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FRACTIONAL DIFFUSION EQUATIONS AND PROCESSES WITH
RANDOMLY VARYING TIME1

BY ENZO ORSINGHER AND LUISA BEGHIN

“Sapienza” Università di Roma

In this paper the solutions uν = uν(x, t) to fractional diffusion equations
of order 0 < ν ≤ 2 are analyzed and interpreted as densities of the composi-
tion of various types of stochastic processes.

For the fractional equations of order ν = 1
2n , n ≥ 1, we show that the so-

lutions u1/2n correspond to the distribution of the n-times iterated Brown-
ian motion. For these processes the distributions of the maximum and of
the sojourn time are explicitly given. The case of fractional equations of or-
der ν = 2

3n , n ≥ 1, is also investigated and related to Brownian motion and
processes with densities expressed in terms of Airy functions.

In the general case we show that uν coincides with the distribution of
Brownian motion with random time or of different processes with a Brownian
time. The interplay between the solutions uν and stable distributions is also
explored. Interesting cases involving the bilateral exponential distribution are
obtained in the limit.

1. Introduction. Time-fractional equations of the form

∂νu

∂tν
= λ2 ∂2u

∂x2 , x ∈ R, t > 0,(1.1)

for 0 < ν ≤ 2, have been studied by a number of authors since the 1980s: see, for
example, Wyss (1986), Nigmatullin (1986), Schneider and Wyss (1989), Mainardi
(1995a, 1996) and, more recently, Nigmatullin (2006), Angulo et al. (2000, 2005).
Hyperbolic fractional equations similar to (1.1) have been analyzed, for example,
by Engler (1997).

For exhaustive reviews on this topic, also consult Samko, Kilbas and Marichev
(1993) and Podlubny (1999).

For interesting applications of fractional equations to physical problems see, for
example, Saichev and Zaslavsky (1997), Nigmatullin et al. (2007), Angulo et al.
(2005).

Fractional diffusion equations of order 1 ≤ ν < 2 emerge in the study of the
distribution of the local time of pseudoprocesses related to higher-order heat-type
equations; see Beghin and Orsingher (2005).

Received June 2007; revised January 2008.
1Supported by “Sapienza” University of Rome Grant Ateneo 2007, n. 8.1.1.1.32.
AMS 2000 subject classifications. Primary 60E05, 60G52, 60J65; secondary 33E12, 33C10.
Key words and phrases. Iterated Brownian motion, fractional derivatives, Airy functions, Mc-

Kean law, Gauss–Laplace random variable, stable distributions.

206

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/08-AOP401
http://www.imstat.org
http://www.ams.org/msc/


PROCESSES WITH RANDOMLY VARYING TIME 207

The time-fractional derivative appearing in (1.1) must be understood in the sense
of Dzerbayshan–Caputo, that is

∂νu

∂tν
(x, t)

=

⎧⎪⎪⎨
⎪⎪⎩

1

�(m − ν)

∫ t

0

1

(t − s)1+ν−m

∂mu

∂tm
(x, s) ds, for m − 1 < ν < m,

∂mu

∂tm
(x, t), for ν = m,

where m − 1 = �ν�.
Considering the derivative in the sense of Dzerbayshan–Caputo permits us to

study initial value problems for (1.1) with initial data represented by derivatives of
integer order; on this topic, consult Mainardi (1996).

We assume, in particular, the following initial condition:

u(x,0) = δ(x) for 0 < ν ≤ 1,(1.2)

and {
u(x,0) = δ(x),

ut (x,0) = 0,
for 1 < ν ≤ 2.(1.3)

The general solution to equation (1.1) subject to (1.2) or (1.3) is well known
[see Podlubny (1999), formula (4.22), page 142] and reads

uν(x, t) = 1

2λtν/2

∞∑
k=0

(−|x|/(λtν/2))k

k!�(−νk/2 + 1 − ν/2)

(1.4)

= 1

2λtν/2 W−ν/2,1−ν/2

(
− |x|

λtν/2

)

where Wα,β in (1.4) denotes the so-called Wright function, whose general form is

Wα,β(x) =
∞∑

k=0

xk

k!�(αk + β)
, α > −1, β > 0, x ∈ R.(1.5)

Some properties of the Wright function are investigated in Mainardi and
Tomirotti (1998) and in Gorenflo, Mainardi and Srivastava (1998). Initial value
problems (as well as problems on half-lines with boundary conditions) for equa-
tions like (1.1) are extensively treated and solved in Mainardi (1994, 1995a,
1995b), Gorenflo and Mainardi (1997) and Buckwar and Luchko (1998).

