derivative of UN(T) in
the conformable sense is

T8UN(T) � 􏽘
N−1

P�0
λPT8KP(T), (35)

T8KP(T) �
􏽘

P

Q�1
(−1)

P+Q Q(P + Q)!

(P − Q)!(Q!)
2T

Q− 8
, P � 1, 2, . . . ,

0, P � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

Also, using the property
􏽒
1
0 H(η)dBS � H(T)B(T) − 􏽒

T

0 B(η)dHη Itô’s integral in (1)
can be written as

􏽚
T

0
F2(η,U(η))dBS � F2(T ,U(T))B(T) − 􏽚

T

0

zF2(η,U(η))

zη
B(η)dη. (37)
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Inserting relations (34), (35), and (37) into (1), it leads to

ResN(T) � 􏽘
N−1

P�0
λTABCD

α
0KP(T) − F T , 􏽘

N−1

P�0
λPKP(T)⎛⎝ ⎞⎠ − G T , 􏽘

N−1

P�0
λPKP(T)⎛⎝ ⎞⎠B(T) + 􏽚

T

0

zF2 η, 􏽐
N−1
P�0 λPKP(η)􏼐 􏼑

zη
B(η)dη, (38)

where ResN(T) denotes the residual error function that is
produced when substituting UN(T) in (1).

Now, for i � 1, 2, . . . , N − 1, we substitute each collo-
cation point T i, arranged as T i < T i+1, into (38) and get

ResN T i( 􏼁 � 􏽘

N−1

P�0
λPD

α
0KP T i( 􏼁 − F1 T i, 􏽘

N−1

P�0
λPKP T i( 􏼁⎛⎝ ⎞⎠ − F2 T i, 􏽘

N−1

P�0
λPKP T i( 􏼁⎛⎝ ⎞⎠B T i( 􏼁 + 􏽚

T i

0

zF2 η, 􏽐
N−1
P�0 λPKP(η)􏼐 􏼑

zη
B(η)dη. (39)

To approximate the integral term in (39), one can use the
composite trapezoidal rule as follows:

􏽚
T i

0
H(η)B(η)dη �

T i

2iM
H T i( 􏼁B T i( 􏼁 + 2 􏽘

iM−1

P�1
H P

T

iM
􏼒 􏼓B P

TP

iM
􏼒 􏼓],⎡⎣ (40)

where M≥ 2 is an integer and H(η) � zF2(η,UN(η))/zη. Anyhow, the substituting of (40) into (39), leads to

ResN T i( 􏼁 + εM T i( 􏼁 � 􏽘
N−1

P�0
λPT8KP(T) − F1 T i, 􏽘

N−1

P�0
λPKP T i( 􏼁⎛⎝ ⎞⎠ − F2 T i, 􏽘

N−1

P�0
λPKP T i( 􏼁⎛⎝ ⎞⎠B T i( 􏼁

+
T i

2iM
H T i( 􏼁B T i( 􏼁 + 2 􏽘

iM−1

P�1
H P

TP

iM
􏼒 􏼓B P

TP

iM
􏼒 􏼓],⎡⎣ (41)

where εM(T i) is the trapezoidal rule error related to the
integral approximating using (39). It is known that
εM(T i)⟶ 0 as M⟶∞.

Now, for i � 1, 2, . . . , N − 1 one has

0 � 􏽘
N−1

P�0
λPT8KP T i( 􏼁 − F1 T i, 􏽘

N−1

P�0
λPKP T i( 􏼁⎛⎝ ⎞⎠ − F2 T i, 􏽘

N−1

P�0
λPKP T i( 􏼁⎛⎝ ⎞⎠B T i( 􏼁

+
T i

2iM
H T i( 􏼁B T i( 􏼁 + 2 􏽘

iM−1

P�1
H P

TP

iM
􏼒 􏼓B P

TP

iM
􏼒 􏼓].⎡⎣ (42)

The property KP(0) � (−1)P together with the initial
condition gives

􏽘

N−1

P�0
λP(−1)

P
� U0. (43)

Hence, (42) and (43) form a system containing N al-
gebraic equations. Tis system has solved the unknowns λP
wherein P � 0, 1, . . . , N − 1 with the aid of a suitable
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method. Consequently, the approximate solution of (1),
when substituting the values of λP in (34), is obtained.

