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We study a two dimensional super-lattice Bose-Hubbard model with alternating hoppings in the
limit of strong on-site interactions. We evaluate the phase diagram of the model around half-filling
using the density matrix renormalization group method and find two gapped phases separated by a
gapless superfluid region. We demonstrate that the gapped states realize two distinct higher order
symmetry protected topological phases, which are protected by a combination of charge conservation
and C4 lattice symmetry. The phases are distinguished in terms of a quantized fractional corner
charge and a many-body topological invariant that is robust against arbitrary, symmetry preserving
edge manipulations. We support our claims by numerically studying the full counting statistics of
the corner charge, finding a sharp distribution peaked around the quantized values. These results are
experimentally observable in ultracold atomic settings using state of the art quantum gas microscopy.

I. INTRODUCTION

The role of symmetries in topological properties of
strongly correlated many-body systems currently receives
a lot of attention. There has been an intense effort to
classify symmetry protected topological phases of mat-
ter, which are characterized by their edge modes and
topological invariants [1–10]. Recent studies have re-
fined the classification to also include crystalline sym-
metries, leading to protected gapless corners or hinge
states. These have been extensively explored in non-
interacting fermionic systems, referred to as higher or-
der topological (HOTI) phases [11–17] or fragile phases
[18–20], and interacting higher order symmetry protected
topological (HOSPT) phases [21–28]. Interacting bosonic
HOSPT phases are partially classified in terms of group
cohomology based on the interplay of these global and
crystalline symmetries [25, 28].

Despite the rapid progress in the theoretical under-
standing of HOSPT phases, the experimental observation
and proposal of interacting HOSPT states remains chal-
lenging, since most of the theoretically studied HOSPT
models involve special plaquette interactions between
spins, or require artificial gauge potentials. In spite of
these difficulties, the rapid development in experimental
techniques in ultracold atomic settings opened up un-
precedented possibilities to study topological phases [29–
38]. In particular, the site resolved control of ultracold
atoms in optical lattices offers an ideal opportunity to
study corner modes and their deep connection to the
topological properties of the bulk in the presence of in-
teractions.

In this work, we propose an experimentally accessible
two dimensional (2D) ultracold atomic system, a super-
lattice Bose-Hubbard model (SL-BHM), supporting an
HOSPT phase protected by a combination of a U(1)

charge conservation and C4 lattice symmetry. Although
the U(1)×C4 alone does not protect gapless corner modes
[39], we show that our boson model still exhibits symme-
try anomalies at the corners in the form of fractional
charges that characterize the phase. Namely, the frac-
tionally charged corner cannot be annihilated without a
bulk gap closing. We discuss a many-body invariant that
goes hand in hand with a quantized fractional charge lo-
calized around the corners of a system with sharp edges.
By numerically studying the full counting statistics of the
corner charge, we show that the system exhibits sharp
distributions peaked around the quantized values.

II. MODEL

We consider the following SL-BHM on a two dimen-
sional square lattice of size L× L with L even,

Ĥ =−

[

L−1
∑

x=1

L
∑

y=1

(

t(x)â†x,yâx+1,y + h.c.
)

+ x ↔ y

]

+
U

2

L
∑

x,y=1

n̂x,y (n̂x,y − 1) , (1)

where â†x,y (âx,y) is the creation (annihilation) operator

at site (x, y), and n̂x,y = â†x,yâx,y. The particles can tun-
nel between neighboring sites with modulated hopping
amplitudes t(ζ), ζ ∈ {x, y},

t(ζ) =

{

t, for ζ ∈ {1, 3, ..., L− 1}

1− t, for ζ ∈ {2, 4, ..., L− 2}
(2)

where t ∈ [0, 1], while the parameter U ≥ 0 controls the
on-site repulsion between the particles (see Fig. 1a). We
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Trivial (TR)
Topo. (TO)