It has been proved also that uν is nonnegative and integrates to one for all 0 <

ν ≤ 2; see, for example, Orsingher and Beghin (2004).
We present here some alternative forms of the solution uν of (1.1), either as

integral functions like

uν(x, t) = 1

πν|x|
∫ +∞

0
e−we−|x|wν/2/(λtν/2) cos(νπ/2) sin

( |x|wν/2

λtν/2 sin
(

νπ

2

))
dw,



208 E. ORSINGHER AND L. BEGHIN

or in terms of stable densities

pα(x;γ, η) = 1

2π

∫ +∞
−∞

e−iβx exp
{−η|β|αe−iπγ /2β/|β|}dβ, α �= 1,

as

uν(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1

ν|x|2/ν+1 pν/2

(
1

|x|2/ν
; ν

2
,

1

λtν/2

)
, 0 < ν ≤ 1,

1

ν
p2/ν

(
|x|; 2

ν
(ν − 1), λ2/νt

)
, 1 ≤ ν < 2.

In Orsingher and Beghin (2004), we proved that in the special case ν = 1
2 , the

solution (1.4) coincides with the distribution of the process

I1(t) = B1(|B2(t)|), t > 0,(1.6)

called the iterated Brownian motion, which consists of a Brownian motion B1
whose “time” is an independent reflecting Brownian motion.

In Beghin and Orsingher (2003) we have generalized this result to the case
where ν = 1

n
, n ∈ N. In this case, for λ2 = 1/2, the solution (1.4) coincides with

the distribution of the process

J1/n(t) = B1

(
n−1∏
j=1

Gj(t)

)
, n > 1, t > 0,(1.7)

where the vector process (G1(t), . . . ,Gn−1(t)) has the following joint distribution:

p(w1, . . . ,wn−1) = n(n−1)/2

(2π)(n−1)/2
√

t
e−(wn

1+···+wn
n−1)/

n−1√
nntw2 · · ·wn−2

n−1,

(1.8)
wj ≥ 0,1 ≤ j ≤ n − 1,

for n ≥ 2.
In (1.7) the role of “time” is played by the product of independent, positive-

valued r.v.s, which cannot be identified with well-known distributions as in the
special case (1.6).

In the special case n = 2, we note that J1/2(t) = I1(t), because (1.8) becomes
the distribution of a reflecting Brownian motion.

We are now able to prove a much stronger result for the case ν = 1
2n , n ∈ N, and

for λ2 = 21/2n−2, which has a number of interesting consequences. We will show
below that (1.4) for ν = 1

2n can be written down as

u1/2n(x, t) = 2n
∫ ∞

0
· · ·

∫ ∞
0

e−x2/(2z1)√
2πz1

e−z2
1/(2z2)

√
2πz2

· · · e−z2
n/(2t)

√
2πt

dz1 · · · dzn(1.9)

and this coincides with the distribution of

In(t) = B1(|B2(|B3(· · · (|Bn+1(t)|) · · ·)|)|), t > 0,(1.10)
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where the Bj ’s are independent Brownian motions.
The iterated Brownian motion I1(t) = B1(|B2(t)|) has been actively investi-

gated and many of its properties have been obtained by Khoshnevisan and Lewis
(1996), Burdzy and San Martìn (1995), Allouba (2002).

The connection between fractional generators of order 1/2 and the iterated
Brownian motion I1(t) has been studied in Allouba and Zheng (2001) and
Baeumer, Meerschaert and Nane (2007). This connection was obtained in Ors-
ingher and Beghin (2004) as a particular case of the analysis of the fractional
telegraph equation.

The identity

2n
∫ ∞

0
· · ·

∫ ∞
0

e−x2/(2z1)√
2πz1

e−z2
1/(2z2)

√
2πz2

· · · e−z2
n/(2t)

√
2πt

dz1 · · ·dzn

(1.11)

= 1

(2t)1/2n+1

∞∑
k=0

(−2|x|/(2t)1/2n+1
)k

k!�(−k/2n+1 + 1 − 1/2n+1)

shows that there is a deep connection between Wright functions and Gaussian
distributions.