It remains to treat a crucial issue of simulating the SBM
sample paths over an appropriate discretization
0< T1 < . . . < TP < . . . < T τ of I, for a positive integer τ. Te
discretization is considered to be equally spaced with TP −

TP−1 � (T/τ) � ΔT wherein P � 1, . . . , τ and then B(TP) −

B(TP−1) � dB(TP) ∼ Ν(0,ΔT). To obtain an approximate
value for B(T), a linear spline interpolation [30] is then
applied using the points (TP, B(TP)) whereinP � 0, 1, . . . , τ
.

4.2. Convergence of SL-SCA. Tis part is to emphasize the
convergence of the proposed algorithm. For this aim, it is
initially proven that the fnite Legendre series expansion of a
function in L2[0, 1] converges and has fnite modulus co-
efcients. Ten, proof of convergence of SL-SCA consid-
ering (1) is constructed.

Theorem 4. Te Legendre expansion 􏽐
N
P�0 λPKP(T) of

U(T) ∈ L2[0, 1] converges to U(T) as N⟶∞.

Proof. Let UM(T) � 􏽐
M
P�0 λPKP(T). Ten, for N>M, we

have

UN(x) − UM(x)
����

����
2
L2

� 􏽘
N

P�M+1
λPKP(T)

���������

���������

2

L2

�〈 􏽘
N

P�M+1
λPKP(T)| 􏽘

N

i�M+1
λiKi(T)〉

� 􏽘
N

P�M+1
􏽘

N

i�M+1
λPλi〈KP(T)|Ki(T)〉

� 􏽘
N

P�M+1
􏽘

N

P�M+1
λPλi 􏽚

1

0
KP(T)Ki(T)dT

� 􏽘
N

P�M+1
λP

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 1
2P + 1

􏼒 􏼓< 􏽘
N

P�M+1
λP

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(44)

Bessel’s inequality indicates that
􏽐

N
P�M+1 |λP|2 ≤ 􏽐

∞
P�M+1 |λP|2 ≤U2

L2
<∞. So,

UN(T) − UM(T)2L2
⟶ 0 as N,M⟶∞. Tus, the

sequence UN(T) is Cauchy in the complete space L2[0, 1]

and converges to some W(T) ∈ L2[0, 1]. Now, to show
W(T) � U(T), we consider

〈W(T) − U(T)|KP(T)〉 �〈W(T)|KP(T)〉 −〈W(T)|KP(T)〉

� lim
N⟶∞
〈UN(T),KP(T)〉 − λP

� λP − λP,

� 0.

(45)

Hence, W(T) � W(T) which completes the proof. □

Theorem  . Weconsider U(T ,ω) and UN(T ,ω) concerning
(1) and suppose that the Lipschitz condition E|F2(η,

U(η,ω),ω) − F2(η,UN(η,ω),ω)|2 ≤LE|U(η,ω)− UN(η,

ω)|2, L> 0, is satisfed. Ten,

U(T ,ω) − UN(T ,ω)2⟶ 0 asN⟶∞.
(46)

Proof. Let eN(T ,ω) � U(T ,ω) − UN(T ,ω) be the error
function results when the exact solution U(T ,ω) of (1) is
approximated by UN(T) that is given in (34). So, using (7),
we have
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eN(T ,ω) � U(T ,ω) − UN(T ,ω)

� 􏽚
T

0
η8− 1

F1(η,U(η,ω),ω) − F1 η,UN(η,ω),ω( 􏼁( 􏼁dη

+
λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁 F2(η,U(η,ω),ω) − F2 η,UN(η,ω),ω( 􏼁( 􏼁dBη + I
8
0εM + I

8
0ResN(T),

(47)

Te triangular inequality, CSI, and Itô’s lemma give

E U(T ,ω) − UN(T ,ω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� E 􏽚
T

0
η8− 1

F1(η,U(η,ω),ω) − F1 η,UN(η,ω),ω( 􏼁( 􏼁dη +
λ
8

􏽚
T

0
T

8
− η8

( 􏼁 F2(η,U(η,ω),ω) − F2 η,UN(η,ω),ω( 􏼁( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ I
8
0εM + I

8
0ResN(T)

2

≤ 4E 􏽚
T

0
η8− 1

F1(η,U(η,ω),ω) − F1 η,UN(η,ω),ω( 􏼁( 􏼁dη
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+
4λ2

8
2 E 􏽚

T

0
T

8
− η8

( 􏼁 F2(η,U(η,ω),ω) − F2 η,UN(η,ω),ω( 􏼁( 􏼁dBη

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 4E I
8
0εM

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 4E I
8
0ResN(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤ 4􏽚
T

