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In this paper, we present a system identi
cation (SI) procedure that enables building linear time-dependent fractional-order
di�erential equation (FDE) models able to accurately describe time-dependent behavior of complex systems. 	e parameters in
the models are the order of the equation, the coe�cients in it, and, when necessary, the initial conditions. 	e Caputo de
nition of
the fractional derivative, and the Mittag-Le
er function, is used to obtain the corresponding solutions. Since the set of parameters
for the model and its initial conditions are nonunique, and there are small but signi
cant di�erences in the predictions from the
possiblemodels thus obtained, the SI operation is carried out via global regression of an error-cost function by a simulated annealing
optimization algorithm. 	e SI approach is assessed by considering previously published experimental data from a shell-and-tube
heat exchanger and a recently constructedmultiroom building test bed.	e results show that the proposed model is reliable within
the interpolation domain but cannot be used with con
dence for predictions outside this region. However, the proposed system
identi
cation methodology is robust and can be used to derive accurate and compact models from experimental data. In addition,
given a functional form of a fractional-order di�erential equation model, as new data become available, the SI technique can be
used to expand the region of reliability of the resulting model.

1. Introduction

Complex systems are common in mechanical engineering
applications, for example, automobiles, washing machines,
and thermal power plants. As illustrated schematically in
Figure 1, each of these systems is composed of many inter-
connected subsystems. In principle each subsystem can be
studied in isolation and its input and output connected to
others. However, for purposes of control we may think of
the overall system as being of the single-input single-output
(SISO) type, i.e., the interconnections between subsystems
are all internal, and there is only a single input �(�) and a
single output �(�) of the overall system, where � is time. 	e
control of such systems may either be model based or not
[1]. Control procedures that are not based on a mathematical
model include techniques such as PID [2], fuzzy logic [3],
or other procedures that work on the error signal. For
model based control, on the other hand, one should have
an approximate mathematical model of the time-dependent

behavior of the system to be able to predict what is going to
happen and then control it (approximate because otherwise
there would be no need for control). For simplicity we will
only consider linear systems. 	ere are two types of inputs
that are of interest in complex SISO systems: one is relaxation
and the other is periodic. In the former, which is what we
will be concerned with here, a step input is applied to the
system and the output goes in some dynamic fashion from
one constant value to another.

One approach to modeling is from the ground up, i.e.,
to use 
rst principles to model each component and their
interactions to create a so-called white box model. If we
think of each subsystem as being governed by a single
ordinary di�erential equation (ODE), then the overall system
is governed by a large set of coupled ODEs. If, however,
there is a governing partial di�erential equation (PDE), then
that may be considered to be equivalent to an in
nite set
of ODEs. Modeling is possible only when there is physical
and mathematical understanding of the behavior of each
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Figure 1: Schematic representation of a complex system with
subsystems �1, �2, and �3. Dashed lines are interactions. Input and
output of the overall system are �(�) and �(�), respectively.

subsystem. In any case, for control of the overall system one
ends up working with a large set of ODEs that must be solved
in real time. 	is may be computationally undesirable for
control purposes.

In many cases it is advantageous to use existing or
continually acquired experimental data to make predictions
[4]. 	is is a black-box approach and its main advantage
is that the input-output response of the overall system can
be directly obtained, but a disadvantage is that there is no
physical understanding of the dynamic behavior compared
to the ground-up approach. For example, one can have a
procedure based on arti
cial neural networks which can
either be trained beforehand or continuously trained [5].
Alternatively one can 
t an analytical model to the data, and
this is system identi
cation (SI). For control purposes the
data-based model should be good enough to approximate
reality but also be solvable in real time without intensive
computation. 	e SI process leads to a mathematical model
that can make predictions that di�er little from reality in
the region of interest and is compact enough to be easily
solved and used for control purposes. 	e most common
SI procedure is to propose a mathematical model of the
relaxation dynamics of the system, usually in the form of
di�erential equations, with certain free constants that are
adjusted to best 
t measurements. In this manifestation SI is
really determination of parameters in the proposed model.

Two new aspects will be explored here in relation to SI.

(a) Fractional-Order Model. Usually the proposed mathemat-
ical models involve integer-order derivatives, but this lacks
the generality provided by derivatives of fractional order [6–
8]. In addition, the required mathematical description of
the system is directly linked to its complexity, and when
the latter increases so does the former. 	ough any system
representation can be achieved using integer-order conser-
vation equations, their solution, in the context of system
control, requires extremely large CPU times, and it becomes
necessary to develop accurate and compact models that can
be used to determine the corresponding behavior in a timely
and reliable manner. Since it has been recently demonstrated
that fractional-based models are able to describe systems
that are complex [9], and a physical understanding of the
subsystem processes is not of concern for control of the over-
all system, the use of suitably de
ned fractional derivatives
is appropriate [10, 11]. 	ere are many di�erent de
nitions
of fractional derivatives available, though there are some
common features between them [12]. Initial conditions for

time-dependent systems is an important issue for fractional-
order systems: unlike integer-order derivatives where the
number of initial conditions corresponds to the order of the
di�erential equation, many of the de
nitions of fractional
derivatives make the equation in
nite dimensional so that
an in
nite number of initial conditions are needed. Here we
use the Caputo de
nition of the fractional derivative since it
enables the prescription and application of initial conditions
of integer order typically encountered in physical systems,
and analytical solutions are o�en possible.