For the n-times iterated Brownian motion In(t), t > 0, we obtain the distri-
butions of the maximum and the sojourn time (together with the expression of
moments) and we work out in detail an explicit form of them for the case of the
classical iterated Brownian motion I1(t), t > 0.

We note that In(t) converges in distribution, for n → +∞, to a Gauss–Laplace
(or bilateral exponential) random variable, independent from t > 0.

In Orsingher and Beghin (2004) we have seen that for the fractional telegraph-
type equation ⎧⎨

⎩
∂u

∂t
+ 2λ

∂1/2u

∂t1/2 = c2 ∂2u

∂x2 ,

u(x,0) = δ(x),

x ∈ R, t > 0,(1.12)

the general solution coincides with the distribution of the telegraph process T

whose time is an independent reflecting Brownian motion

W(t) = T (|B(t)|), t > 0.(1.13)

We remark that process (1.13) converges to (1.7) in the Kac sense (i.e., for λ,
c → ∞, in such a way that c2

λ
→ 1). Related interpretations of the solutions to⎧⎨

⎩
∂u2ν

∂t2ν
+ 2λ

∂νu

∂tν
= c2 ∂2u

∂x2 ,

u(x,0) = δ(x)

(1.14)

are discussed in Beghin and Orsingher (2003) and Orsingher and Beghin (2004).
Generalized forms of the fractional telegraph equation (1.14) and of its solutions
can be found in Saxena, Mathai and Haubold (2006).
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We obtain here various types of relationships between the solutions uν for dif-
ferent values of ν. The first one we present is the following:

uν(x, t) = 1√
πt

∫ ∞
0

e−z2/(4t)u2ν(x, z) dz(1.15)

(valid for any 0 < ν < 1), where u2ν is the solution of (1.1) with order 2ν instead
of ν. Formula (1.15) leads, for ν = 1

2n , to the n-times iterated Brownian motion de-
fined in (1.10), since it permits us to obtain, in an alternative way, the relationship
(1.9).

In the general case, (1.15) shows that the process related to the equation (1.1) of
order ν can be interpreted as the composition of a process governed by the same
equation, but with order 2ν, with a Gaussian-distributed time. We also derive the
analogous relationship

uν(x, t) =
∫ ∞

0

1√
4πλw

e−x2/(2λw)u2ν(w, t) dw,(1.16)

where

u2ν(w, t) =
{

2u2ν(w, t), w > 0,
0, w < 0.

(1.17)

Here the roles of space and time are interchanged with respect to (1.15). There-
fore from (1.16) a further interpretation of the solution emerges, because it coin-
cides with the density of the process

B(Tν(t)), t > 0,

where B is a Brownian motion and Tν(t) is a process independent from B with a
distribution for each t given in (1.17).

A relationship similar to (1.15) and connecting uν with umν is established (by
applying the multiplication formula of Gamma function) for m ≥ 3 and 0 < ν ≤
2/m.

Substantially different situations are encountered for the special cases ν = 1
3 ,

ν = 2
3 and ν = 4

3 . In particular for ν = 2
3 we show that the solution to (1.1) pos-

sesses the following simple form:

u2/3(x, t) = 3

2

1

λ
3
√

3t
Ai

( |x|
λ

3
√

3t

)
,(1.18)

where Ai(x) is the Airy function. The latter emerges as a solution to third-order
heat-type equations of the form

∂u

∂t
= −∂3u

∂x3 , t > 0, x ∈ R.
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By using again the relationship (1.15) we get, for the case ν = 1
3 , the following

result:

u1/3(x, t) = 3

2

∫ ∞
0

e−z2/(4t)

√
πt

1

λ
3
√

3z
Ai

( |x|
λ

3
√

3z

)
dz.(1.19)

This suggests that we should interpret u1/3 as the distribution of

J1/3(t) = A(|B(t)|), t > 0,

where A is a process whose one-dimensional distribution is given in (1.18), which
coincides with the symmetric stable process of order 1/3.

Similar relationships seem not to hold for the solutions to fractional equations
of order ν = 1

n
, n > 3, because the fundamental solutions to

∂u

∂t
= cn

∂nu

∂xn
,(1.20)

cn = ±1, are sign-varying functions on the whole x-axis (while, for n = 3, only
on the negative half-line), as shown in detail in Lachal (2003). Therefore they
cannot be used to construct the functions uν emerging from (1.1), which, for
0 < ν ≤ 2, are nonnegative and integrate to one. We note that the solutions to
(1.20) themselves have been represented as distributions of compositions of artifi-
cial processes, which do not display a probabilistic structure [see Funaki (1979),
Hochberg and Orsingher (1996), Benanchour, Roynette and Vallois (1999)].

