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Abstract: A number of critical remarks related to the application of fractional derivatives 
in electrical circuit theory have been presented in this paper. Few cases have been point-
ed out that refer to observed in selected publications violations of dimensional uniformity 
of physical equation rules as well as to a potential impact on the Maxwell equations. 
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1. Introduction 
 
One may meaningfully benefit in many fields (also in electrical engineering) from the 

introduction of new mathematical methods or from the reapplication of already existing ones. 
A mathematical notation models real phenomena. We often face a problem, how to describe 
particular phenomenon in a comprehensive and at the same time simple way. On one side new 
phenomena are surfacing and on the other the already known are being understood better. 
Newton’s physics differs from the Einstein’s one. Quantum theory resulted with new for-
mulae. Nevertheless, new equations that model the phenomena shall be always dimensionally 
uniform. Ampere’s and Faraday’s laws haven’t changed as a result of new scientific findings. 
The dependence between the voltage at the coil and coupled alternate magnetic flux remains 
the same for decades. The same applies to Maxwellian distribution laws, although we shall 
fine-tune them with the Lorentz’s transformation for high velocities. The implementation of 
fractional derivatives shouldn’t change this principle. It shouldn’t impact basic physical laws, 
including the Maxwellian distribution laws. The implementation of fractional derivatives shall 
not contradict the laws of physics [1]. This applies to each mathematical description of any 
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phenomenon. A mathematical model of a process must be dimensionally uniform and comply 
with the valid laws. Each model shall be confirmed with the relevant experiment(s). Unfortu-
nately, the authors who deal with fractional derivatives sometimes don’t follow this rule. It’s 
quite common that dimensional uniformity of equations is not followed or misinterpreted by 
laws of physics that are in use. The papers [2] and [4] as well as many other may serve as an 
example here. At the same time, many authors notice the dimensional non-uniformity, as to 
mention [12], page 145, p. 3, where we find: “an auxiliary parameter is introduced in order to 
preserve the physical dimensionality of the fractional temporal operator”. We may find similar 
references in other works as well. 

Till now, the introduction of fractional derivatives has not affected the content of any well-
known textbooks in electrical circuit theory or magnetic field theory. Mentioned textbooks 
don’t refer to fractional derivatives at all. Only derivatives of natural order are used in these 
books. Similar applies to electromagnetic field wave propagation theory, wave-guide theory, 
nondestructive testing, electrical machine theory and many other fields of applied science. 

 
 

2. Curie’s law 
 
Curie’s law presented with the formula below (quoted “as is” from the paper [9]) was ap-

plied in the works [9] and [10] to model current in the capacitor: 

 ( ) nth
U

ti
1

0= 0,10 ><< tn . (1) 

The mentioned formula refers both to real (with losses, where n ≠ 1) and ideal capacitors  
(n = 1). In the case of an ideal capacitor the formula (1) will translate into (2): 

 ( )
th

U
ti

1

0= . (2) 

It doesn’t matter which power exponent n  we take, the formula (1) will not be precisely 
true. The problem with this formula has been flagged by the authors of the paper [9], who 
wrote namely: “For instance von Schweidler [2, 3] was of the opinion that the Curie current is 
abnormal and named it accordingly.  

 

 
               Fig. 1. Serial capacitor scheme                    Fig. 2. Parallel capacitor scheme 
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Many modern workers assent to the ideas of Schweidler, for instance [4]. But there are 
also a few who disagree, maybe foremost Jonscher, who in 1977 named the Curie response 
“the universal dielectric response [5]”. Without discussing further the paper [9] we can state 
that the experimental Curie formula is not the universal one. It is widely used that a real 
capacitor may be modelled with the dual schemes, serial or parallel [13]. These very simple 
schemes have been presented in Figs. 1 and 2. 

In order to obtain a general model of the capacitor we shall apply one of the canonical 
schemes (Figs. 3 and 4) 

 

Fig. 3. First canonical scheme 
 

Fig. 4. Second canonical scheme 
 

or Cauer’s schemes (Figs. 5 and 6) [13]. 
 