(b) Error Minimization by Global Regression. 	e mathemat-
ical model with the best approximation to experimental data
is obtained through a process of error minimization. On
the one hand this can be done through an algorithm that
searches locally in the neighborhood of an initial guess, a
procedure that is e�ective if there is a singleminimum.On the
other hand there are procedures that search globally within
the permitted range of parameters for one or more minima.
One of these techniques is that of genetic algorithms [4] and
another is simulated annealing, which iswhatwewill use here
[13, 14].

In the present investigation, we propose amethodology of
analysis to derive accuratemodels – based on fractional-order
di�erential equations – that approximate relaxation processes
of complex systems. To this end, the paper presents 
rst a brief
description of the background information about fractional
calculus. Next, the system identi
cation technique, based on
global regression of an error-cost function, is introduced in
detail. Application to previously published experimental data
derived from (1) a heat exchanger and (2) a recently con-
structed building test facility is later carried out with special
emphasis on the accuracy of the model within the region
of interest. A vital conclusion is the nonuniqueness in the
resulting parameter set that de
nes both the fractional-order
model and the corresponding initial conditions. Although the
proposed model is accurate within the interpolation region,
it is unreliable outside it.

2. Background on Fractional Calculus

Fractional (noninteger) calculus, which can be thought of as a
generalization of the well-known integer calculus, has a long
history dating back to Leibniz [9]. Nevertheless, it is not as
celebrated by the scienti
c community as its integer counter-
part, mainly due to insu�cient enthusiasm about its potential
usefulness in applications. Although signi
cant progress in
its theoretical basis has been achieved, primarily due to
contributions from 18th- and 19th-century mathematicians
(e.g., Laplace, Fourier, Abel, and Liouville), it is only in the
last two decades that the subject has signi
cantly broadened
its applications in physics and engineering. 	is is re�ected
by the increased number of publications (i.e., books [9, 15–
17], review monograms [10], and scienti
c articles) devoted
to the topic in a variety of 
elds, like anomalous di�usion
[18], semi-in
nite tree networks ofmechanical, electrical, and
hydrodynamic equipment [19, 20], and viscoelastic systems
[21], among others. In the context of modeling and control
of thermal devices and phenomena, studies, such as those
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of Aoki et al. [22], Pineda et al. [23], Gabano and Poinot
[24], and Caponetto et al. [25], demonstrate that fractional
derivatives provide good approximations for describing the
dynamic behavior of heat transfer processes.

In principle, the 
eld of fractional calculus entails the
generalization of the concept of a derivative beyond that
of the common integer order. It is concerned with the
meaning of the “in-between” derivatives. For instance, the
5/4-derivative of a function �(�),

�(5/4) (�) = �5/4�
��5/4 (1)

can be thought of as a derivative in-between the 
rst and
second derivatives. 	ough it seems straightforward to think
of a derivative whose order is between two consecutive
integers, the de
nition of a fractional derivative is not unique
and various de
nitions are possible as long as it satis
es a
required set of mathematical rules [12]. Two of the most
common de
nitions are those of Riemann-Liouville [16] and
Caputo [26], the latter being the type of derivative used in the
present study.

Let us startwith theCauchy formula for repeated integrals
of integer order�, for the function �(�), which is de
ned as

	�� (�) = 1(� − 1)! ∫
�

0
(� − �)�−1 � (�) ��; � ∈ Z, (2)

where 	� is the integral operator. By de
ning the Gamma
function as

Γ (�) = ∫∞

0
�−�� ���−1���, (3)

the term (� − 1)! in (2) can be replaced with Γ(�), to obtain
	�� (�) = 1Γ (�) ∫

�

0
(� − �)�−1 � (�) ��, (4)

where � > 0 is an arbitrary positive real number and � is a
dummy variable of integration. Note that 	��(�) = �−��(�);
thus, for a value of � such that � − 1 < � ≤ �

��
�	� (�) = ��	�−�� (�) , (5)

which establishes the Riemann-Liouville fractional derivative
of order �, as

��
�	� (�) = ����� [ 1Γ (� − �) ∫

�

0

� (�)
(� − �)�+1−���] . (6)

	e Caputo de
nition of the fractional derivative of order �,
on the other hand, is de
ned as [26]

��

� (�) = 	�−���� (�) , (7)

so that ��

�(�) is explicitly given as

��

� (�) = 1Γ (� − �) ∫

�

0

�(�) (�) ��
(� − �)�+1−� . (8)

In (6) and (8), the subscripts RL and C, respectively, denote
Riemann-Liouville and Caputo fractional derivatives.