Finally the previous results permit us to establish connections between the solu-
tions u2/3n and u2/3n−1 . Moreover the explicit form (1.18) of u2/3 suggests that we
should interpret them as distributions of processes similar to the n-times iterated
Brownian motion, but with the role of B replaced by A and the time represented
by nested products of the random variables Gj defined in (1.7).

2. Iterated Brownian motions generated by fractional equations. In this
section we examine in detail various relationships between solutions to diffusion
equations like (1.1) and processes involving Brownian motion. All results of this
section refer to equations of order 0 < ν ≤ 1.

We start with the following general theorem:

THEOREM 2.1. The solution to⎧⎨
⎩

∂νu

∂tν
= λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

x ∈ R, t > 0,(2.1)

for 0 < ν ≤ 1, can be represented as

uν(x, t) = 1√
πt

∫ ∞
0

e−z2/(4t)u2ν(x, z) dz(2.2)
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where u2ν is the solution to⎧⎨
⎩

∂2νu

∂z2ν
= λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

for 0 < ν ≤ 1

2
(2.3)

or ⎧⎪⎪⎨
⎪⎪⎩

∂2νu

∂z2ν
= λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

ut (x,0) = 0,

for
1

2
< ν ≤ 1.(2.4)

PROOF. By applying the duplication formula of the Gamma function we have
that

�

(
−νk

2
+ 1 − ν

2

)
= √

π2ν(k+1) �(1 − ν(k + 1))

�(1/2(1 − ν(k + 1)))
.(2.5)

By plugging (2.5) into (1.4) we get that

uν(x, t) = 1

2λtν/2

∞∑
k=0

(−|x|/(λtν/2))k�(1/2(1 − ν(k + 1)))

k!√π2ν(k+1)�(1 − ν(k + 1))

= 1√
π2ν+1λtν/2

∞∑
k=0

(−|x|/(λtν/2))k
∫∞

0 e−ww−ν/2(k+1)−1/2 dw

k!2νk�(1 − ν(k + 1))

= 1√
π2ν+1λtν/2

∫ ∞
0

e−ww−ν/2−1/2

×
∞∑

k=0

1

k!�(1 − ν(k + 1))

(
− |x|

λ2ν(wt)ν/2

)k

dw

= [in view of (1.4) with suitable arrangements]
= 1√

π2νtν/2

∫ ∞
0

e−ww−ν/2−1/2(2√
tw

)ν
u2ν

(
x,2

√
tw

)
dw

= 1√
π

∫ ∞
0

e−ww−1/2u2ν

(
x,2

√
tw

)
dw

= [
2
√

tw = z
]

= 1√
πt

∫ ∞
0

e−z2/(4t)u2ν(x, z) dz

and this concludes the proof.
An alternative proof of the relationship (2.2) is based on the Fourier transforms,

since for uν the following result is known:∫ +∞
−∞

eiβxuν(x, t) dx = Eν,1(−β2λ2tν),



PROCESSES WITH RANDOMLY VARYING TIME 213

where Eν,1(z) = ∑∞
k=0

zk

�(kν+1)
is the Mittag–Leffler function. Taking the Fourier

transform of (2.2) we get that∫ +∞
−∞

eiβx

{
1√
πt

∫ ∞
0

e−w2/(4t)u2ν(x,w)dw

}
dx

= 1√
πt

∫ ∞
0

e−w2/(4t)E2ν,1(−β2λ2w2ν) dw

=
∞∑

k=0

(−β2λ2)k

�(2kν + 1)

∫ ∞
0

e−w2/(4t)

√
πt

w2kν dw

= [
for w = 2

√
tz
]

=
∞∑

k=0

(−β2λ2)k

�(2kν + 1)

(2
√

t)2kν+1

2
√

πt
�

(
νk + 1

2

)

=
∞∑

k=0

(−β2λ2)k

�(2kν + 1)

(2
√

t)2kν+1

2
√

πt

√
π21−2νk �(2νk)

�(νk)

=
∞∑

k=0

(−β2λ2tν)k

�(kν + 1)
=

∫ +∞
−∞

eiβxuν(x, t) dx.
�

REMARK 2.1. In the special case where ν = 1
2 , formula (2.2) yields

u1/2(x, t) = 1√
πt

∫ ∞
0

e−z2/(4t) e
−x2/(4λ2z)

√
4πλ2z

dz

= [2λ2z = y](2.6)

= 1√
πt

∫ ∞
0

e−x2/(2y)

√
2πy

e−y2/(4t (2λ2)2)

2λ2 dy.