0
η28− 2

dη􏽚
T

0
E F1(η,U(η,ω),ω) − F1 η,UN(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη +

4λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2
E F2(η,U(η,ω),ω) − F2 η,UN(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dη

+ 4E I
8
0εM

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 4E I
8
0ResN(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

≤
4T28− 1

28 − 1
􏽚
T

0
E F1(η,U(η,ω),ω) − F1 η,UN(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη +

4λ2

8
2 􏽚

T

0
T

8
− η8

( 􏼁
2
E F2(η,U(η,ω),ω) − F2 η,UN(η,ω),ω( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη

+ 4E I
8
0εM

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 4E I
8
0ResN(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(48)

Now, using the Lipschitz condition and simple calcu-
lations, we otain

eN(T)
2
E ≤

4T28− 1

28 − 1
L 􏽚

T

0
E U(η,ω) − UN(η,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη +

4λ2

8
2 L 􏽚

T

0
T

8
− η8

( 􏼁
2
E U(η,ω) − UN(η,ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dη + 4I

8
0ε

2
E + 4I

8
0ResN(T)

2
E

� 2L 􏽚
T

0

T
28− 1

28 − 1
+ λ

T8 − η8

8
􏼠 􏼡

2
⎛⎝ ⎞⎠eN(T)

2
Edη + 4I

8
0ε

2
E + 4I

8
0ResN(T)

2
E.

(49)

Let 9(N,M) � 4‖I8
0εM‖2E + 4‖I8

0ResN(T)‖2E and apply
Gronwall’s inequality on (49), which yields

eN(T)
2
E ≤ 9(N,M)e

􏽚
T

0
2L T

28−1/28 − 1 + λT8
− η8/8( 􏼁

2
􏼐 􏼑dη

.
(50)

Since 9(N,M)⟶ 0 as N,M⟶∞ and for T ∈ Ι,
􏽒
T

0 2L(T28− 1/28 − 1 + (λT8 − η8/8)2)dη<∞. Ten, U(T) −

UN(T)2⟶ 0 as N, m⟶∞ as required. □

5. Numerical Results and Examples

To emphasize the results gained in previous sections, we
provide an algorithm consisting of clear steps based on the
SL-SCA described in Section 4 and utilize it to solve ex-
amples of linear and nonlinear forms of (1) numerically.
Hither, the values of the SBM are calculated for τ � 128, and
for the collocation points, the subsequence formula is
used [30].
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T i �
1
2

−
1
2
cos

(2i + 1)π
2N + 2

􏼠 􏼡, i � 1, 2, . . . , N − 1. (51)

Generally, the exact solution of (1) does not exist. So, we
consider eN(T) � |UN(T) − U(T)| to be the error function

which is calculated only for examples that have no stochastic
terms (see Example 1 for λ � 0).

Example 1. Consider the following linear fractional SIDE:

T8U(T) � U(T) + T
0.25

+ 2T1.25
− T

2
− T + λ􏽚

T

0
ηdBη,

U(0) � 0,

⎧⎪⎪⎨

⎪⎪⎩
(52)

wherein T ∈ Ι � [0, 1] and 0.5< 8< 1. Hither, for 8 � 0.75
and λ � 0 , the exact solution is U(T) � T2 + T .

Example 2. Linear fractional SIDE is as follows:

T8U(T) � U(T) + T
0.5

− T
2

+ 􏽚
T

0
U(η)dBη,

U(0) � 0,

⎧⎪⎪⎨

⎪⎪⎩
(53)

wherein T ∈ Ι � [0, 1] and 0.5< 8< 1. Example 3. Linear fractional SIDE is as follows:

T8U(T) � T
2 sin(T) + 􏽚

T

0
U(η)dBη,

U(0) � 0,

⎧⎪⎪⎨

⎪⎪⎩
(54)

wherein T ∈ Ι � [0, 1] and 0.5< 8< 1.

Example 4. Nonlinear fractional SIDE is as follows:

T8U(T) � U
2
(T) + U(T) − T + 􏽚

T

0
0.5dBη,

U(0) � 0,

⎧⎪⎪⎨

⎪⎪⎩
(55)

wherein t ∈ Ι � [0, 1] and 0.5< 8< 1.