Regardless of the de
nition used, the Laplace transform is
a powerful technique to solve equations involving fractional
derivatives. For instance, the Riemann-Liouville de
nition in
the Laplace domain is

L (��
�	� (�)) = ��� (�) −

�−1∑
�=0
����−�−1� (0) ;

� − 1 < � ≤ �,
(9)

where it can be seen that the transformation requires the

following initial conditions: ��−�−1�(0) for all 0 ≤ � ≤� − 1. It is important to note that, since � does not need

to be an integer number, the terms ��−�−1�(0) are all of
fractional order. 	is poses a problem for applications in
physical systems, where the initial conditions are typically
given in terms of integer orders. On the other hand, the
Laplace transform for the Caputo de
nition is

L (��

� (�)) = ��� (�) −

�−1∑
�=0
��−�−1��� (0) ;

� − 1 < � ≤ �,
(10)

where now the initial conditions necessary to evaluate (10) are

prescribed as integer order, ���(0), rather than fractional-
order derivatives. 	erefore, in the subsequent sections of
the paper, we use the Caputo de
nition of a fractional-order
derivative.

3. System Identification

	e 
rst step in the SI process is to propose the model
and then to determine the parameters therein that will
approximate – as closely as possible – its output to the target
data. For our purposes, the proposed model is the linear
fractional di�erential equation, given as

�1��� (�)��� + �2� (�) = � (�) , (11)

where �1 and �2 are constants, � is the order (noninteger, � −1 < � ≤ �, with � ∈ Z) of the equation, �(�) is its input, �(�)
is the corresponding output, and � is a time-like independent
variable. Since the interest is on the conditions of operation
that would take the system from one state to another, i.e.,
relaxation processes, taking �(�) to be the Heaviside function,
the Laplace transform of (11) is

� (�) = ∑�
�=0 ��−�−1�(�) (0)�� + �2/�1 + 1�1

�−1�� + �2/�1 , (12)

which can then be solved if the initial conditions for �(�),
and its corresponding derivatives, are provided. 	e inverse
Laplace transform of the above equation leads to the follow-
ing analytical form for �(�)
� (�) = �∑

�=1
����−1 �,� (−�2�1 �

�) + 1�1 �
� �,q+1 (−�2�1 �

�) , (13)
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where  is the typical Mittag-Le
er function [17]. Note that
the output from (13) is completely de
ned if the constants ��
are known. 	is implies that one must provide � derivatives

at � = 0 (�� = �(�−1)(0), � = 1, 2, . . . , �); i.e., for 0 ≤ � ≤ 1,�(0), and for 1 < � ≤ 2, �(0), and ��(0) are necessary to
determine the solution.

To 
nd the unknowns �, �1, �2, ��, for � = 1, 2, . . . , �,
in (11) and (13), from known data (e.g., $ values �
, % =1, . . . ,$), a least-squares method is used to minimize the
di�erence between the sample- and predicted-values of �(�).
	is is equivalent to minimizing an Euclidean norm, i.e., the
variance of the error, given by

�� = 1$
�∑

=1
(��
 − ��
 )2 , (14)

where $ is the number of data points, usually from exper-

imental measurements; ��
 (�), for % = 1, . . . , $, are values
predicted by the model and ��
 (�), for % = 1, . . . ,$, refer
to the experiments. It is to be noted that ��(C), with
C = (�, �1, �2, �� : � = 1, . . . , �) being the vector of
unknown parameters, is a smooth manifold in a (� + 3)-
dimensional space. 	e goal is now to search for the values
of the parameter set C, such that ��(C) is a minimum.
	is process can be carried out either using local – such as
gradient-based – methods or global optimization techniques
like evolutionary or deterministic algorithms, each with
advantages and drawbacks [27–31]. However, as we will show
in a later section, under certain cases (14) has multiple local
minima, stemming from its nonlinear nature with respect to
the arguments, thus leading us to seek the global minimum
which will provide the optimal values of the parameter set
C required in the model (11), and the corresponding initial
conditions. 	is optimization procedure is carried out here
by the simulated annealing (SA) technique.

Description. 	e SA technique is inspired by the molecular
calculation of the cooling of a physical system in which
random agitation is used to avoid entrapment in local
extrema [29]. A starting point in the space of unknowns, C0,
is randomly selected, and a cycle of random moves along
each coordinate direction is then performed. 	e new point
C is accepted if it gives a better value of ��. If it is worse,
it is accepted only with a certain probability, exp(−Δ��/-∗),
where Δ�� is the change in value of �� and -∗ is a dynamic
parameter that is analogous to the temperature of a system
being cooled [32].	e process is repeated with decreasing -∗,
and step size ΔC until convergence within a certain tolerance
is reached. 	e procedure described above [33] has been
successfully implemented and used in the context of heat
transfer correlations by Pacheco-Vega et al. [34], and it is the
one followed here.