Figure 1. 2D SL-BHM showing an HOSPT phase with quan-
tized fractional corner charges. a) The SL-BHM has a 2 × 2
unit cell, with two different hopping amplitudes inside and
between unit cells, t and 1 − t, respectively. The ground
state is topological trivial (non-trivial) for t = 1 (t = 0). b)
Average occupation number of lattice sites in the topolog-
ical phase with particle number N = L2/2 − 2, displaying
four holes localized around the corners, giving rise to frac-
tional charges Qcorner = 1/2. c) The full distribution function
of corner charges for the trivial (topological) phase, peaked
around a quantized fractional part 0 (1/2). We used the pa-
rameters N = L2/2 (L2/2 − 2), t = 0.9 (0.1), U = 32 and
ξenv = 3.2 (3.08).

study Hamiltonian (1) at a fixed number of particles and
open boundary conditions, focusing on two particle num-
ber sectors around half-filling, N = L2/2 ≡ N0 and N =
N0 − 2. This model is the bosonic counterpart of the 2D
free fermion Benalcazar-Bernevig-Hughes (BBH) model,
a well known HOTI hosting gapless corner states [12].
However, let us emphasize that in terms of experimen-
tal realization the SL-BHM has an enormous advantage
over the BBH model. While the BBH model requires a
magnetic flux π inserted through each plaquette to en-
sure a bulk gap, the 2D SL-BHM considered here does
not involve a magnetic field, making it more easily acces-
sible in experiments. Note that the 2D SL-BHM model
and the BBH model are equivalent if both U → ∞ and
t = 0 (t = 1), while either of those conditions alone is
insufficient (see Appendix).
Hamiltonian (1) is C4 symmetric with respect to the

center of the lattice and preserves the total particle num-
ber N̂ =

∑

x,y n̂x,y. For our purposes U(1) × C4 is the
only relevant symmetry. We focus mainly on a parameter
regime of (t, U) where the bulk is incompressible and the
average filling in the bulk is n0 = 1/2. Before proceeding,
let us discuss the exactly solvable limits t = 1 and t = 0
to illustrate the emerging corner charges (in presence of
open boundary conditions). In both cases there is a fi-
nite bulk gap; for strong interactions U ≫ max(t, 1 − t)

Figure 2. Exactly solvable limits of both phases are shown
for the trivial (TR) and topological phase (TO) in a) and
b), respectively. In the topological phase, the corner of the
lattice is completely decoupled from the rest of system. Panel
c) shows the bipartite entanglement entropy S against the
interpolation parameter t obtained by DMRG on a infinite
cylinder with circumference Ly = 6. The large entanglement
is characteristic for the superfluid (SF) phase. The Hilbert
space was truncated to maximal four bosons per site and we
used kept χ = 500 states for the simulations.

the bulk gap is of order ∆b ∼ O(max(t, 1 − t)). In the
trivial phase (TR) with t = 1 the ground state at half-
filling is unique and C4 symmetric (see Fig. 2a). In the
topological phase (TO) with t = 0, the four corners are
decoupled and each of them can be either filled or empty
(see Fig. 2b). To obtain a unique, C4 symmetric ground
state with bulk and edges at half-filling, the total particle
number has to deviate from exact half-filling N = N0,
as N = N0 ± 2. This filling anomaly [40], giving rise
to quantized fractional corner charges (see Fig. 1b), was
already discussed in the context of HOTI [41]. Compar-
ing the charge distributions of the two phases, we find
a fractional charge Qcorner = 1/2 localized around the
corners in the topological phase, measured with respect
to the average bulk filling n0 (for a rigorous definition
of Qcorner see Eq. (4) below). The phase diagram of
the model at half-filling in Fig. 2c, obtained using the
iDMRG method [42–45] on an infinite cylinder, shows
that the exactly solvable points extend to two gapped
phases (TR and TO, respectively), which are are sepa-
rated by a gapless superfluid (SF) regime.

III. TOPOLOGICALLY DISTINCT HOSPT
PHASES

Before turning to the detailed study of the topological
phase of the 2D SL-BHM, let us briefly review the clas-
sification of topological phases. Generally, two gapped
states belong to the same phase if and only if there is

an adiabatic path Γ~λ with ~λ ∈ Λ in the parameter space
Λ, together with a family of local, gapped Hamiltonians
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{H(~λ)}, such that the ground states of these Hamiltoni-
ans connect the two states without closing the bulk gap

∆b,Γ(~λ) along the path [1, 46]. If we additionally im-
pose certain symmetries on the system, we allow only
for those paths in Λ that explicitly conserve the symme-
try. Such symmetry constraints can significantly enrich
the phase diagram. Let us emphasize here that HOSPT
phases should be robust against closing the edge gap ∆e

of the system – two different HOSPT phases can only be
connected by closing the bulk gap ∆b.