Fig. 5. First Cauer’s scheme 
   

Fig. 6. Second Cauer’s scheme 
 
The schemes used may be partial ones. It seems that the scheme presented in Fig. 7 might 

be feasible. 
Resistances R1 and R2 take finite values in the case of real capacitor R1 = 4 and R2 = 0 

and for an ideal capacitor. A more general model is represented by one of the long-distance 
line schemes shown above. 
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Fig. 7. Serial-parallel scheme 

 
In such a case we don’t need to use fractional derivatives that contradict well-established 

electrical circuit theory, consider how to obtain dimensionally uniform physical equations or 
reflect whether the dependence between the capacitor’s current and voltage shall be described 
by the well-known formula: 

 ( ) ( )
t

tuCti C
c d

d= , (3) 

or by dimensionally non-uniform and physically questionable one: 

 ( ) ( )
α

α

d
d

t
tuCti C
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Dimensional uniformity of physical equation is fulfilled by the formula (3). On the left 
side we have current, which may be described as coulomb to second. On the right side we find 
farad multiplied by volt and divided by second, what brings us also to coulomb to second in 
the end. So we face no doubts. 

The problem arises in the case of Eq. (4). As in the previous case we have coulomb to 
second on the left side, while coulomb to second to the power of " on the right side. And 
everything works well for " = 1, but for the case considered by the author of the papers [2, 4] 
and few other works, when " … 1 dimensional uniformity is not in place and further discus-
sions aren’t correct. 

 
 

3. Fractional derivatives in electrical circuit theory 
 
Many works have been published recently that refer to fractional derivatives, namely [2, 4-9, 

10, 14-16]. They play a significant role in automatics and robotics. They may be also useful in 
other disciplines, e.g. in electrical engineering. In my opinion, the very interesting, fundamen-
tal work of prof. T. Kaczorek “Standard and Positive Electrical Circuits with Zero Transfer 
Matrices” presented at ZKWE’16 and published in Poznan University of Technology Acade-
mic Journals Issue 85 2016, which refers to this topic, contains a serious mistake in its crucial 
part [2, 4]. Unfortunately, a similar problem appears in many other works that discuss frac-
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tional derivatives. Namely, Eqs. (43-45) and (46) which we can find in the paper [2] and 
which are presented below as (5), (6), (7) and (8): 
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are simply wrong. If to write them correctly, they look as below: 
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Eqs. (9-11) and (12) have been known for decades. They sometimes appear in the same 
form as in the works [2, 4], but they are complemented with the factor providing dimensional 
uniformity in such a case. The Faraday’s law as presented with the formula (11) has been 
known for over 100 years. It appears in this form in handbooks, publications and monographs. 
It hasn’t been stated that the mentioned law was applied in the form proposed in the work [2] 
in any handbook. E.g., Eqs. (6) and (8) could have fulfilled the dimensional uniformity rule, if 
capacity and inductivity had been functions of time and not measured in farads or henrys. 

Consequently, following equations where fractional derivatives were used are wrong as 
well. If the equations above had been true, the dimensional uniformity rule wouldn’t be valid 
anymore. The discussed equations don’t fulfill the mentioned rule. 

Let’s look at Eq. (5) first. On the left side we have current that may be expressed with 
coulomb divided by a second, while on the right side we can see coulomb divided by a second 
to the power with the exponent different than one. This is not correct. A similar problem con-
cerns remaining equations. They are not true as well, so the whole theory established in [2, 4] 
is not true as well and it doesn’t matter, if we want to use it for the explanation of the pheno-
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mena in super or classical capacitors. The dimensional uniformity requirement must be met. 
Acting modes of circuit elements don’t influence this rule. 

The impact of using the discussed equations is even more serious. Assuming, the mentio-
ned equations were true, this would have influenced the content of the Maxwell equations 
[14]. The first two Maxwellian distribution laws [14] that create the base of electromagnetism 
wouldn’t have been valid anymore: 

 

 
t∂

∂+= DJHrot , (13) 
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∂−= BErot , (14) 
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α
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With such an approach we face well-established bases of electromagnetism and the rules 
of physical formula formulation changing. If the theory presented in the works [2, 4] is true, 
we have to do with the fundamental discovery in the field of electromagnetism. If otherwise, 
the works [2, 4] contain mistake(s). 