Example 5. Nonlinear fractional SIDE is as follows:

T8t(t) � t
����
t(t)

􏽰
+ 􏽚

1

0
ηdBη,

t(0) � 0,

⎧⎪⎪⎨

⎪⎪⎩
(56)

wherein T ∈ Ι � [0, 1] and 0.5< 8< 1.
It is important to shed light on the fact that diferent

SBM paths produce diferent approximated realizations.
Fixed ω ∈ Ω, a path of an SBM B(T ,ω) � B(T), is a con-
tinuous nowhere diferentiable starting from zero WP1 and
has independent normally distributed discrete increments.
As it is presented in Section 4, B(T) can be simulated at fxed
values of T . Te paths that appear in Figure 1 are performed
using Mathematica 11 program.

For Example 1, the subsequence results have been
obtained by employing Algorithm 1. Firstly, in Table 1,

data outcomes for UN(T) and U(T) at N ∈ 4, 6, 9{ }, 8 �

0.75, and λ � 0 are tabulated. Secondly, in Table 2, data
outcomes for UN(T) at 8 ∈ 0.8, 0.85, 0.9, 0.95{ }, N � 7, and
λ � 1 are tabulated. Tirdly, in Figure 2 graphical out-
comes for UN(T), U(T), and eN(T) at λ � 0, 8 � 0.75, and
N � 4 are sketched. Fourthly, in Figure 3 graphical out-
comes for UN(T), U(U), and eN(T) at λ � 0, 8 � 0.75, and
N � 9 are sketched. Fifthly, in Figure 4 graphical out-
comes for UN(T) at 8 ∈ 0.80, 0.85, 0.90{ }, N ∈ 3, 4, 6{ }, and
λ � 1 are sketched.

Te following algorithm steps are executed using
MATHEMATICA 11 software:

For Example 2, the subsequence results have been
obtained by employing Algorithm 1. Firstly, in Table 3,
data outcomes for UN(T) at 8 ∈ 0.65, 0.7, 0.75, 0.8{ } and
N � 3 are tabulated. Secondly, in Figure 5, graphical
outcomes for UN(T) at 8 ∈ 0.65, 0.7, 0.75{ } and N ∈ 4, 5, 6{ }

are sketched.
For Example 3, the subsequence results have been ob-

tained by employing Algorithm 1. Firstly, in Table 4, data
outcomes for UN(T) at 8 ∈ 0.70, 0.75, 0.8, 0.85{ } and N � 5
are tabulated. Secondly, in Figure 6, graphical outcomes for
UN(T) at 8 ∈ (0.75, 0.80, 0.85) and N ∈ 4, 5, 6{ } are
sketched.

For Example 4, the subsequence results have been
obtained by employing Algorithm 1. Firstly, in Table 5, data
outcomes for UN(T) at 8 ∈ 0.65, 0.7, 0.75, 0.8{ } and N � 6
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-0.5
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ti
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Figure 1: Path for the values of the SBM B(T) as (a) the results shown in Examples 1–3 and (b) the results shown in Examples 4-5.

Input: Initial data: 8, M, T, N, U0, λ. Functions: F1, and F2. SBM: B.
Execution A: Compute SLPs Ki(T) for i � 0, 1, · · · , N − 1 from (30).
Execution B: Compute for T8Ki(T)i � 1, 2, · · · , N − 1 from (36).
Execution C: Compute Ki(0) for i � 1, 2, · · · , N − 1.
Execution D: Compute the collocation points T i for i � 1, 2, · · · , N − 1 using (51).
Execution E: Approximate 􏽒

T i

0 (zF2(η, 􏽐
N−1
P�0 λPKP(η))/zη)B(η)dη using (40).

Execution G: Solve the system of N algebraic equations of (42) and (43).
Output: Te approximation UN(T) � 􏽐

N−1
i�0 λiKi(T).

ALGORITHM 1: Executions of the SL-SCA in handling fractional SIDEs (1).

Table 1: Comparison results using U(T i) and UN(T i) at N ∈ 4, 6, 9{ }, 8 � 0.75, and λ � 0 in Example 1.

ti u(ti) u4(ti) u6(ti) u9(ti)

0.1 0.11 0.1099999999999997 0.1100000000000008 0.1100000000000023
0.2 0.24 0.2399999999999998 0.24000000000000077 0.2400000000000029
0.3 0.39 0.3899999999999997 0.3900000000000009 0.3900000000000031
0.4 0.56 0.5599999999999997 0.5600000000000012 0.5600000000000036
0.5 0.75 0.7499999999999997 0.7500000000000012 0.7500000000000041
0.6 0.96 0.9599999999999996 0.9600000000000015 0.9600000000000045
0.7 1.19 1.1899999999999995 1.1900000000000015 1.1900000000000048
0.8 1.44 1.4399999999999995 1.4400000000000020 1.4400000000000055
0.9 1.71 1.7099999999999993 1.7100000000000022 1.7100000000000062
1 2 1.9999999999999991 2.0000000000000027 2.0000000000000058

Table 2: Comparison of results using UN(T i) at 8 ∈ 0.8.85, 0.9, 0.95{ }, N � 7, and λ � 1 in Example 1.