For the 2D SL-BHM considered here, the required pro-
tecting symmetry is a combination of the C4 lattice sym-
metry and the global U(1) symmetry associated with par-
ticle number conservation. In presence of these symme-
tries, the two exactly solvable limits depicted in Figs. 2a
and 2b belong to distinct HOSPT phases. Namely, the
two phases are labelled by a corner charge, quantized as
Qcorner = 0 (1/2)mod 1, corresponding to the TR (TO)
phase, that cannot change unless the bulk gap closes.
To demonstrate this, we define polarizations denoted by
P edge for each edge. Concentrating on a single corner,
the change of the corner charge ∆Qcorner due to arbi-
trary edge manipulations is directly related to the change
of the polarizations of the two edges meeting at this cor-
ner, ∆P edge

x and ∆P edge
y , by the King-Smith-Vanderbilt

relation [47]

∆Qcorner =
∑

ζ∈{x,y}

∆P edge
ζ mod1. (3)

Due to C4 symmetry, the edge polarizations ∆P edge
x and

∆P edge
y cancel each other, confirming that Qcorner is ro-

bust against edge manipulations, even if the edge gap
closes and thus reflects the properties of the bulk. We
demonstrate the robustness of quantization numerically
in Fig. 3a, displaying Qcorner as a function of t, tuned
across the TO, SF and TR phases [48]. We observe two
plateaus at Qcorner = 0 and Qcorner = 0.5 in the gapped,
incompressible TR and TO phases, respectively.

In addition, a recent work by Araki et. al. proposed
a Berry phase γ as a label for HOSPT phases [49].
For the 2D SL-BHM, this Berry phase is quantized to
γ = 0 (π)mod 2π, with the quantization relying on the
global U(1) and spatial C4 symmetry. This quantity dis-
tinguishes the two phases as shown in Fig. 3b – further
supporting our claim that the 2D SL-BHM realizes two
inequivalent HOSPT phases. Note that the quantized
plateaus of the Berry phase in Fig. 3b persist in the SF
phase purely due to finite size effects. Analogously to the
corner charge, the Berry phase is only well-defined in the
gapped phases. Although, to our knowledge no rigorous
proof connecting γ and Qcorner has been given yet, there
is a strong indication that the two different labels provide
another example for the bulk-boundary correspondence,
with the bulk invariant γ going hand in hand with a cor-
ner state manifesting in Qcorner.

Figure 3. a) Corner charge Qcorner as a function of hopping
t at half-filling N = N0, quantized to Qcorner = 0 (1/2) in
the gapped trivial (topological) phase. We used DMRG on
an 8 × 8 square lattice, taking U = 32, ξenv = 2.8. b) Berry
phase γ as a function of the hopping parameter, quantized
around γ = 0 (π) in the gapped trivial (topological) phase.
Result is obtained for a 4 × 4 square lattice with periodic
boundary conditions at half-filling.

IV. MEASURING THE CORNER CHARGE

Let us now return to the more detailed discussion of
the corner charge and how to measure it. We define the
operator Q̂corner as

Q̂corner =
∑

x,y

e−~r2/ξ2env (n̂x,y − n0) , (4)

where ~r gives the position on the lattice and n0 ≡ 1/2
denotes the average occupation number. The width of
the Gaussian envelope function is determined by ξenv,
which has to be much larger than the bulk correlation
length ξenv ≫ ξcorr and much smaller than the sys-
tem size ξenv ≪ L. Moreover, in the TO phase there
is another relevant length scale, the localization length
of a particle or hole state pinned at the corner, ξp,h,
and we also demand ξenv ≫ ξp,h [50]. The localiza-
tion length is defined through the participation ratio [51]

