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Abstract: Invasive plant species are major threats to biodiversity. They can be identified and

monitored by means of high spatial resolution remote sensing imagery. This study aimed to test the

potential of multiple very high-resolution (VHR) optical multispectral and stereo imageries (VHRSI)

at spatial resolutions of 1.5 and 5 m to quantify the presence of the invasive lantana (Lantana camara L.)

and predict its distribution at large spatial scale using medium-resolution fractional cover analysis.

We created initial training data for fractional cover analysis by classifying smaller extent VHR data

(SPOT-6 and RapidEye) along with three dimensional (3D) VHRSI derived digital surface model

(DSM) datasets. We modelled the statistical relationship between fractional cover and spectral

reflectance for a VHR subset of the study area located in the Himalayan region of India, and finally

predicted the fractional cover of lantana based on the spectral reflectance of Landsat-8 imagery of

a larger spatial extent. We classified SPOT-6 and RapidEye data and used the outputs as training data

to create continuous field layers of Landsat-8 imagery. The area outside the overlapping region was

predicted by fractional cover analysis due to the larger extent of Landsat-8 imagery compared with

VHR datasets. Results showed clear discrimination of understory lantana from upperstory vegetation

with 87.38% (for SPOT-6), and 85.27% (for RapidEye) overall accuracy due to the presence of additional

VHRSI derived DSM information. Independent validation for lantana fractional cover estimated

root-mean-square errors (RMSE) of 11.8% (for RapidEye) and 7.22% (for SPOT-6), and R2 values of

0.85 and 0.92 for RapidEye (5 m) and SPOT-6 (1.5 m), respectively. Results suggested an increase

in predictive accuracy of lantana within forest areas along with increase in the spatial resolution for

the same Landsat-8 imagery. The variance explained at 1.5 m spatial resolution to predict lantana was

64.37%, whereas it decreased by up to 37.96% in the case of 5 m spatial resolution data. This study

revealed the high potential of combining small extent VHR and VHRSI- derived 3D optical data

with larger extent, freely available satellite data for identification and mapping of invasive species

in mountainous forests and remote regions.
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1. Introduction

Various studies have revealed the importance of plant biodiversity for the functioning of

an ecosystem, which is closely connected with human activities [1,2]. However, apart from its

significance for terrestrial ecosystems, it is much more important to emphasize the qualitative and

quantitative changes or threats to plant biodiversity [3]. A proper regular and effective monitoring

system is evidently required to characterize these changes. With the ability to view terrestrial

vegetation from space, remote sensing has tremendous potential to provide long-term, continuous

solutions at different spatial, temporal and spectral resolutions [4–6]. Satellite remote sensing datasets

can represent a great opportunity when field-based observations are impossible or hampered [7–9].

High-resolution satellite data have enabled the development of species-level distribution maps along

with three-dimensional (3D) information on forest structural traits such as species composition, canopy

diameter, and distribution of age-classes [10]. In recent years, interest in employing multi-spectral,

multi-temporal high and very high spatial resolution data to study biological invasions in plant

communities has grown considerably [11].

Topographic information derived from remote sensing data enhances differentiation of plant or

tree species that are spectrally similar. However, during the last decade, airborne laser scanning has

been the primary data source to capture 3D information on forest vertical structure [12–14]. This tool is

expensive, and possibly unavailable for developing countries [15]. In recent years, the improvement

in space technology has reduced the gap in terms of spatial resolution (up to 30 cm ground sample

distance) between aerial and satellite imagery [16]. Moreover, high-resolution digital surface models

(DSM) are now more widely available through stereo imaging capacities and a worldwide access to

very high-resolution (VHR) satellite data.

Over the last decade, satellite data for large areas provide information only on presence or absence

of forests types or tree cover percentages. Prominently, AVHRR, MODIS or Landsat-based continuous

(fractional) land-cover maps are available at coarser and medium spatial resolutions for forest cover

change [17–19]. Other products also provide information, such as NDVI-derived vegetation fractional

cover data of Oceansat-2 Ocean Color Monitor [20] for India and European initiative coordinated

information on the environment (CORINE) derived land cover inventory data for coniferous and

broadleaf tree species groups [21]. A review and comparison of various land cover products derived

from satellite data can be found in [21]. These data provide an overview of forest types and species

distribution at coarser (250 m to 1 km) and medium (30 m) spatial resolutions, but detailed information

at finer spatial levels like plant species or trees is still lacking.

