
FRACTIONAL DIFFERENTIATION OF FUNCTIONS WITH
LACUNARY FOURIER SERIES1

G. V. WELLAND2

1. This paper gives some results of a special nature for functions

which have lacunary Fourier series. Before stating these, we begin

with some definitions and comments.

Let/: (0, 2ir)—>i? be integrable and assume it has the Fourier series

Oo ^->
(1) S(/) =-\- 2_ ak cos nkx + bk sin «4X.

2 4=1

/ is said to have a lacunary Fourier series if there is a X> 1 such that

for k = l, 2, ■ ■ ■ we have «i+i>X«4. We will assume a0 = 0. Some-

times we will prefer to write S(f) in its complex form

(10 S(f) = 'Z'Ckexp(inkx),
—oo

where £' indicates that the sum excludes the term k = 0.

Let 0^k<a<k + l and a+fi = k + l, with k an integer, be given.

We define the fith integral of / by

(2) F(x) = /„(*) = —- f * /(/) (x - t)^dt.
r(p) *' -oo

A discussion of this integral is given in [6, page 133]. There it is shown

that

°° Ck
S(fe) = £' ——: exp (inkx),

-oo   (tnky

and it is pointed out that the convergence of the integral is bound

up with the fact that a0 = 0. From this it is clear that F has a lacunary

Fourier series if / does. / is said to have an ath derivative if F has a

k + 1 Peano derivative at x0, i.e., there exists a polynomial PXo(t) of

degree ^k + 1 such that

(3) F(x0 + t)- Px,(t) = o(\tl-H-i),        t->0.

If
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j- J" | F(xo + t)- P„(/) |»<ftj   "= oiPk^),

p-*0     (1  g p <   co),

/ is said to have an ath derivative in the 2> sense. If there exists a

polynomial QXait) of degree gft such that RXoit)=fixo+t) — QXoit)

= Oi\t\a) as 2—>0 then/ is said to satisfy the condition Aa and if

i—f " | RXoit) |**|   ' = 0(P"),       P-*0    (1 g />< co),

/ is said to satisfy the condition A£. f is said to satisfy the condition

Nl if for some p>0

1   f >   1 Rx0jt) |"
— I      —j—j-dt < co.
pJ.,    |/|1+"°

If a=l, the condition Ai is replaced by the condition A*, which re-

quires that A2fix0,t) =fixo+t)+fixo-t)-2fix0)=Oit) as*->0. Finally,

/ is said to have an approximate derivative at x0, equal to/aj,(x0),

if \fixo+t)—fixo)—f'avixo)t\ =oit) as t—>0 through a set having zero

as a point of density.

Throughout, constants depending only on the parameters of the

problem will be denoted by Dk, D, M, C etc. These will not neces-

sarily denote the same constant at each point.

The results we will state were motivated by the main result in [4]

which gives the following theorem for the case p = 2.

Theorem A. The necessary and sufficient condition for f to satisfy the

conditions N*, N% (2g/>< co) almost everywhere in a measurable set E

is that f satisfy the condition A£ and have an ath derivative in the Lp

sense almost everywhere in the set E.

The proof of this theorem follows the proof of the theorem in [4]

with p = 2 and a few minor modifications. The results in [4] parallel

the results of [3] on differentiability of functions.

We are now ready to state the two theorems of this paper.

Theorem 1. Let f have a lacunary Fourier series and suppose f has

an ath derivative at some point x0 (Ogft<a<ft + l). 27zeM/ satisfies the

condition A„ everywhere.

Theorem 2. Let F be a function with a lacunary Fourier series. If

zZia*+b))n2j< oo then F has a derivative almost everywhere.

The first of these is proved by a method similar to one in [5] which
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is adapted to higher orders of differentiation by means of Taylor's

theorem. The second is a corollary of the main theorem in [3]. It is

included here because of some if its corollaries.