It is to be noted that other global optimization algorithms
can also be used in the search for the set of parameters
C. 	ese include the popular genetic algorithm (GA) [28]
and the interval method (IM) [35], among several alter-
natives, which have been successfully used in a variety of
applications. 	ough each technique has advantages over the
others (particularly in terms of CPU time necessary to 
nd

a solution), the GA will only 
nd the region – with a high
degree of certainty – where the global optimum is located.
From this perspective, only IMs mathematically guarantee
that the global optimum has been found, while the SA is only
probabilistically – but not deterministically – guaranteed to

nd such an optimum solution.

SI using the fractional model in (11), herein referred to
as FOSI, is applied to experimental data from two complex
thermal systems: (1) shell-and-tube heat exchanger data
analyzed by Mayes [36] and (2) a multiroom building test
facility. Preliminary analysis on the applicability of the FOSI
methodology to a set of analytical problems and to heat
exchanger data has been recently reported in Li et al. [37].
In what follows, the search domain for �, in (11), is restricted
to � ∈ [0,�] with � = 2.
4. Shell-and-Tube Heat Exchanger Data

4.1. Description. Details about the experimental setup in
the thermal systems laboratory at the University of Notre
Dame, and the corresponding data obtained with it, have
been reported in Mayes [36]; here we provide only a brief
description of the problem at hand. 	e heat exchanger, a
schematic of which is shown in Figure 2, corresponds to the
common shell-and-tube con
guration. 	e 
gure illustrates
�ow directions of the cold and hot �uids, �̇� and �̇ℎ,
respectively, along with their corresponding terminal inlet,-
�� and -
�ℎ , and outlet, -���� and -���ℎ , bulk temperatures. 	e
reported tests [36] were carried out under time-dependent
conditions until thermal equilibrium in the device was
achieved. Subsequently, while maintaining constant values of-
�� , -
�ℎ , and �̇ℎ, a step change in �̇�, i.e.,Δ�̇�, was applied. A
data acquisition system (DAQ) and a personal computer (PC)
were used to record and store the time-dependent values of
the inlet and outlet temperatures of the two �uids.

For purposes of analysis, we take the approach of [36] and
work with normalized variables. 	e dimensionless outlet
temperature of the hot �uid 5 and time variable 6 are de
ned
as

5 (�) = -���ℎ (�) − -���ℎ (0)
-���ℎ (∞) − -���ℎ (0) ; 6 = �6� , (15)

where-���ℎ (0) and-���ℎ (∞) are, respectively, the values of hot-
�uid outlet temperatures at the initial and steady states; 6�
is the rise time, de
ned as the time required for -���ℎ (�) to
reach 85% of -���ℎ (∞). 	us, 5(6) ∈ [0, 1], with 6 ∈ [0,∞).
	e experiments showing the temporal evolution of 5(6) are
illustrated graphically in Figure 3(a), where it is clear that
some type of relaxation process from one state (with 5 having
a small positive value) to another (where 5 is close to 0.8)
took place. Since the goal here is to 
nd the parameters in
the fractional model of the form given by (11) which 
t the
experimental data the best, for clarity we de
ne 5(6) ≡ �(�)
and 6 ≡ �, so that the fractional-order di�erential equation
becomes

�1��5 (6)�6� + �25 (6) = � (6) , (16)
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Figure 2: Schematic of a shell-and-tube heat exchanger.

where �1 and �2 are constants, � is the order in the search
domain � ∈ [0,�], � = 2, and �(�) is the input resulting
from the step change in the mass �ow rate of the cold �uidΔ�̇�. Once the model has been de
ned (i.e., Eq. (16)), the
FOSI technique is applied to the normalized data.

In this case, the variance of the error is given as

�� = 1$
�∑

=1
(5�
 − 5�
 )2 , (17)

where @ and � correspond to predictions and experiments,
respectively, and $ is the number of data sets. 	e set of
unknown parameters that will be considered in the forth-
coming sections will be either C = (�, �1, �2, �2 = 5�(0))
or C = (�, �1, �2, �1 = 5(0), �2 = 5�(0)). Notice that,
when seeking the optimum values in the parameter set, either
one �2 = 5�(0) or two initial conditions �1 = 5(0) and�2 = 5�(0) are included; i.e., we have relaxed the restriction
regarding the number of unknown parameters and now
included either one or two initial conditions in the search.
	e inclusion of the initial conditions in the parameter search
brings the advantage of 
nding the most appropriate values
for them directly from the operating conditions of the system
and, therefore, provides a better approximation from the
model thus obtained. However, as it will be shown in the
next section, this generates multiplicity of solutions of the
parameter set, some of which may not be physically feasible.

4.2. Initial Conditions and Nonuniqueness. Initial conditions
provide the set of values of the system at the point of
departure towards a new set of states. Mathematically, these
conditions can be easily set up so that the model can be
solved. Experimentally, however, this may not be the case
since it is di�cult to measure the value of the function (e.g.,
temperature) at a speci
c time (e.g., � = 0), and even more
di�cult to establish its rate of change, i.e., the derivative.
Sensitivity of the sensors, and even where they are placed,
plays a crucial role and increases the uncertainty of the
corresponding measurement.