Previous studies analyzed detailed level species distribution for mapping and identification,

utilizing VHR remote sensing data such as IKONOS or WorldView-2 (WV2) [22–27]. Similarly, a few

studies with spatial resolution <5 m addressed mapping of invasive plant species using IKONOS [28],

Cartosat-I [29] and Pléiades -1A [30] in the western Himalayan region of India. However, such studies

can be only implemented in small areas, due to the high cost and scarcity of VHR and VHR stereo

imagery (VHRSI) data compared with medium and coarser spatial resolution data. Thus, detailed

studies covering larger geographic areas at higher spatial resolutions are still lacking [31], in particular

across the high-altitude, species-rich Indian Himalayan region [32].

An alternative is to develop approaches to estimate the fraction of land cover within each optical

pixel, by linking freely available medium spatial resolution (larger extent) with VHR (smaller extent) data.

Fractional cover analysis has been subjected to intensive research using different satellite and aerial imageries.

Recent studies combined VHR WV-2 with time series Landsat [33], IKONOS with Landsat [34,35] and

GeoEye-1 with Landsat data [36] for generation of high spatial resolution fractional cover maps for larger

geographical areas. It is thus practically crucial to utilize the combination of VHR with freely available

medium spatial resolution datasets such as Landsat or MODIS due to their larger spatial coverage.

In this study, the potential of new-generation VHRSI and VHR multispectral satellite data was

tested for classification and fractional cover analysis of an invasive shrub, lantana (Lantana camara L.),

which extensively affects the western Himalayan forest in India. Fractional cover analysis was
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suggested to address the issue of estimating lantana distribution in Doon Valley. We aimed to (i) classify

VHR SPOT-6 and RapidEye with additional 3D information from VHRSI SPOT-6 generated DSM;

(ii) model the statistical relationship between fractional cover and spectral reflectance derived from high

spatial resolution maps, and predict the fractional cover of lantana in a larger area based on the spectral

reflectance of Landsat 8 imagery; and (iii) compare model performance between Landsat 8—SPOT-6

(1.5 m) and Landsat 8—RapidEye (5 m) fractional cover maps. We expected that Landsat-8-based

upscaled lantana species information derived from input classified VHR imageries would provide

an appropriate baseline for a fractional cover analysis approach for different types of forest regimes.

2. Materials and Methods

2.1. Study Area

The study area is located in the western Himalayan region of Doon valley, Uttarakhand, India

(29,055′ to 30,030′ N and 77,035′ to 78,024′ E), at elevations ranging between 500 and 800 m above

sea level (Figure 1). The climate is humid sub-tropical [37]. The temperature ranges between 16.7

and 36 ◦C during summer, and between 5.2 and 23.4 ◦C in winter [38]. Average annual rainfall is

2025 mm, and is mainly concentrated in the period between June and September. The Doon valley

encompasses subtropical moist deciduous forests (MDF) dominated by sal trees (Shorea robusta G.)

and Mallotus philippensis Lam., with Clerodendrum infortunatum L. and lantana in the understory.

The Lachhiwala and Thano forest areas within the Doon valley were selected for this analysis due to

availability of GPS observations of lantana locations in these forest sites.

Figure 1. Study area location (a) Landsat-8 imagery with larger extent and yellow box showing the

smaller extent of (b) RapidEye and (c) SPOT-6 multispectral imageries.

2.2. Satellite Data

We acquired satellite remote sensing data during April 2013, because shedding of leaves of

overstory vegetation and visibility of understory vegetation (i.e., lantana) culminates in this month [39,40].

Orthorectified Level-3A, cloud free and pre-processed SPOT-6 imageries (multispectral and Panchromatic

(PAN) stereo pair) and RapidEye (multispectral) were acquired (Table 1). The RapidEye sensor has

an additional red-edge band with a spectral range of 690–730 nm; further details on the specifications of
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the RapidEye are given in [41]. We applied atmospheric corrections to convert DN values into surface

reflectance using ATCOR 3 [42]. Selected vegetation indices (NDVI, MSAVI2 and NDRE) were generated

from the surface reflectance values. Pre-processed Level-2, Landsat-8 OLI data were acquired from USGS

(United States Geological Survey) for wider coverage (Figure 1). In this paper, four spectral bands (Blue,

Green, Red and NIR) of Landsat-8 OLI were applied (Table 1).

Table 1. Details of satellite data used.