2. We start with the proof of Theorem 1. We may assume x0 = 0

and, under the assumption that the polynomial in (3) is identically

zero, we have F(x0+t) = F(t)=-R(t) where R(t) = 0(\ t\k+1) as <-K).

Let N = Nj = min {«y — »/_i, »y+i —»/}. We can choose an integer

p>0 such that N-Kp(k+2)^N+k + l. Let

/ sin (pt/2) V<*+2)
K'(t) = K(t) = BirH-^-^-)

\psin(t/2))

where

1   /•"■ /sin (pt/2) y<*+2)
5* = — I     (-)        di.

Tr J -Ap sin (t/2)/

K(t) is a trigonometric polynomial of degree (p — l)(k+2) and

(l/ir)flT K(t)dt=l. Hence we may write 7C(0 = 1/2+ £*J11 d„ cos <rt

where

1   /•■
a", = — I    K(t) cos <r*df       a = 1, 2, • • • , N - 1.

ir J -n

Because

1   r*/sin(pt/2) yc*+2) 2   r1'p/sm(pt/2) \2*+4

* ~  x J -x \/> sin (J/2)) irJo     \p sin (*/2)/

1 /2\2*+6       1
= -(-)        ---Q»,

p \ir/ p

it can be shown that

K(t) ^ Dip,       0£ |f|   ^ 1/A,

^ Ztf (l/^+21 /|*+8),        \/N £ \t\  gr,

where we recall &<a<fe+l is fixed.

It is easy to show that

JV-l

2K(l) cos njt = cos njt + £ d,,[cos(ffj + a)t + cos(«y — a)t],
o=l

JV-l

2A(0 sin njt = sin »,* + £ d„[sin(nj + a)t + sin(ffy — a)t].
<r—1

Since «y_i<«y — (r<»y+<7<»j+i for <r=l, 2, • • • , Af—1, we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



138 G. V. WELLAND [February

1   r *
(4) (ay, bj) = — I    FH)2Kit)icos njt, sin n,t)dt,

t J -T

where ay, bj are the Fourier coefficients of F.

Let e>0 be given. Then there exists a 5>0 such that for |x| <5

|F(x)| <e|x|*+1 since / has an ath derivative at x = 0. Assuming

1/2V<§ and applying formula (4) we obtain

| a, |   g — I     | Fix) | Kix)dx g Di Xt J | x \k+ldx
T  J o J 0<|z|sl/2tf

+ DiN-«+2U f | x\~2dx
J HNs\x\s&

+ DiN-«+2) f | Fix) | • | x\-(k+3)dx

g MieN-u+v + M28-<-k+3KN-^k+2) )     I Fix) | rfx

§-(4+3) /  1  \ 4+1

g MiiL)k+ltin3)^k+^ + Mz-iL)k+2 (—)     ,

n, \n,/

where Mi, M2 and M% are constants and L = min{\— 1, 1 —1/\}.

Since Mi, M2, M3 and L are all fixed constants and we can choose j

so large that M38~ik+i) <nj€, we see that ay = c-(My~(*+1)) as j—>oo.

Similarly, bj = o(My_<*+1)) as j—* co .

If we denote by CjiF) and c3-(f) the Fourier coefficients of F and /

respectively we see that CjiF) = c.(wy~(*+1)) as |_/| —->oo and hence that

Cj(f) = o(n3-(k+1)+e) = o(n}-a) as |./|—>°°. A result in [2] shows that

for 0<a<l we have / satisfies the condition A„ if and only if cy

= Oinr).
Suppose that ft<a<ft + l. Then the series

x

yi Cjiin3)k expiin3l)

converges uniformly. To see this, let e>0 be given. Then there exists

M>0 such that |cy| gMn,-", j=+l, +2, • • • . Choose N such

that for \j\^N, l^l^gCe, where C~1 = 2M zZxW'1)'- Then we
see that

zZ   \cg\-\ nj\k g   zZ  M- |«*|—-| nj\k
\j\>N ijiaJV

g 2M | nN Is-1 X) (^"')i g C-'Ce = e.
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This shows that / has k derivatives and that the &th derivative has

coefficients which are o(wy^_1) as j—*«>, and hence fk(x) satisfies the

condition Ai_^.