As an example of this situation, let us focus on the experi-
mental measurements of the shell-and-tube heat exchanger
described before. 	e system was analyzed in [36] for
dynamic conditions of the outlet temperatures a�er some
thermal equilibrium in the device was achieved. Figure 3(a)
shows the experimental data (digitized from [36]) corre-
sponding to the evolution of the dimensionless temperature5(6). From the 
gure it can be observed that the general
trend in the values of the experimental data near 6 = 0

Table 1: Model parameters from heat exchanger data.

Model � �1 �2 �2 = 5�(0) �� × 104
A 1 -2.4903 0.8055 − 20

B 1.6708 0.3313 1.8067 -0.1093 6.94

(6 ∈ [0, 0.01]) is to decrease in magnitude before showing
a sustained relaxation-type increase (with some variation
about the mean values) to about 5 = 0.8 at 6 = 1. 	is
seems to indicate that, unless sudden changes in temperature
occurred in the laboratory, the heat-exchange device might
not have actually reached the expected thermal equilibrium,
and it raises the question about the actual level of uncertainty
that may be present while attempting to accurately establish
the initial conditions for complex systems since the values5(0) = 0 and 5�(0) = 0, in this case, are not feasible.

An example is the case of a sensor measuring temperature
that either is not appropriately calibrated or that has a slow
response time-constant, then the initial states for the temper-
ature or its rate of change will not be correctly established. In
other cases, the system may be so complex that establishing
actual initial conditions is virtually impossible. A car com-
prising a large number of subsystems may have initial states
for each of those components that are di�erent than those
of the overall system, and deciding which initial state is the
most appropriate (and thus, the one that should be used) may
be extremely di�cult. A similar situation occurs in a �uid,
where initial conditions must be speci
ed at all locations.
From this perspective, the inclusion of the initial conditions
in the unknown parameter set may be advantageous since
the optimal values of these states can be directly computed
from the data via SI. On the other hand, mathematically, by
increasing the number of adjustable parameters it may be
possible to obtain a better approximation from the model.
	is is what we have done within the context of the two
thermal systems considered here.

In what follows, we apply the global-regression-based
FOSI to the heat exchanger experimental data to obtain the
parameters in (16) and –when necessary – the corresponding
initial conditions that minimize the variance of the error [Eq.
(17)]. 	e search for the parameters in C = (�, �1, �2, �2 =5�(0)) is constrained to the following ranges: � ∈ [0, 2],{�1, �2} ∈ [−10, 10], and 5�(0) ∈ [−10, 10]. 	e initial
condition is kept as �1 = 5(0) = 0, as established in [36]. For
purposes of comparison, a gradient-based local optimization
algorithm (LOA) is also applied to seek the best-possible
parameters in C. In applying the LOA technique, the search
is constrained only for the order � ∈ [0, 2], while the domain
for all other parameters remains unconstrained.

	e results from the two fractional-order models are
shown in Figure 3(a) and Table 1. From the 
gure it can be
seen that the model obtained by global regression (model B)
provides a much better approximation to the experimental
data than that from the local-regression procedure (model
A). Although both models are somewhat closer in the
middle regions, i.e., � ∈ [0.2, 0.8], their predictions deviate
signi
cantly at the two ends of the relaxation process, with the
SA-based model (also referred to as a four-parameter model
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Figure 3: Multiplicity of solutions in the parameter set C = (�, �1, �2, �2 = 5�(0)).
Table 2: Model parameters from shi�ed heat exchanger data.

� �1 �2 �1 = 5(0) �2 = 5�(0) �� × 1045+ 1.5061 0.2717 1.3858 0.005 -0.8368 6.64715 1.5061 0.2621 1.3373 0.0313 -0.8366 6.64705− 1.5061 0.2532 1.2919 0.0576 -0.8364 6.6471
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Figure 4: Comparison of prediction of 5(6) between four- and

ve-parameter-set models. (—) 
ve-parameter model, RMS error is6.647× 10−4; (––) four-parameter model, RMS error is 6.939 × 10−4.

in Figure 3(a) since the vector C comprised four parameters)
being much closer to the original data. On the other hand,
from the table it can be seen that the two fractional models
have very di�erent values of the parameters �, �1, and �2,
and particularly the fact that 5�(0) = �2 only appears in the
fractional-order model obtained via global regression (model
B) since its value of � lies between � = 1 and � = 2. 	is

outcome is indicative of the nonuniqueness of the resulting
fractional di�erential equation model, along with the initial
condition considered in the parameter set C.