Satellite Sensors Date of Acquisitions Spatial Resolution (m)

SPOT-6 (Stereo pair PAN) 5 April 2013 1.5
SPOT-6 (Blue, Green, Red and NIR) 25 April 2013 1.5

RapidEye (Blue, Green, Red, Red-Edge and NIR) 12 April 2013 5
Landsat-8 OLI (Blue, Green, Red and NIR) 11 April 2013 30

2.3. High-Resolution DSM

The DSM generation algorithm was adopted from [43]. The process comprised the following

steps: tie points that were common to stereo pair images were generated using an automatic tie

point generation tool. In the case of SPOT-6 imagery, RPC file was used as an input for tie point

generation [44]. Tie points appearing within the overlap portion of the left and right images were

identified. The resulting output consisted of the image location of tie points appearing within stereo

pair rasters. Point cloud data were generated from stereo pairs using the image-matching point cloud

generation algorithm eATE (Enhanced Automatic Terrain Extraction), which is an area-based method

and uses a normalized cross correlation strategy [15,45] in Erdas Imagine (2015). The point cloud

data were then interpolated into raster DSM [46,47] at a spatial resolution of 1.5 m by a triangulation

technique implemented within ArcGIS (2015).

2.4. Image Classification and Generation of Reference Fractional Cover Data

Random forest (RF) classification was applied separately on both SPOT-6 and RapidEye multispectral

VHR datasets (Figure 2). RF is a bootstrapped approach based on classification and regression trees

(CARTs), with implications for both classification and predictive modelling. Detailed information on this

algorithm and its application in remote sensing is available in [48,49]. The classification was carried out

within the RSToolbox library [50] in R [51], following the steps as described by [52]. We generated 10-band

stacked images separately for both RapidEye and SPOT-6 imageries along with the ancillary data and

used them as input variables for the RF classifier. We stacked 5 spectral bands and 5 ancillary variables for

RapidEye, and 4 spectral bands and 6 ancillary variables for SPOT-6.

Ancillary data (Table 2) in the case of classifying SPOT-6 image included (1) the 1.5 m spatial

resolution generated DSM from SPOT-6 stereo pair, (2) slope and aspect calculated from the DSM,

(3) texture measures of entropy and contrast derived for NIR and Red bands [53], (4) normalized

difference vegetation index (NDVI), and (5) modified soil adjusted vegetation index2 (MASVI2). In the

case of the RapidEye data, the ancillary data (Table 2) included (1) resampled 5-m DSM generated

from the SPOT-6 stereo pair, (2) resampled slope and aspect calculated from the DSM, (3) texture

measures of entropy and contrast derived for the NIR and red-edge bands [53], and (4) NDVI as well

as (5) normalized difference red-edge index (NDRE).

Table 2. Global list of variables used as ancillary data.

Variables for Ancillary Data Associated Satellite Data

DSM (1.5m)-elevation, slope and aspect SPOT-6
Resampled DSM (5m)-elevation, slope and aspect RapidEye
NDVI SPOT-6 and RapidEye
MSAVI2 SPOT-6
NDRE RapidEye
Texture measure (Entropy, Contrast) SPOT-6 (NIR, Red bands) and RapidEye (NIR, Red-edge bands)
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We followed straightforward rationales in selecting the vegetation indices used in our analysis.

NDVI is a reliable proxy of photosynthetic activity and chlorophyll in vegetation [54]. NDRE leverages

the information from Red-Edge region and is thus closely related to vegetation health [55] and

nitrogen [56] content, and the MSAVI2 has been shown to account for soil background reflectance

in different vegetation covers [57].

Figure 2. Workflow diagram for classification (Step-1) and fractional cover analysis (Step-2).

For each satellite data set, a total of 2000 random points were distributed throughout the training

data from our input variables to grow 400 trees. For every tree, 66% of the data was used to construct the

classification tree, while the remaining 33% was used for validation using out-of-bag (OOB) error [58].

OOB error was used from a classification accuracy matrix [59] as a tool to evaluate the final predictions

with the withheld data and a variable importance plot to assess the relative importance of the 10 bands

used in each classification [48]. Independence of the accuracy assessment was ensured by applying

a 5-fold cross-validation with a 10% withhold of the training data [60], in addition to a post-classification

accuracy assessment. Using this framework, the MDF and its surrounding locations were classified for

SPOT-6 and RapidEye multispectral data. Post-classification accuracy assessment was conducted by

generating stratified random points within each vegetation class. The points were manually attributed

to their actual land-cover type through visual interpretation of Google Earth imagery [61] and to

their attributed class by intersecting with the classified satellite image. A classification accuracy

matrix was constructed to compare the reference class with the one assigned by the classifier and

calculate the overall accuracy (OA), producer’s and user’s accuracies [62]. The Kappa coefficient

was additionally calculated as a discrete multivariate statistic [62]. Lastly, variable importance as

mean decrease in accuracy for each class was computed for classified RapidEye and SPOT-6 data.