(T i, 8) 0.8 0.85 0.9 0.95

0.1 0.1825499692783584 0.1614913720931948 0.1432918550612591 0.1274765043403953
0.2 0.3120061527326218 0.2753353917003565 0.2437797812350475 0.2164647064745620
0.3 0.4533740020659298 0.4017317892835375 0.3572878935152716 0.3187941863116985
0.4 0.6242699654968027 0.5569764473353238 0.4989492254782788 0.4485718992234469
0.5 0.8181562746382847 0.7347732328068570 0.6627360559880484 0.6000590374852741
0.6 1.0219051561778874 0.9225067927018182 0.8365366726982506 0.7616378531569623
0.7 1.2276924683583443 1.1124763128363648 1.0127785723511709 0.9258684424022094
0.8 1.4392207622591702 1.3080902397650505 1.1945980978735130 1.0956354912473438
0.9 1.6722717678790247 1.5250219658726678 1.3975565122690483 1.2863849827791434
1 1.9495883050188922 1.7873264776320887 1.6469025093081697 1.5244508657817661
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Figure 2: Schematic efects in Example 1 within 8 � 0.75, λ � 0, and N � 4 as (a) UN(T) (blue) and U(T) (red) and (b) eN(T).
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Figure 3: Schematic efects in Example 1 within 8 � 0.75, λ � 0, and N � 9 as (a) UN(T) (blue) and U(T) (red) and (b) eN(T).
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Figure 4: Schematic efects in Example 1 as (a) UN(T) at 8 ∈ 0.8, 0.85, 0.9{ }, N � 7, and λ � 1 as red: 8 � 0.9, blue: 8 � 0.85, and green:
8 � 0.8 and (b) UN(T) at N ∈ 3, 4, 6{ }, 8 � 0.8, and λ � 1 as red: N � 6, blue: N � 4, and green: N � 3.
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are tabulated. Secondly, in Figure 7,graphical outcomes for
UN(T) at 8 ∈ 0.65, 0.75, 0.85{ } and N ∈ 4, 5, 6{ } are
sketched.

For Example 5, the subsequence results have been ob-
tained by employing Algorithm 1. Firstly, in Table 6, data
outcomes for UN(T) at 8 ∈ 0.8, 0.85, 0.9, 0.95{ } and N � 5
are tabulated. Secondly, in Figure 8, graphical outcomes for
UN(T) at 8 ∈ 0.7, 0.8, 0.9{ } and N ∈ 3, 4, 5{ } are sketched.

Figures 1 and 2 indicate the accuracy and capacity of the
presented algorithm. It should be noted that a few terms of
SLPs produce approximate solutions with few errors. Other
fgures show that the approximate paths of the exact sto-
chastic process paths for example with stochastic terms are
smooth. Tis could be explained by the algorithm of ap-
proximation used to obtain these approximations which are
mentioned in Section 4.
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ti
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0.2 0.4 0.80.6 1.0
ti
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Figure 5: Schematic efects in Example 2 as (a) UN(T) at 8 ∈ 0.65, 0.7, 0.75{ } and N � 3 as red: 8 � 0.75, blue: 8 � 0.7, and green: 8 � 0.65
and (b) UN(T) at N ∈ 4, 5, 6{ } and 8 � 0.75 as red: N � 6, blue: N � 5, and green: N � 4.

Table 3: Comparison of results using UN(T i) at 8 ∈ 0.65, 0.7, 0.75, 0.8{ } and N � 3 in Example 2.