ξ2p,h =
(

∑

x,y ∆nx,y

)2

/
∑

x,y(∆nx,y)
2, where ∆nx,y =

|〈n̂x,y〉−n0|×Θ(±(〈n̂x,y〉 − n0)), with “+” for ξp and “-
” for ξh, and with Θ denoting the Heaviside step function.
For sufficiently large system sizes ξenv becomes indepen-
dent of L, confirming the presence of a localized corner
charge. As argued above, Qcorner = 〈Q̂corner〉mod1 is a
good label for the HOSPT phases of the SL-BHM model,
quantized to the discrete values Qcorner = 0 (1/2) in the
TR (TO) phase. In fact, the quantum fluctuations of

the operator Q̂corner get suppressed for increasing system
size, rendering Qcorner a well defined quantum number in
the thermodynamic limit.
Let us note that the gapped phases of the 1D SL-

BHM with a bulk at half-filling [52] also realize two dis-
tinct topological phases, labelled by the bulk polarization
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TR

TR
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Figure 4. Full counting statistics of edge and corner charges.
a) and b) FCS of fractional edge charge Qedge of the 1D SL-
BHM (defined in Ref. [8]) in the TR and TO phases, for two
different system sizes L = 24 and L = 200. The distribution
is peaked around the quantized value 0 (1/2) in the TR (TO)
phase and gets sharper with increasing L, confirming that
Qedge is a good quantum number in the thermodynamic limit.
Parameters for the TR (TO) phase: N = N0 (N0 − 1), t1 =
0.2 (1), t2 = 1 (0.2), U = 10. The envelopes are ξenv = 12 (12)
for L = 24 and ξenv = 53 (45) for L = 200 respectively. c) and
d) FCS of fractional corner charge Qcorner, measured in the
TR (TO) phase of the 2D SL-BHM for system size 10 × 10,
peaked around 0 (1/2). The width of the distribution should
approach to zero in the thermodynamic limit, similar to the
1D case. Results were obtained for N = N0 (N0 − 2), t =
0.9 (0.1), U = 32 and ξenv = 3.2 (3.08).

P1D,bulk, proven to be quantized to P1D,bulk = 0 (1/2) for
a system with periodic boundary conditions [8]. This
quantization relies on the inversion symmetry only and
P1D,bulk is directly related to a Berry phase picked up
by the interacting many-body wave function for twisted
boundary conditions [53]. In a system with sharp edges,
bulk-boundary correspondence manifests in a charge lo-
calized around the edge, Q1D,edge, such that the changes
of Q1D,edge are related to the changes of bulk polariza-
tion through ∆Q1D,edge = ∆P1D,bulk. Since the latter is
quantized and directly related to a topological invariant,
the quantum fluctuations of ∆Q1D,edge have to vanish in
the thermodynamic limit L → ∞ (see Figs. 4a and 4b).
Though a rigorous analogous argument in 2D is still lack-
ing [54], we present numerical evidence that the fluctua-
tions of the corner charge get suppressed as L → ∞. To
this end we evaluated the full counting statistics (FCS) of
the edge and corner charges of the 1D and 2D SL-BHM,
respectively, both in the trivial and in the topological
phase. We obtained the ground state of the system using
DMRG and then generated single snapshots according to
the probability distribution given by the wave function
using perfect sampling [55]. Figs. 4a and 4b display the
FCS of the 1D system in both phases for two different
system sizes L, clearly demonstrating that the distribu-
tions centered around Q1D,edge = 0 (1/2) get sharper as

L increases. Figs. 4c and 4d show the 2D FCS in the TR
and TO phases, respectively. Here the accessible system
size L is more limited and the FCS still shows significant
finite size effects, in contrast to the 1D case. This re-
sults in a broader distribution that is, however, clearly
centered around Qcorner = 0 (1/2).
As a final remark, let us mention that the energy of

the particle state at the corner in the TO phase touches
the bulk band before the SF transition; at this point
the particle state becomes unstable and melts into the
bulk. Interestingly, in this region we still find a quantized
localized hole state in the vicinity of the corners, similar
to the 1D SL-BHM, where a stable quantized hole state
was observed at the edge even after the particle already
disappeared into the bulk [8]. Importantly, this melting
of the particle state is a consequence of on-site repulsion
U , with no analogue in non-interacting HOSPT phases
such as the fermionic BBH model.