Mean decrease in accuracy measures the amount of mean standard error as decreased by removing

a given input variable and it is calculated according to the increase in prediction error when OOB data

(cases left out of the bootstrap sample) for that variable are permuted while all other variables are

left unchanged [48].

2.5. Estimation of Fractional Cover for Larger Extent Using Landsat-8

Fractional cover maps of lantana for the Lachhiwala and Thano forests were generated by RF

after creation of a reference dataset [33]. Fractional cover analysis was performed by taking the

classified RapidEye and SPOT-6 imagery into account as predictors (Figure 2). We used the routine

implemented within the RStoolbox [50]. Fractional cover extracts pixel values in a classified VHR

image that corresponds to a random selection of medium spatial resolution pixels. It then calculates
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the percentage of classified image pixels that represent the cover type of interest. For example, with the

1.5 m pixel size of SPOT-6 VHR imagery and 30 m spatial resolution of Landsat-8, the sampling process

uses 400 blocks of the 1.5-m resolution pixels corresponding to a single 30-m pixel and calculates the

percentage of 1.5-m pixels that belong to the area covered by lantana. That is, with 100 pixels of lantana

and 300 other class pixels, the value given for the output pixel would be 0.25, since 25% of the total

amount of pixels belongs to lantana cover.

3. Results and Discussion

3.1. Classification of Combined Multispectral VHR and VHRSI DSM Data

VHRSI DSM is shown in Figure 3. Results of classifying SPOT-6 and RapidEye imageries in the

MDF showed differences in cover estimation for all categories, in particular for sal tree, agriculture

and lantana. This was related to the intrinsic difference in spatial resolutions (Figure 4). For example,

both user accuracy (measure for commission) and producer accuracy (measure for omission) for

tree-dominated classes (sal tree and lantana) were significantly higher for higher resolution SPOT-6

data, whereas lower resolution RapidEye data classification excessed in both measures for more

homogeneously distributed agriculture class. In addition, a more contiguous and widely distributed

lantana cover was estimated by SPOT-6. Overall, SPOT-6 and RapidEye showed 87.38 and 85.27%

classification accuracy when tested by independent validation (Tables 3 and 4). Results were partially

subjected to omission and commission errors. For lantana, 60 pixels in SPOT-6 and 48 pixels in RapidEye

were assigned to shadow, probably because the larger sal trees were mainly growing on north-west

slopes, and thereby casting shadows over the lantana cover (Tables 3 and 4). It was observed from

previous ground and remote sensing-based studies that selected forest sites were mainly dominated

by lantana as understory components [29,30,63]. In addition, lantana is an effective competitor with

native plant species and is capable of interrupting the regeneration process of other indigenous species

by reducing germination [63]. Therefore, GPS points and Google Earth VHR imagery were used to

derive training data to portray shading of lantana by sal trees, aiming at a more realistic explanation

of the lantana dominated cover. Furthermore, SPOT-6-based classification accuracy matrix revealed

that 179 pixels related to agriculture were assigned to the built-up class, while 44 pixels of built-up

were classified as agriculture. This is presumably related to the similarities in spectral signature

characteristics of fallow land and built-up classes [30]. However, in the case of RapidEye, a negligible

misclassification was observed between agriculture and built-up due to an additional red-edge band,

which is able to precisely separate agriculture compared to the red band of RapidEye data [64].

Sal trees and lantana areas were occasionally misclassified (Tables 3 and 4). In SPOT-6 and RapidEye data,

224 and 350 pixels of lantana were assigned to sal trees class, respectively (Tables 3 and 4). These misclassified

pixels mostly belonged to highly dense forest stands, thus the spectral signature and elevation from VHRSI

DSM were not able to accurately discriminate lantana, which is mainly located in the understory, from sal

tree stands. This resulted in cross-classification of lantana and sal tree classes. Lantana exhibited a kappa

coefficient of 84.84% and 81.13%, whereas user’s accuracy was 96.3% and 92.6% for SPOT-6 and RapidEye,

respectively. VHR SPOT-6-based classification returned the second highest user’s accuracy among all

other classes compared to RapidEye when combined with very high spatial resolution DSM. In the case of