(ti, 8) 0.65 0.7 0.75 0.8

0.1 0.1479826669508654 0.1293142614636659 0.1136770713928284 0.1004124712352107
0.2 0.2935431324567124 0.2572206341298863 0.2267909897658416 0.2009732595755456
0.3 0.4366813965175409 0.3837191179986610 0.3393417551190396 0.3016823650210046
0.4 0.5773974591333513 0.5088097130699905 0.4513293674524221 0.4025397875715878
0.5 0.7156913203041431 0.6324924193438741 0.5627538267659894 0.5035455272272951
0.6 0.8515629800299166 0.7547672368203123 0.6736151330597413 0.6046995839881265
0.7 0.9850124383106715 0.8756341654993052 0.7839132863336779 0.7060019578540820
0.8 1.1160396951464087 0.9950932053808526 0.8936482865877990 0.8074526488251619
0.9 1.2446447505371268 1.1131443564649541 1.0028201338221052 0.9090516569013657
1 1.3708276044828270 1.2297876187516104 1.1114288280365956 1.0107989820826937
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Table 5: Comparison of results using UN(T i) at 8 ∈ 0.65, 0.7, 0.75, 0.8{ } and N � 6 in Example 4.

(T i, 8) 0.65 0.7 0.75 0.8

0.1 0.3913120126338804 0.4206886848222444 0.4513106061439101 0.4831487366853607
0.2 0.5383037560425622 0.5707857541545684 0.6043460490239569 0.6389626317093883
0.3 0.6637390345086291 0.6953635664701379 0.7277267653406052 0.7608144058867365
0.4 0.8494176853980600 0.8833143172436895 0.9177895666794504 0.9528279878374484
0.5 1.1094806426628994 1.1481059762731416 1.1872014054867233 1.2267436303981336
0.6 1.4637150003439157 1.5085382250011872 1.5535731410447830 1.5987830270331393
0.7 2.0108590760732756 2.0694983938369040 2.1280733054476180 2.1865144282457223
0.8 3.0019074745772160 3.1027173994773527 3.2040418695763540 3.3057177579892176
0.9 4.9134161511787010 5.1275256822292050 5.3456040090747760 5.5672497300782450
1 8.5208074753000850 8.9916091433302940 9.4762838703247280 9.9739089645998360
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Figure 6: Schematic efects in Example 3 as (a) UN(T) at 8 ∈ 0.75, 0.80, 0.85{ } and N � 5 as red: 8 � 0.85, blue: 8 � 0.8, and green: 8 � 0.7
and (b) UN(T) at N ∈ 4, 5, 6{ } and 8 � 0.7 as red: N � 6, blue: N � 5, and green: N � 4.

Table 4: Comparison of results using UN(T i) at 8 ∈ 0.7, 0.75, 0.8, 0.85{ } and N � 5 in Example 3.

(ti, 8) 8 � 0.7 8 � 0.75 8 � 0.8 8 � 0.85

0.1 −0.0004127422014683 −0.0002893298202559 −0.0001833975053145 −0.0000941391090036
0.2 0.0000588410453159 0.0001523697223739 0.0002314091041949 0.0002961616403482
0.3 0.0026590907230018 0.0025643610196801 0.0024698905950957 0.0023746548012071
0.4 0.0088540711570229 0.0084238006979336 0.0080133227925925 0.0076203429226518
0.5 0.0203315700155966 0.0194457396178854 0.0185987865805265 0.0177874785496877
0.6 0.0390010983097246 0.0375831228747671 0.0362191679013761 0.0349055642232469
0.7 0.0669938903931927 0.0650267897982904 0.0631231577562564 0.0612793524801887
0.8 0.1066629039625707 0.1042054739526474 0.1018152522049194 0.0994888458532991
0.9 0.1605828200572126 0.1577858031365103 0.1550557523657540 0.1523892968712907
1 0.2315500430592565 0.2286722993830319 0.2258607644157859 0.2231112080588032
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6. Conclusions and Future Works

Tis work is mainly proposed to prove and confrm the
uniqueness and existence of the suggested solution of a
particular form of fractional SIDEs and construct a
straightforward, simple, and efective numerical algorithm
that provides approximate solutions to complicated prob-
lems modeling real-world phenomena. For the theoretical

part, the Picard iteration criterion with some topological
theorems has been applied to the integral form of (1). For
achieving the numerical aim, we have introduced the SLPs
and employed them as base functions for a spectral collo-
cation method to have the so-called SL-SCA. Te Itô’s in-
tegral in (1) has been approximated using a well-known
numerical integration method and the values of the SBM
have been approximated via an efective method. Also, the
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0.2 0.4 0.80.6 1.0
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0.6
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uN (ti)
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Figure 8: Graphical results in Example 5: (a) UN(T) at 8 ∈ 0.7, 0.8, 0.9{ } and N � 5 as red: 8 � 0.9, blue: 8 � 0.8, and green: 8 � 0.7 and (b)
UN(T) at N ∈ 3, 4, 5{ } and 8 � 0.95 as red: N � 5, blue: N � 4, and green: N � 3.