Figure 3(b) shows a section of the �� hypersurface that
passes through the two minima E and F. For clarity, a
location coordinate � is de
ned such that C = C�(1 −�) + C��, where C� = (�, �1, �2, �2 = 5�(0))� and C� =(�, �1, �2, �2 = 5�(0))�, corresponding to the two minima.
	e value of the cost function �� from the LOA-based model
(model A) is 3 times higher than that of the SA model
(model B in Table 1). 	e above result leads us to ask which
model is better, and a possible answer may be the model
equation that provides the minimum error, i.e., the global
minimum.	is is accomplished in the present study through

the implementation of SA in the SI methodology.
By using the heat exchanger data described before, and

relaxing the restriction on the number of parameters in C

to now include the additional initial condition 5(0) = �1,
C = (�, �1, �2, �1 = 5(0), �2 = 5�(0)), i.e., a 
ve-parameter
fractional-order model, then it is clear as illustrated in
Figure 4 that not only the overall solution but also the value
of 5(0) is much closer to the target data than that of the
four-parameter model. It is to be noted that, although not
shown explicitly, there is also a multiplicity of solutions in��(C), the global optimum being found by the SA algorithm.
	e multiplicity in the parameter set seems to be due to
the fact that the initial condition(s) is(are) included in the
search rather than the model itself. Finally, Table 2 shows,
quantitatively, the improved accuracy of the 
ve-parameter
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Figure 5: Comparison in predictions from fractional- and integer-order 
tted models.

fractional model with a value of �� = 6.647 × 10−4, which
is an improvement of 4.5% with respect to that of the model
based on four parameters.

4.3. Reliability of the Model. 	e use of fractional-order
approximation models stems from the fact that as the
complexity of a system increases, so does its required
mathematical representation. 	ough this can be achieved
starting from conservation equations, for purposes of control
it is important that the plant model is compact, e�cient,
and su�ciently accurate. For instance, a model based on
the Navier-Stokes equations may be more accurate than an
approximate model, but would be computationally intensive
for control (for design and prediction, on the other hand, the
mathematical model needs to be accurate). An approximate
model, however, may also serve the purpose of bringing the
output close to the desired state from where some other form
of nonmodel control (e.g., PID) can take over. From this
perspective, the fractional-order model given in (11) and (16)
can be regarded simply as an approximation to the governing
equations (PDEs), and certainly it is not amodel based on 
rst
principles (i.e., derived from the laws of physics for a speci
c
problem), but is developed based on a curve-
tting process
from a set of experimental data in a speci
c domain. 	us,
it follows that the resulting mathematical model can only be
expected to perform well in the domain of the data from
which it was derived (i.e., interpolation). In other words, the
model may not work – and it does not have to work – beyond
the domain in which the data apply (i.e., within the cloud of
training data). Making predictions outside the domain of the
data fromwhich the model was derived would correspond to
extrapolation, and therefore unreliable.

	is data-driven model interpolation/extrapolation issue
is particularly problematic for the case of complex systems,
an example of which is heat exchangers, and the phenomena
associated with them. In these thermal systems, complexity
arises from geometrical con
gurations, the large number of
parameters involved in their operation, and the nonlinear

nature of the system. In the latter case, for example, there
is nonlinearity due to variation of properties (e.g., density,
viscosity, and thermal conductivity), with temperature. Non-
linearity in the phenomena then generates the possibility of
bifurcations, including instability and transition to turbu-
lence. Finally, the conservation equations themselves, which
provide the most accurate description of the system, are
nonlinear (e.g., in the advective terms). It is apparent that
nonlinearities associated with the system may be a main
reason for constraining predictions from data-driven models
to within the interpolation region only.

	e issue of interpolation vs. extrapolation is prevalent
in models derived from experimental data. For instance,
techniques such as arti
cial neural networks and correlation
equations, among others, are unreliable for extrapolation;
yet, they are extremely useful for predictions within the
region of training data of the system behavior at operating
points di�erent from those used to derive the model. 	is
is illustrated in Figure 5 in the context of the current
investigation, which shows the results from the fractional-
order model given in (16) and an ordinary second-order
linear oscillator given by

�1 �25 (6)�62 + �3�5 (6)�6 + �25 (6) = � (6) , (18)

with � ≡ 5, zero initial conditions, and 
tted constants �1,�2, and �3 obtained from the same data. 	e 
gure shows the
evolution of 5(6) for the ranges 6 ∈ [0, 1] and 6 ∈ [1, 10].
For completeness, the results froma 
rst-ordermodel are also
included. From Figure 5(a), the results show that, in the range6 ∈ [0, 1], bothmodels predict the behavior of the systemvery
well, with the fractional-order model being more accurate

(�� = 6.94 × 10−4 and �� = 7.72 × 10−4, respectively), and
both show (see Figure 5(b)) some discrepancy with respect
to the expected behavior in the range 6 ∈ [1, 10], with the
second-order model being qualitatively more accurate than
the fractional-order. However, in this range the actual values
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of the expected behavior from both models are incorrect,
indicating a lack of reliability.

	e issue of reliability ofmathematical models is an active
research topic [38], and several studies have attempted to
establish the region of reliability by de
ning it either as a
hyperbox or by using the convex hull of the data. Others
have concluded that the number and distribution of the
experimental data are important factors in the reliability
of empirical models [39, 40]. In fact, in the context of
modeling with arti
cial neural networks, Pacheco-Vega et al.
[41] discovered that even inside the cloud of data – and its
corresponding convex hull – extrapolation could exist if the
number and distribution of data points in a high-dimensional
parameter space were limited in number and location, and
proposed a methodology to establish the upper limits in the
prediction error from such models.