RapidEye, user’s accuracy of agriculture was the highest due to ability of the additional red-edge band

to more precisely discriminate agriculture from sal trees and grasses. This confirmed the advantage of

the applied classification for high spatial resolution multispectral data over medium and coarser spatial

resolution satellite data. This is in agreement with former studies related to RF classification of VHR data

such as WV-2 (2 m) for boreal forest habitats mapping [65], RapidEye (5 m) for classification of insect

defoliation levels with help from the red-edge band, IKONOS (4 m) for tree health identification [66] and

Pléiades-1B (2 m) for classification of wetland land-cover in arid regions [67].



Forests 2019, 10, 540 7 of 15

Table 3. Classification accuracy matrix for SPOT-6.

Reference
Data

Predicted Data
Row Total

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Class
Error (%)Built-Up Agri-culture Sal Tree Lantana Shadow Water

Built-up 945 44 0 1 0 11 1001 94.41 78.16 3.59
Agri-culture 179 806 8 1 7 0 1001 80.52 85.47 1.79

Sal tree 0 1 985 13 2 0 1001 98.40 80.94 3.67
Lantana 12 3 224 703 60 0 1002 70.16 96.30 1.68
Shadow 0 81 0 5 770 0 856 89.95 91.78 1.29
Water 73 8 0 7 0 913 1001 91.21 98.81 2.98

Column
Total

1209 943 1217 730 839 924 5122

Table 4. Classification accuracy matrix for RapidEye.

Reference
Data

Predicted Data
Row Total

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Class
Error (%)Built-Up Agri-culture Sal Tree Lantana Shadow Water

Built-up 261 7 8 1 0 0 277 94.22 93.55 2.28

Agri-culture 4 522 48 1 0 7 582 89.69 97.57 2.29
Sal tree 7 3 935 37 19 0 1001 93.41 69.11 2.69
Lantana 0 3 350 601 48 0 1002 59.98 92.60 5.31
Shadow 0 0 12 9 53 0 74 71.62 41.09 13.60
Water 7 0 0 0 9 986 1002 98.40 99.30 2.88

Column
Total

279 535 1353 649 129 993 3358

The OOB error of SPOT-6, i.e., the internal consistency of the RF model for classifying the training

data, varied between 1.3% and 3.7%, with an average OOB estimate of error of 2.5%. In addition,

the applied 5-fold cross-validation resulted in 97.2 OA and 96.68% user’s accuracy for lantana. A higher

average OOB error of RapidEye was observed (3.58%) due to higher class error (13.6%) and lower

user’s accuracy (41.1%) of shadow (Table 4). The applied 5-fold cross-validation resulted in 96.47% OA

and 94.67% user’s accuracy for lantana. Overall, the classification of VHR SPOT-6 and RapidEye data

achieved practically plausible results, which agreed with previous results of VHR data classification

for detailed land cover (forests and plant species) mapping [27,33,68].

We used DSM (Figure 3) as an additional parameter in RF classification algorithm, which showed

the variation in elevation from 400 to 1500 m. However, the elevation of Lachhiwala and Thano forests

spans between 450 and 750 m (Figure 3). Since forest areas are heterogeneous and complex due to

variations in tree height and stand density [69], high-resolution optical-based DSM can introduce

different structural characteristics among understory and upperstory vegetation, which depends on

the effects caused by tree orientation and sunlight [70]. In addition, shaded areas in high-density forest

stands may reduce the quality of DSM due to variation in topography and sun angle [13]. One may also

note the effect of seasonality on the quality of DSM [71]. We selected the SPOT scene within the leaf fall

season of April, thus it resulted in partial extraction of ground and tree canopy by the applied image

matching algorithm. Our results suggested that the classification accuracy increased by incorporating

DSM from optical VHRSI SPOT-6 (at 1.5-m spatial resolution) for mapping understory (lantana) and

upperstory (sal trees) vegetation. This was in agreement with previous studies, which highlighted the

impact of elevation data as ancillary information in the RF classifier approach to differentiate spectrally

similar objects and accuracy enhancement of land-cover mapping [72,73]. In addition, previous studies

also reported that fine-scale DSM generated from VHRSI data may be used as an alternative to LiDAR

data in areas with restricted accessibility [27,74]. Thus, very accurate large coverage DSM generation

could be possible with the availability of stereo imaging capable VHR satellites and these may provide

cost-effective solutions compared to expensive LiDAR technology for automatic classification of

complex forest environments and delineation of understory plant species from upperstory vegetation.
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Figure 3. DSM of the study area represented by point cloud data (panel a) and 3D view (panel b). Black

color in point cloud data represent NA values.