Table 6: Comparison of results using uN(ti) at 8 ∈ 0.8, 0.85, 0.9, 0.95{ } and N � 5 in Example 5.

(T i, 8) 0.8 0.85 0.9 0.95

0.1 0.0328350115386641 0.0319755079774259 0.0311641353015908 0.0336802406189057
0.2 0.0468490515782034 0.0451694310893953 0.0436047631363799 0.0448770698755013
0.3 0.0610566935063954 0.0582384052692908 0.0556195145982813 0.0536871650666798
0.4 0.0894638365572117 0.0849763946447150 0.0807878627856139 0.0749849237398233
0.5 0.1410677058108186 0.1343146915374900 0.1279711228011017 0.1184224636928027
0.6 0.2198568521935767 0.2103219164636579 0.2013124517518740 0.1884296229739785
0.7 0.3248111524780408 0.3122040181334811 0.3002368487494643 0.2842139598822000
0.8 0.4499018092829604 0.4343042734514413 0.4194511549098121 0.3997607529668055
0.9 0.5840913510732793 0.5661032875162400 0.5489440533532615 0.5238330010276226
1 0.7113336321601353 0.6922189936207985 0.6739860692045610 0.6399714231149685
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Figure 7: Schematic efects in Example 4: (a)UN(T) at 8 ∈ 0.65, 0.75, 0.85{ } and N � 6 as red: 8 � 0.85, blue: 8 � 0.875, and green: 8 � 0.65
and (b) UN(T) at N ∈ 4, 5, 6{ } and 8 � 0.85 as red: N � 6, blue: N � 5, and green: N � 4.
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convergence analysis of the proposed algorithm has been
discussed. Moreover, using the algorithm given in Section 5,
three linear and two nonlinear examples of fractional SIDEs
have been successfully solved. Te outcomes assert that the
SL-SCA is a powerful and convenient method. Accurate
approximations can be achieved via a few terms of SLPs. For
upcoming research, this algorithm is suggested to be
employed for solving fractional SIDEs with fractional sto-
chastic SBM of order H ∈ (0, 1).

Abbreviations

SDE: Stochastic diferential equation
SIDE: Stochastic integrodiferential equation
FDE: Fractional diferential equation
SLP: Shifted Legendre polynomial
CFD: Conformable fractional derivative
SBM: Standard Brownian motion
SL-SCA: Shifted Legendre spectral collocation algorithm
WP1: With probability one
CSI: Cauchy–Schwartz inequality.
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pures et appliquées,” Journal de Mathematiques Pures et
Appliquees, vol. 4, pp. 101–186, 1892.

[2] R. Khalil, M. Al Horrani, A. Yousef, andM. Sababheh, “A new
defnition of fractional derivative,” Journal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[3] M. Caputo and M. Fabrizio, “A new defnition of fractional
derivative without singular kernel,” Progress in Fractional
Diferentiation and Applications, vol. 1, pp. 73–85, 2015.

[4] A. Atangana and D. Baleanu, “New fractional derivatives with
non-local and non-singular kernel: theory and application to
heat transfer model,” Termal Science, vol. 20, no. 2,
pp. 763–769, 2016.

[5] E. Ahmed, A. Hashish, and F. A. Rihan, “On fractional order
cancer model,” Journal of Fractional Calculus and Applied
Analysis, vol. 3, pp. 1–6, 2012.

[6] F. A. Rihan, “Numerical Modeling of Fractional-Order Bio-
logical System,” Abstract and Applied Analysis 2013, vol. 2013,
Article ID 816803, 2013).

[7] H. Xu, “Analytical approximations for a population growth
model with fractional order,” Communications in Nonlinear
Science and Numerical Simulation, vol. 14, no. 5, pp. 1978–
1983, 2009.

[8] L. Debnath, “Recent applications of fractional calculus to
science and engineering,” International Journal of Mathe-
matics and Mathematical Sciences, vol. 2003, no. 54,
pp. 3413–3442, 2003.

[9] N. Sweilam, “Fourth order integro-diferential equations
using variational iteration method,” Computers & Mathe-
matics with Applications, vol. 54, no. 7-8, pp. 1086–1091, 2007.

[10] A. Arikoglu and I. Ozkol, “Solution of fractional integro-
diferential equations by using fractional diferential trans-
form method,” Chaos, Solitons & Fractals, vol. 40, no. 2,
pp. 521–529, 2009.