We may have similar concerns, when we start looking at the huge energy stored by super 
capacitors. The application of the new technology increased their capacity in relation to vo-
lume significantly. However, the amount of the stored energy is determined not only by the 
capacitor’s capacity, but by voltage as well. We may conclude so based on the following 
formula: 

 
2

2CUWe = . (17) 

The energy stored within the electrical (electrostatic) field is a function of energy’s volume 
density: 

 
2

' DE ⋅=eW , (18) 

and of inter-electrode volume and may be written as follows: 

 VWW
V

ee d' ⋅= ∫ . (19) 

The energy density of an electrical field is the function of dielectric strength of inter-elec-
trode dielectric and of its permittivity ε . We may increase the electrodes’ surface, but we 
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won’t be able to overcome the limitations resulting from Eq. (18). The maximal stored energy 
is limited by the finite permittivity ε  values and by the defined electrical strength of the inter-
electrode dielectric. If we assume that super capacitors don’t work basing on the electrostatic 
rule of energy storing, then we shall define, in what way the energy is stored in such capa-
citors and then describe this operating mode with relevant formulae. 

Is Eq. (47) from the paper [2] correct? 

 
( ) ( ) ( )tButAx

t
tx +=α

α

d
d

. (20) 

It’s hard to conclude, as we don’t know the dimensions of particular elements. Never-
theless Eq. (48) [2]: 

 1
1
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is just wrong. For " not equal to 1 the statement  

α
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1  

doesn’t represent voltage. The dimensional uniformity has been described briefly in p. 2.4 of 
[13]. This rule may be sometimes helpful for building formulae that describe various physical 
phenomena. Independently from the need of obeying the dimensional uniformity, the depen-
dences between voltage and current at particular elements of the electrical circuit are precisely 
defined by the laws of electrical engineering. Let’s consider three passive elements R, L and 
C. For these elements the dependence between current and voltage are clearly defined. For re-
sistance this dependence is described by Ohm’s law: 

 
R
ui = . (22) 

Ohm’s law has exactly the form as above and not any other, e.g.: 

 α

α
=

R
ui . (23) 

The same applies to inductivity, which connects current and voltage with the following 
equations: 
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 or ∫= tu
L

i d1
and not α

α
=

t
iLu

d
d

.  

Similarly for capacity: 
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.  

In other words, current in the capacitor equals capacity C multiplied by derivative of vol-
tage at the capacitor. This expresses the physical law. It hasn’t been questioned yet – as well 
as the dependence between voltage at the coil and the derivative of the flux coupled with the 
coil. 

Special “fractional” R, L, C elements have been introduced in the paper [10]. Conse-
quently, special coefficient, ensuring dimensional uniformity has been incorporated in the 
equations that describe “fractional circuit”. 

In the paper [10] the Maxwell equations have been presented in the form of (13) and (14), 
amended with the continuity laws instead of Eqs. (15) and (16). “Classical Equation” has been 
benchmarked with “Fractional Equation” there as well and dimensional uniformity has been 
assured. Many simulations have been included in this work as well. 

Calculations have been compared to measurements in the paper [16]. A RC circuit has 
been investigated there. We may conclude from the curves in Fig. 3 in [16] that the transient 
voltage that has been calculated from the formula 

 C
C u
t

u
RCe +=

d
d

, (26) 

matches the experimental results and the one calculated from the formula (21) for the values 
" = 0.998, 0.997, 0.996 only approaches the measurement curve. Another set of calculations 
has been presented in Fig. 4 in [16]. In this case the results of formula (21) calculations reflect 
better the measurement curve. Authors explain this fact with non-linearity of circuit elements. 
However, they don’t explain how to take this non-linearity into account, applying fractional 
derivatives. This may be however realized in the simpler way without fractional derivatives. 

 
 

4. Conclusions 
 
Implementation of new mathematical methods drives the development of many disciplines, 

including physics. They simplify the complex form of many formulae. For this reason we shall 
recognize the works related to fractional derivatives that have been touched in this paper. But 
on this way one may face various problems related to mathematical reflection of physical phe-
nomena. Let’s take the mathematical challenges faced by Albert Einstein [17]. At the begining 
he was stating that when the mathematicians started to analyze his relativity theory he started 
to have problems with understanding his theory himself. Later he appreciated the role of ma-
thematics and the work of Herman Minkowski. 
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Having this in mind, we shall be conscious that even the newest mathematical methods, 
used for description of physical phenomena shouldn’t contradict the physical laws. Complex 
methods of mathematical modelling may make the understanding of the described phenome-
non challenging, but they shouldn’t make it completely blurred. I leave it up to audience to 
opinion, how it is in this particular case. 

Future research will aim to recommend the ways of correct application of fractional deri-
vatives in electrical circuit theory and electromagnetic field theory. The topic of local and 
global solutions for the equations containing fractional derivatives will be in scope of the 
planned research. Potentially, new types of filters will be designed based on the results of 
mentioned re-search. 
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