Overall, our results suggested the ability of SPOT-6 and RapidEye imageries to segregate lantana

from dry sal trees and other land surface classes. However, the presence of lantana in forest areas

generally increased confusion in the overall spectral signature within each pixel due to its competitive

nature when growing with other vegetation types. Furthermore, comparisons across elevation gradients

(see Figures 3b and 4) demonstrated that the classification of lantana and other land surface classes

performed better in lower elevation areas (from 400 to 600 m a.s.l.).
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Figure 4. RF classification of (a) RapidEye and (b) SPOT-6 multispectral imageries for smaller extent.

3.2. Variable Importance

As expected from frequent field visits, DSM-derived elevation was among the most significant

contributors to classification performance, although its influence was somewhat more pronounced when

classifying RapidEye data. The overall importance of elevation was in line with a previous study [71]

that applied Landsat multi-spectral data with ancillary data such as elevation (10 m contour interval),

slope, and aspect for land-cover classification of mountainous areas. Accordingly, the DSM-derived

elevation and slope combined with NDVI were the most important predictors for discriminating

lantana (Figure 5). Whereas topographic information could be derived from a variety of 3D data

sources, here we relied on those extracted from VHRSI due to a general absence of crown-penetrating

LiDAR data across our study region. However, this was entirely due to a practical rationale; a recent

study [74] also suggested that DSMs derived from VHRSI (WV-3 with 0.5 m spatial resolution) during

leaf-off conditions were generally comparable to the LiDAR bare-earth DTM and may be used in land

cover classification of vegetation during leaf-off seasons. In addition, red-edge spectral information of

RapidEye data was ranked high when discriminating understory lantana from agriculture and built-up

land cover, compared with texture parameters. Similar results were observed in a previous study

that combined red-edge and texture parameters for paddy-rice crop classification [75]. Nevertheless,

our study suggested that additional spectral information introduced by the red-edge band of RapidEye

has the potential to discriminate invasive plants from other land-cover classes in relatively complex

heterogeneous forest environments. However, future tests are suggested with freely available Sentinel-2

multispectral data featuring three red-edge bands.
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Figure 5. Variable importance shown as mean accuracy decrease (% decrease in overall accuracy) for

SPOT-6 and RapidEye-based classification.

3.3. Landsat-8-Based Fractional Cover Maps for SPOT-6 and RapidEye

The RF models based on the results of SPOT-6 calibrated with larger extent Landsat-8-based

predictors explained 64.38% of the variance for lantana, and 71.67% for sal trees. Moreover, 37.96%

variance for lantana and 55.63% variance for sal trees were observed with RapidEye fractional reference

map as an input (Table 5). The lower spatial resolution of Rapideye (5 m) compared with SPOT-6

(1.5 m) data resulted in lower observed variance when RapidEye was calibrated with larger extent

Landsat-8. Furthermore, 40% fractional coverage of lantana was observed in lower elevation zones

(400 to 500 m) from the classifications of Landsat-based upscaled maps (Figure 6) for both SPOT-6

and RapidEye fractional reference inputs. This result is in agreement with previous studies [30,63]

that observed the dominance of lantana in open lowland (400–500 m a.s.l.) areas compared to the

high-elevation (>500 m a.s.l.) sal-dominated areas.

Table 5. Fractional cover statistics for lantana and forest classes. Probability of significant relevance

codes are 0.05 < p: ***, p < 0.001.

Class

SPOT-6 RapidEye

R
2 RMSE

(%)
Variance

(%)
R

2 RMSE
(%)

Variance
(%)

Lantana 0.92 *** 7.22 64.38 0.85 *** 11.8 37.96
Sal trees 0.94 *** 7.73 71.67 0.86 *** 12.1 55.63

The most important variables for lantana estimation were the spectral reflectance of Landsat-8

(NIR, green and red) and April NDVI. Similar features were important for the sal trees models, with the

main difference being the increased importance of NDVI. Higher R2 and lower RMSE were observed

for reference fractional cover data of SPOT-6 when compared to RapidEye for both lantana and sal trees

(Table 5). The accuracy of fractional cover maps increased when higher spatial resolution maps (1.5 m)

were used as a reference. This approach is in line with a previous study [33], which also suggested

developing fractional cover maps for European spruce (Picea abies L.) and Scots pine (Pinus sylvestris

L.) using RF regression by combining VHR WV-2(2 m) and medium spatial resolution Landsat time

series data.