4.4. Range of Applicability. In practice, experimental uncer-
tainty may be present due to nonideal sensor measurement,
thus it may be necessary to establish the applicability of the
resulting model for the system under analysis. In the present
case, we use the experimental data, along with a de
nition
based on the root-mean-square (RMS) error, to establish the
range of applicability for the 
ve-parameter fractional-order
model, i.e., (16), with 
tted 5(0) and 5�(0).

	e 
rst step is to de
ne the RMS error as

G��� = [ 1$
�∑

=1
(5�
 − 5�
 )2]

1/2

. (19)

	is error provides the baseline value for the range of
applicability from the original predictions. 	e next step is
to shi� the data up and down by a value G���, as

{5+, 5−} = 5 ± G���. (20)

	e global-regression-based SI is then applied to the shi�ed
data and the optimal parameters obtained. 	e results are
given in Table 2 and Figure 6. Table 2 presents a quantitative

account of the results showing the range of applicability of
the fractional di�erential equation model, where the order of
the equation remains essentially unaltered, while the other5+- and 5−-based shi�ed parameters provide the values
corresponding to the upper and lower bounds. Figure 6
supplies a graphical account of the same results, where it is
clear that the model is able to accurately predict the behavior
of the system.

5. Multiroom Building Data

	e second test deals with a more complex multiroom build-
ing system. A subscaled two-�oor building facility, designed
speci
cally to be a scaled model of an actual building
for energy-related studies, is located in the thermo�uids
laboratory at the California State University, Los Angeles,
and is used to conduct experiments for thermal analysis
and control [42]. A schematic of the experimental facility,
with overall dimensions of 1.2 m × 0.92 m × 1.1 m, and its
photographic depiction are shown in Figure 7. 	e test bed
has a two-�oor con
guration with four rooms in each �oor.
Its structure is made of wood with interior walls covered
with drywall and insulation (additional details are in [42]).
Average temperatures of air in the rooms are measured by
type-K thermocouples, while incandescent light bulbs serve
as internal heat sources. Supply and return vents are installed
in each room, and an external cooling unit is used to provide
cold air through a set of ducts, each connected to the corre-
sponding supply vent. Flow rates of air delivered into each
room can be modi
ed by a set of dampers (valves) through
Arduino microcontrollers. Time-dependent information of
the room temperatures, -, is collected in two DAQ boards
and stored in a PC for further analysis. LabVIEW serves to
interface the controller and the experimental system. 	e
facility has been recently studied by Baltazar et al. [43] in the
context of thermal control with fuzzy logic.

	e average air temperature measurements for the eight
rooms of the building are illustrated in Figure 8 which
shows that each room is initially heated to a temperature
above 27∘C and then cooled down for 30min [43]. From
the 
gure it can be seen that all temperature curves depict
three features: (1) the cooling rate in each room is di�erent
due to uneven delivery of air�ow by the dampers; (2) there
is a nearly exponential decay in the average temperatures,
which is expected due to the convection process that takes
place in each room; and (3) the decay in the temperatures is
altered by two peaks, at � = 17min and � = 25min, resulting
from the in�uence that the laboratory temperature has on the
operation of the cooling unit.

For the analysis that follows, room 1 is selected because
of its smooth transition from a maximum temperature, -�� ,
to a temperature considered as minimum, -�
�, just before
the peak occurs at ��� . As before, it is useful to normalize its
mean temperature -(�) and the time variable �, as

5 (�) = - (�) − -�
�-�� − -�
� ; 6 = ���� , (21)

where 5 is the dimensionless average temperature for air, 6
the dimensionless time, -�� = 28∘C, -�
� = 18∘C, and
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��� = 17min. With the aforementioned de
nitions, the
linear fractional-order model is again de
ned as

�1��5 (6)�6� + �25 (6) = � (6) , (22)

where �(6) results from the sudden change in the delivery of
cooling air �ow from zero to a maximum.

	e FOSI methodology is now applied to the experimen-
tal temperature measurements of room 1 of the test facility.