[11] S. Sharma, R. K. Pandey, and K. Kumar, “Collocation method
with convergence for generalized fractional integro-difer-
ential equations,” Journal of Computational and Applied
Mathematics, vol. 342, pp. 419–430, 2018.

[12] F. Sultana, D. Singh, R. K. Pandey, and D. Zeidan, “Numerical
schemes for a class of tempered fractional integro-diferential
equations,” Applied Numerical Mathematics, vol. 157,
pp. 110–134, 2020.

[13] J. R. Loh, C. Phang, and K. G. Tay, “New method for solving
fractional partial integro-diferential equations by combina-
tion of Laplace transform and resolvent kernel method,”
Chinese Journal of Physics, vol. 67, pp. 666–680, 2020.

[14] N. T. Dung, “Fractional stochastic diferential equations with
applications to fnance,” Journal of Mathematical Analysis and
Applications, vol. 397, no. 1, pp. 334–348, 2013.

[15] L. D. S. Lima, “Fractional stochastic diferential equation
approach for spreading of diseases,” Entropy, vol. 24, no. 5,
p. 719, 2022.

[16] M. Han, Y. Xu, and B. Pei, “Mixed stochastic diferential
equations: averaging principle result,” Applied Mathematics
Letters, vol. 112, Article ID 106705, 2021.

[17] B. Pei, y. Xu, and j. l. Wu, “Stochastic averaging for stochastic
diferential equations driven by fractional Brownian motion
and standard Brownian motion,” Applied Mathematics Let-
ters, vol. 100, Article ID 106006, 2020.

[18] Z. Guo, J. Hu, and W. Wang, “Caratheodory’s approximation
for a type of Caputo fractional stochastic diferential equa-
tions,” Advances in Diference Equations, vol. 2020, no. 1,
p. 636, 2020.

[19] X. Zhang, P. Chen, A. Abdelmonem, and Y. Li, “Fractional
stochastic evolution equations with nonlocal initial conditions
and noncompact semigroups,” Stochastics, vol. 90, no. 7,
pp. 1005–1022, 2018.

[20] S. Moualkia and Y. Xu, “On the existence and uniqueness of
solutions for multidimensional fractional stochastic difer-
ential equations with variable order,” Mathematics, vol. 9,
no. 17, p. 2106, 2021.

[21] X. Zheng, Z. Zhang, and H. Wang, “Analysis of a nonlinear
variable-order fractional stochastic diferential equation,”
AppliedMathematics Letters, vol. 107, Article ID 106461, 2020.

[22] A. Ahmaadov and N. Mahmud, “Existence and uniqueness
results for a class of fractional stochastic neutral diferential
equations, Chaos,” Solitons & Fractals, vol. 139, Article ID
110253, 2020.

[23] M. Khodabin, K. Maleknejad, and T. Damercheli, “Approx-
imate solution of the stochastic Volterra integral equations via
expansion method,” International Journal of Industrial
Mathematics, vol. 6, pp. 41–48, 2014.

[24] M. Kamrani, “Numerical solution of stochastic fractional
diferential equations,” Numerical Algorithms, vol. 68, no. 1,
pp. 81–93, 2014.

[25] S. Kouhkani, H. Koppelaar, and R. Pettersson, “Numerical
solution of fractional Stochastic integro-diferential equations
by the operational Tau method,” International Journal of
Statistical Analysis, vol. 1, pp. 1–9, 2019.

[26] F. Mohammadi, “A Chebyshev wavelet operational method
for solving stochastic Volterra-Fredholm integral equations,”

20 Mathematical Problems in Engineering



International Journal of Applied Mathematical Research,
vol. 4, no. 2, pp. 217–227, 2015.

[27] A. Cardone, R. D’Ambrosio, and B. Paternoster, “A spectral
method for stochastic fractional diferential equations,” Ap-
plied Numerical Mathematics, vol. 139, pp. 115–119, 2019.

[28] F. Mirzaee and S. F. Hoseini, “Numerical approach for solving
nonlinear stochastic Ito-Volterra integral equations using
Fibonacci operational matrices,” Scientia Iranica D, vol. 22,
pp. 2472–2481, 2015.

[29] M. Asgari, E. Hashemizadeh, M. Khodabin, and
K. Maleknejad, “Numerical solution of nonlinear stochastic
integral equation by stochastic operational matrix based on
Bernstein polynomials,” Bulletin mathématique de la Société
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