Our results were able to generate fractional cover maps in a heterogeneous environment when

other classes were mixed with sal trees, especially soil-dominated and understory land covers such
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as lantana, agriculture and bare soil in the dry season. This was in agreement with an earlier study

focusing on canopy fractional cover degradation mapping in a heterogeneous tropical forest of Brazil

by combining Landsat ETM+ and VHR IKONOS data [35]. This research suggested the importance

of reducing the mixed pixel problem in medium spatial resolution classification and the necessity of

calibrating Landsat-derived results by the established model based on the combination of Landsat,

SPOT-6, and RapidEye. The combination of open Landsat TM (30 m) and MODIS (250 m) were also

used by [76] to map a forest and extract three fractions of vegetation, shadow and soil, to highlight

deforestation. Since our approach included expensive VHR data, time series analysis could be limited

by high cost. However, this type of analysis could be tested for a combination of open time series

Sentinel-2 (10–20 m spatial resolution) and Landsat-8 (30 m spatial resolution) datasets.

Figure 6. Landsat-8 classification for lantana within fractional cover thresholds (0%–25%, 25%–50%,

50%–90%, 90%–100%) for (a) RapidEye and (b) SPOT-6 data.

4. Conclusions

This study presented a fractional cover approach to predicting the proportion of lantana cover for

a large area based on the spectral reflectance of medium spatial resolution multispectral Landsat-8

imagery in a Western Himalayan region of India. Training data for fractional cover analysis was

classified with smaller extent VHR SPOT-6 (1.5 m) and RapidEye (5 m) imageries by adding VHRSI

information derived from SPOT-6 data. Results of VHR maps showed 87.38% and 85.27% overall

accuracy for SPOT-6 and RapidEye, respectively. Our observations suggested that 3D information from

VHRSI optical satellite data played a crucial role in distinguishing understory (in our case lantana)

from upperstory vegetation, being also a valid alternative to costly LiDAR data. We conclude that

classification accuracy improves at increasing spatial resolution, with decreasing mixed pixel problems
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for fractional cover maps when spatializing data on larger geographical areas. This approach is

consistent and reliable for large mountainous biodiversity hotspots, where direct field observations are

prevented by harsh climatic conditions. This approach may be implemented for other species mapping

over larger areas by combining freely available Sentinel-2 and Landsat datasets.
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32. Gairola, S.; Procheş, Ş.; Rocchini, D. High-resolution satellite remote sensing: A new frontier for biodiversity

exploration in Indian Himalayan forests. Int. J. Remote Sens. 2013, 34, 2006–2022. [CrossRef]

33. Immitzer, M.; Böck, S.; Einzmann, K.; Vuolo, F.; Pinnel, N.; Wallner, A.; Atzberger, C. Fractional cover

mapping of spruce and pine at 1 ha resolution combining very high and medium spatial resolution satellite

imagery. Remote Sens. Environ. 2018, 204, 690–703. [CrossRef]

34. Metzler, J.W.; Sader, S.A. Model development and comparison to predict softwood and hardwood per cent

cover using high and medium spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 3749–3761. [CrossRef]

http://dx.doi.org/10.5589/m13-046
http://dx.doi.org/10.1109/TGRS.2013.2249521
http://dx.doi.org/10.3390/rs10101542
http://dx.doi.org/10.1126/science.1244693
http://dx.doi.org/10.1016/j.rse.2014.08.017
http://dx.doi.org/10.1007/s12524-014-0371-y
http://dx.doi.org/10.1016/j.isprsjprs.2012.09.006
http://dx.doi.org/10.1080/01431160500297956
http://dx.doi.org/10.5589/m10-052
http://dx.doi.org/10.3390/s110201943
http://www.ncbi.nlm.nih.gov/pubmed/22319391
http://dx.doi.org/10.3390/rs4092661
http://dx.doi.org/10.3390/rs6054515
http://dx.doi.org/10.1093/forestry/cpx014
http://dx.doi.org/10.1007/s12524-009-0027-5
http://dx.doi.org/10.1080/01431160903121126
http://dx.doi.org/10.1080/10106049.2017.1289562
http://dx.doi.org/10.1016/j.rse.2016.08.013
http://dx.doi.org/10.1080/01431161.2012.730161
http://dx.doi.org/10.1016/j.rse.2017.09.031
http://dx.doi.org/10.1080/01431160500104152


Forests 2019, 10, 540 14 of 15

35. Wang, C.; Qi, J.; Cochrane, M. Assessment of tropical forest degradation with canopy fractional cover from

Landsat ETM+ and IKONOS imagery. Earth Interact. 2005, 9, 1–18. [CrossRef]

36. Donmez, C.; Berberoglu, S.; Erdogan, M.A.; Tanriover, A.A.; Cilek, A. Response of the regression tree model

to high resolution remote sensing data for predicting percent tree cover in a Mediterranean ecosystem.