Again, the variance of the error is �� = [∑�

=1(5�
 − 5�
 )2]/$,

the parameter set is C = (�, �1, �2, �1 = 5(0), �2 = 5�(0)), and
the parameter search is constrained to the following ranges:� ∈ [0, 2], {�1, �2} ∈ [−10, 10], 5(0) ∈ [−10, 10], and 5�(0) ∈[−10, 10]. Using the same conditions, LOA is also used for

Building test-bed data
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Figure 9: Prediction of time evolution of average room temperature
for room 1 from fractional-order models.

purposes of comparison. 	e results from the two methods
are shown in Figure 9 and Table 3, where it is clear that, once
again, multiplicity of solutions for the parameter set C, and��(C), occurs. From the 
gure it can be observed that the
fractional-order model obtained by the FOSI, SA technique,
accurately predicts the dynamic behavior of the temperature
dynamics in room 1 for the entire time range. It is particularly
remarkable that the conditions of 5 and 5� at 6 = 0 are very
close to those of the data. On the other hand, the results
from the LOA-based model are close to the measurements
in the mid-section, but deviate signi
cantly at the extremes,
particularly near the initial times.

	ese results are con
rmed quantitatively in Table 3,
where it is noticed that the fractional-order model obtained
via global regression outperforms the corresponding LOA
model by close to 40% improvement in the accuracy of
the predictions. Moreover, the values of the parameters
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Table 3: Model parameters for the relaxation process in room 1 of a building test facility.

Model � �1 �2 �1 = 5(0) �2 = 5�(0) �� × 104
SA 1.2319 3.4428 10 1.0223 -0.1043 2.04

LOA 1.0266 -0.0213 -0.1052 0.9577 47.5124 2.86

obtained from global regression seem to be consistent with
the experimental data, particularly those of the rate of
change in temperature 5�, at times close to zero, whereas
those computed by the LOA technique can be associated
with physically unfeasible conditions, as mentioned in the
previous section.

Finally, it is important to note that, though commonly
done with integer-order calculus, a physical interpretation
of the fractional derivative in the modeling of the two
thermal systems analyzed here is not necessary since the
corresponding fractional-order model – in each case – is
merely a stand-in for the true mathematical model. Some
e�orts have been made in the physical interpretation of
fractional-order derivatives (see [44, 45], for example), but at
the moment they do not have the acceptance that terms such
as velocity and acceleration have in mechanics, for instance.
	e issue of the physical interpretation of fractional-order
models would become more important if initial conditions
were being assigned based on the initial state of the plant.

6. Concluding Remarks

Complex systems, of which heat exchangers and multiroom
buildings are examples, can be found in widespread applica-
tions. For their performance control it is necessary to obtain
an accurate description of their dynamic behavior. In this
regard, fractional-order di�erential equations, derived via
SI, may provide compact and e�cient models of complex
systems. In this work, a fractional-order-based system SI
procedure grounded on global regression has been proposed
to build accurate models from data. 	e SI methodology
seeks the optimum values of a parameter set that includes
the fractional order of the di�erential equation, its parametric
constants, and, when necessary, the initial conditions. 	is
last case arises when accurate knowledge of the initial
conditions, whether the value of the function or its rate
of change, is not possible, and such conditions have to be
included as part of the search. It is to be noted, however, that
there may be cases when some values of these conditions may
not be physically feasible.

	e application of the SI methodology to experimental
measurements from a shell-and-tube heat exchanger and
a multiroom building has con
rmed that the approach is
accurate and robust.	e fractional-based model obtained via
global regression provides better approximations to the data
than those obtained by SI with local optimization algorithms.
	e results show that not only the apparent multiplicity in the
parameter set that includes the order of the proposed model
equation along with its constants and the initial conditions, as
provided by the results from the global regression analysis, is
due to the fact that the initial condition(s) is(are) included
in the search, rather than in the model itself, but also

the proposed fractional-order di�erential equation model is
reliable within the interpolation region, but cannot be used
with con
dence for predictions outside this region. 	e SI
methodology proposed here is robust and can be used to
derive accurate and compact models from experimental data.
In addition, given a functional form of a fractional-order
di�erential equation model, as new data become available the
SI technique can be used to expand the region of reliability
(interpolation) of the resulting model. 	e methodology
described here can be extended to model other complex
physical systems.

Nomenclature

	�: Fractional integral operator of order ��1, �2: Coe�cient for the linear fractional
di�erential equation��

�	: Riemann-Liouville fractional derivative of
order ���


: Caputo fractional derivative of order � 
,!: Two-parameter Mittag-Le
er function�: �-th integer order�̇: Mass �ow rate��: �-th initial condition�: Fractional order��, ��: Variance of the error$: Number of experimental data points
C: Vector of search parameters-: Fluid bulk temperature [K]�: Time [s]�(�): Input variable�(�): Output variable

Greek Symbols

G: rms errorΓ(�): Gamma function5: Dimensionless temperature�: Independent variable6: Dimensionless time

Subscripts and Superscripts

�: Cold �uid�: Experimental valueℎ: Hot �uid
in: Inlet
out: Outlet@: Predicted value
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Abbreviations

DAQ: Data acquisition system
FDE: Fractional-order di�erential equation
FOSI Fractional-order system identi
cation
LOA: Local optimization algorithm
ODE: Ordinary di�erential equation
SA: Simulated annealing algorithm
SI: System identi
cation
PDE: Partial di�erential equation.
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