Particularly interesting is the case where 2(2λ2)2 = 1, that is, when λ2 = 2−3/2,
because (2.6) reduces to

u1/2(x, t) = 2
∫ ∞

0

e−x2/(2y)

√
2πy

e−y2/(2t)

√
2πt

dy,(2.7)

which permits us to conclude that, in this case, the solution coincides with the
probability density of the iterated Brownian motion (1.6).

REMARK 2.2. If we generalize our analysis to the n-dimensional case and
take ν = 1

2 , we can show that the process related to a fractional equation of the
form

∂1/2u

∂t1/2 = λ2

{
n∑

k=1

∂2u

∂x2
k

}
, xk ∈ R, t > 0,(2.8)
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with initial condition

u1/2(x1, x2, . . . , xn,0) =
n∏

k=1

δ(xk),

has components represented by iterated Brownian motions with a common random
time. In other words, the solution to (2.8) coincides with the distribution of the
vector process ⎧⎨

⎩
B1(|B(t)|),
· · ·
Bn(|B(t)|),

t > 0,

where Bk, k = 1, . . . , n, are mutually independent Brownian motions and also
independent from B .

To check this result we evaluate the Fourier transform of the solution to (2.8) as
follows: ∫ +∞

−∞
· · ·

∫ +∞
−∞

eiβ1x1+···+iβnxnu1/2(x1, . . . , xn, t) dx1 · · ·dxn

= E1/2,1

(
−λ2t1/2

(
n∑

k=1

β2
k

))
(2.9)

= 2√
π

∫ ∞
0

e−y2−2yλ2t1/2(
∑n

k=1 β2
k ) dy.

From (2.9) we get the inverse Fourier transform in the following form:

u1/2(x1, . . . , xn, t) = 2√
π

∫ ∞
0

e−y2
n∏

k=1

e−x2
k /(2(4t1/2λ2y))√

2π(4t1/2λ2y)
dy

= 2
∫ ∞

0

e−w2/(2(23tλ4))√
2π(23tλ4)

n∏
k=1

e−x2
k /(2w)

√
2πw

dw.

The main difference with respect to the case of the usual multivariate heat equa-
tion is that the components of the iterated Brownian motions are no longer inde-
pendent because they are related to each other by the common random time B

(with infinitesimal variance 23λ4t).

We pass now to our second theorem, which is related to the case ν = 1
2n , n ∈ N.

THEOREM 2.2. For ν = 1
2n , λ = 21/2(n+1)−1 the solution to equation (1.1) un-

der the initial condition (1.2) can be written as

u1/2n(x, t) = 2n
∫ ∞

0
· · ·

∫ ∞
0

e−x2/(2z1)√
2πz1

e−z2
1/(2z2)

√
2πz2

· · · e−z2
n/(2t)

√
2πt

dz1 · · ·dzn.(2.10)
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PROOF. In view of the duplication formula for the Gamma function we can
write

�

(
1 − k

2n+1 − 1

2n+1

)
(2.11)

= √
π21/2n+k/2n �(1 − k/2n − 1/2n)

�(1/2 − k/2n+1 − 1/2n+1)

so that the first member of (1.4) becomes, for ν = 1
2n and λ = 21/2(n+1)−1,

u1/2n(x, t)

= 1

(2t)1/2n+1

∞∑
k=0

(
− 2|x|

(2t)1/2n+1

)k 1

k!�(1 − k/2n+1 − 1/2n+1)

= 1

(2t)1/2n+1

∞∑
k=0

(
− 2|x|

(2t)1/2n+1

)k
∫∞

0 e−w1w
−1/2n+1−k/2n+1−1/2
1 dw1

k!√π2(k+1)/2n
�(1 − k/2n − 1/2n)

= 1

(2t)1/2n+1

×
∞∑

k=0

(
− 2|x|

(2t)1/2n+1

)k

(2.12)