Environ. Monit. Assess. 2015, 187, 4. [CrossRef] [PubMed]

37. Champion, S.H.; Seth, S.K. A Revised Survey of the Forest Types of India; Manager of Publications: Delhi, Indian, 1968.

38. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification.

Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [CrossRef]

39. Khare, S.; Latifi, H.; Ghosh, K. Phenology analysis of forest vegetation to environmental variables during

pre-and post-monsoon seasons in western Himalayan region of India. ISPRS Int. Arch. Photogramm. Remote

Sens. Spat. Inf. Sci. 2016, 41, 15–19. [CrossRef]

40. Khare, S.; Ghosh, S.K.; Latifi, H.; Vijay, S.; Dahms, T. Seasonal-based analysis of vegetation response to environmental

variables in the mountainous forests of Western Himalaya using Landsat 8 data. Int. J. Remote Sens. 2017, 38,

4418–4442. [CrossRef]

41. Chander, G.; Haque, M.; Sampath, A.; Brunn, A.; Trosset, G.; Hoffmann, D.; Roloff, S.; Thiele, M.; Anderson, C.

Radiometric and geometric assessment of data from the RapidEye constellation of satellites. Int. J. Remote Sens.

2013, 34, 5905–5925. [CrossRef]

42. Richter, R.; Center, R.S.D. ATCOR: Atmospheric and Topographic Correction. DLR-German Aerospace Center;

Remote Sensing Data Center: Oberpfaffenhofen, Germany, 2004.

43. Kwoh, L.K.; Liew, S.C.; Xiong, Z. Automatic DEM generation from satellite image. In Proceedings of

the 25th Asian Conference & 1st Asian Space Conference on Remote Sensing, Chiang Mai, Thailand,

22–25 November 2004; pp. 22–26.

44. Rottensteiner, F.; Weser, T.; Fraser, C.S. November. Georeferencing and orthoimage generation from long strips of

ALOS imagery. In Proceedings of the 2nd ALOS PI Symposium, Rhodes, Greece, 3–7 November 2008.

45. Poon, J.; Fraser, C.S.; Chunsun, Z.; Li, Z.; Gruen, A. Quality Assessment of Digital Surface Models Generated

From IKONOS Imagery. Photogramm. Rec. 2005, 20, 162–171. [CrossRef]

46. Toutin, T. Review article: Geometric processing of remote sensing images: Models, algorithms and methods.

Int. J. Remote Sens. 2004, 25, 1893–1924. [CrossRef]

47. Krauß, T.; Reinartz, P.; Lehner, M.; Schroeder, M.; Stilla, U. DEM generation from very high resolution stereo

satellite data in urban areas using dynamic programming. International Archives of the Photogrammetry.

Remote Sens. Spat. Inf. Sci. 2005, 36, 1.

48. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

49. Belgiu, M.; Drăgut, , L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]

50. Leutner, B.; Horning, N. RStoolbox: Tools for Remote Sensing Data Analysis; R Package Version 0.1; R Package

Vignette: Madison, WI, USA, 2017; Volume 8.

51. Core Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical

Computing: Vienna, Austria, 2013.

52. Wegmann, M.; Leutner, B.; Dech, S. (Eds.) Remote Sensing and GIS for Ecologists: Using Open Source Software;

Pelagic Publishing Ltd.: Exeter, UK, 2016.

53. Zvoleff, A. Glcm: Calculate Textures from Grey-Level Co-Occurrence Matrices GLCMs) in R; R Package Version

1.0; R Package Vignette: Madison, WI, USA, 2015.

54. Gamon, J.A.; Kovalchuk, O.; Wong, C.Y.S.; Harris, A.; Garrity, S.R. Monitoring seasonal and diurnal changes

in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosci. Discuss. 2015, 12, 2947–2978.

[CrossRef]
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