V. DISCUSSION

In summary, we have proposed an experimentally ac-
cessible ultracold atomic system, a 2D SL-BHM around
half filling, with alternating hoppings t and 1−t realizing
an interacting HOSPT phase protected by charge conser-
vation and C4 lattice symmetry. Relying on DMRG sim-
ulations, we explored the phase diagram of the model,
and have shown that it hosts two gapped topological
phases, separated by a gapless superfluid region. Con-
centrating on the gapped phases, we have argued that
they are topologically distinct and differ in terms of a
quantized fractional charge localized around the corners,
intimately connected to a quantized Berry phase. This
fractional charge is robust against edge manipulations
and reflects the properties of the bulk. By sampling snap-
shots of the ground state wave function in the Fock ba-
sis, we have demonstrated that the full distribution of the
corner charge is peaked around the fractionally quantized
value 0 (1/2) in the trivial (topological) phase. A simi-
lar sampling can be experimentally realized in ultracold
atomic settings by using state of the art quantum gas
microscopes [56, 57]; our results pave the way towards
the detection of the corner states characterizing HOSPT
phases.
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VII. APPENDIX

Here, we briefly show the correspondence between the
2D BBH model and the 2D SL-BHM in the limit of hard-
core bosons U → ∞ and a perfect dimerized lattice t = 0
or t = 1. The BBH model itself is the 2D version of the
SSH model including a π-flux per plaquette. In the ex-
actly solvable dimerized limits it is sufficient to consider
an isolated plaquette, forming a one-dimensional system
consisting of four sites with periodic boundary conditions
(PBC) for the 2D SL-BHM model and with antiperodic
boundary conditions (APBC) for the BBH model. To
show the relation we make use of the Jordan-Wigner
(JW) transformation. If we denote the creation (anni-

haltion) operators of the fermions by ĉ†j (ĉj) and that of

the hardcore bosons by â†j (âj) then the JW transforma-
tion relates them in the following way,

ĉ†j = eiπ
∑

i<j
n̂i â†j , ĉj = âje

−iπ
∑

i<j
n̂i , (5)

where n̂i = â†i âi. The plaquette Hamiltonians for
fermions (F) and hard core bosons (B) are defined by

ĤF
P =

3
∑

j=1

(

ĉ†j ĉj+1 + h.c.
)

−
(

ĉ†4ĉ1 + ĉ†1ĉ4

)

ĤB
P =

4
∑

j=1

(

â†j âj+1 + h.c.
)

, â5 ≡ â1, (6)

where j = {1, 2, 3, 4} labels the four sites in each pla-
quette. We note that the plaquette Hamiltonian of the

BBH model contains a π-flux per plaquette, since it can
be written as

ĤF
P =

4
∑

j=1

(

eiφj ĉ†j ĉj+1 + h.c
)

, (7)

with φ1 = φ2 = φ3 = 0 and φ4 = π. According to the
Peierls substitution the total magnetic flux per plaquette
is the sum of all phase factors Φ =

∑

j φj = π. Hence,

the APBC of the Hamiltonian HF
P accounts for a π-flux

insertion per plaquette.
As a first step we show the relation excluding the

boundary terms, hence 1 ≤ j < 4,

ĉ†j ĉj+1 =eiπ
∑

i<j
n̂i â†j âj+1e

−iπ
∑

i<j+1
n̂i

=â†je
iπ

∑
i<j

n̂ie−iπ
∑

i<j+1
n̂i âj+1

=â†je
−iπn̂j âj+1

=â†j âj+1 (8)

where we used that bosonic operators on different sites
commute among each other. Lastly we have to prove that
the APBC of the fermionic model give rise to PBC for
the bosonic model

ĉ†4ĉ1 =eiπ
∑

i<4
n̂i â†4â1

=eiπ
∑

4
i=1

n̂ie−iπn̂4 â†4â1

=eiπN̂e−iπn̂4 â†4â1

=− â†4â1 (9)

where we used particle number conservation N̂ = N = 2

(half-filling) and hence eiπN̂ = 1. Collecting the above
results, we find that the BBH model for t = 0 and t = 1
can be mapped to 2D SL-BHM by the JW transforma-
tion. However, for t 6= {0, 1} there is no exact mapping
even at U → ∞ [23].
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