We now apply Taylor's theorem with remainder to see that

f(x + t) = £/>(*) 4 + R(t)
j-i J]-

where

i     r •
R(t) =-       (t - «)*-![/*(x + u) - fk(u)]du.

(k-l)lJo

Since/*(x) satisfies Ai_fl, it follows that/(x) is in Aa because

R(t) = o( f (t- uy-w-fdu) = 0(\t |*+1-<o = 0( | t \"),      <->0.

Finally, suppose that the polynomial in (3) is not identically zero,

then we can find a Cq function g which has this polynomial as its

Taylor's expansion up to the (& + l)th term at the point x = 0 and

with support in (—w, tt). It is easy to see that g has Fourier coeffi-

cients which are 0(ff_(*+3)). Let G=F—g and let F be replaced by G

in the integral formula (4). Then |ay| is dominated by that integral

+0(£"^+1|ay(g)|) where aj(g) are the Fourier coefficients of g. The

integral is 0(«y_w+1)) as before and

£ I oj(g) |=o(£«r(*+3)) = 0(ffr(*+1) £ n-2)
nj \   rtj / \ Uj /

= o(nTik+1)),       j-*00-

Hence | ay| =o(wy_(*+1)). This completes the proof of Theorem 1.

3. To begin the proof of Theorem 2 we note that because of the

main result in [3] we only need to show that/satisfies the condition

A* and that the integral

/•'   I A2/(x, 0|2
(5) -;—i-dt < 00        for almost all x.

J-r M3

However, since aj, bj = 0(nf) as j—»=°, it can be shown using the

technique of [6, Volume I, page 47] that/ satisfies the condition A*.

We show the integral (5) is finite for almost every x in [ — ir, ir] by

showing the following integral is finite
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/' C*   I A2f(x,t)\2I I, dtdx.

This is equal to

I      I      -j—r; ( — 23 lak cos nkx + bk sin w*x]4 sin2f-J J dtdx.

By Parseval's equality this is

«f-(xa+^(f))^.
We have

f /«**\   cf/ /•"« .     /nkt\dt rT (nkt\dt
I     sin4   -)1-r = 2.\        sin4(-)— + 2 sin*(-) —

J-* \2/|/|« Jo \2/t* Jr/nk        \2jfl

/'*,nk /nkt\*dl r*    dt

0 \   2   )    t* JT/nk   1*

and hence the integral (6) is bounded by 162) zZkia\-r-b\)n\< <*>. This

completes the proof of the theorem.

We add some corollaries.

Corollary 1. Suppose f has a lacunary Fourier series. Then if f

has an approximate derivative in a set of positive measure f has a deriva-

tive almost everywhere.

Proof. This follows from the fact (see e.g. [l, Volume II, page 263])

that if a function/has a lacunary Fourier series which converges on a

set of positive measure to a function which can be extended to an

absolutely continuous one, then   2j'(ay+6y)wy < co.

Corollary 2. Let 0<a< 1, a+fi= 1, and f have a lacunary Fourier

series. Then f has an ath derivative in a set E of positive measure and

hence almost everywhere if and only if for almost every x in E there is

an nx = 'n>0 such that

f Rxit)2
(7) -r-.-dt<*>.

J-, Mi+2*

Proof. Let Fix) =/j(x). Assuming (7), we have Fix) has a deriva-

tive in the L2 sense and hence an approximate derivative almost
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everywhere in E. By Corollary 1, F(x) has an ordinary derivative al-

most everywhere. On the other hand, iff has an ath derivative almost

everywhere in E, then F(x) has an ordinary derivative almost every-

where again by Corollary 1. By Theorem 1,/satisfies the condition

A„ almost everywhere. Hence, by Theorem A, (7) holds almost every-

where.

This corollary extends to the case a>l by applying Taylor's the-

orem as in Theorem 1.
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