×
∫∞

0 e−w1w
−1/2n+1−k/2n+1−1/2
1 dw1

∫∞
0 e−w2w

−1/2n−k/2n−1/2
2 dw2

k!(√π)22(k+1)/2n+(k+1)/2n−1
�(1 − k/2n−1 − 1/2n−1)

= 1

(2t)1/2n+1

×
∞∑

k=0

(
− 2|x|

(2t)1/2n+1

)k

×
∫∞

0
∫∞

0 · · · ∫∞
0 e

−∑n
j=1 wj

∏n
j=1 w

−(k+1)/2n+2−j−1/2
j dwj

k!(√π)n2(k+1)
∑n−1

j=0 1/2n−j

�(1/2 − k/2)

.

At this point we can use the reflection formula for the Gamma function

�

(
1

2
− k

2

)
= π

sin{π/2(1 − k)}
1

�((1 + k)/2)
(2.13)

= π

cos kπ/2�((1 + k)/2)

and this shows that only even terms of (2.12) must be retained. We can therefore
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write that

u1/2n(x, t)

= 1

(2t)1/2n+1

×
∞∑

k=0

(
− 2|x|

(2t)1/2n+1

)k

×
(∫ ∞

0
· · ·

∫ ∞
0

e
−∑n

j=1 wj

n∏
j=1

w
−(k+1)/2n+2−j−1/2
j dwj

)

× cos
kπ

2
�

(
1 + k

2

)[
k!(√π

)n
π2(k+1)

∑n−1
j=0 1/2n−j ]−1

= 2

(2t)1/2n+1

∞∑
k=0

(
− 2|x|

(2t)1/2n+1

)k

× (
∫∞

0 · · · ∫∞
0 e

−∑n
j=1 wj

∏n
j=1 w

−(k+1)/2n+2−j−1/2
j dwj ) cos kπ/2�(k)

k!(√π)n+12
∑n−1

j=0 1/2n−j

2k
∑n

j=0 1/2n−j

�(k/2)

(2.14)

= 2

(2t)1/2n+1

×
∞∑

r=0

(
− 2|x|

(2t)1/2n+1

)2r

× (
∫∞

0 · · · ∫∞
0 e

−∑n
j=1 wj

∏n
j=1 w

−(2r+1)/2n+2−j−1/2
j dwj )(−1)r

(
√

π)n+12
∑n

j=0 1/2n−j

22r
∑n

j=0 1/2n−j

r!
= 2

(2t)1/2n+122(1−1/2n+1)(
√

π)n+1

×
∞∑

r=0

(−1)r

r!
(

x2

t1/2n 22−1/2n
)r(

2−2(2−1/2n))r

×
(∫ ∞

0
· · ·

∫ ∞
0

e
−∑n

j=1 wj

n∏
j=1

w
−(2r+1)/2n+2−j −1/2
j dwj

)
.

By considering that

∞∑
r=0

(−1)r

r!
[

x2

22

(
2

t

)1/2n n∏
j=1

w
−1/2n+1−j

j

]r

= e
−x2/22(2/t)1/2n ∏n

j=1 w
−1/2n+1−j

j ,
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we can write (2.14) as follows:

u1/2n(x, t) = 1

(2t)1/2n+121−1/2n
(
√

π)n+1

×
∫ ∞

0
· · ·

∫ ∞
0

e
−x2/22(2/t)1/2n ∏n

j=1 w
−1/2n+1−j

j e
−∑n

j=1 wj

×
n∏

j=1

(
w

−1/2n+2−j −1/2
j dwj

)
.

In order to calculate the integrals let us write

2(2−1t)1/2n
n∏

j=1

w
1/2n+1−j

j = z1

so that

wn =
(

z12−1(2−1t)−1/2n

∏n−1
j=1 w

1/2n+1−j

j

)2

and

dwn = 2z1 dz1

(
2−1(2−1t)−1/2n

∏n−1
j=1 w

1/2n+1−j

j

)2

.

Therefore we get

u1/2n(x, t) = 1

(2t)1/2n+121−1/2n
(
√

π)n+1

×
∫ ∞

0
· · ·

∫ ∞
0

e−x2/(2z1)
n−1∏
j=1

w
−1/2n+2−j −1/2
j

× e
−∑n−1

j=1 wj e
−z2

1/(2
2(2−1t)1/2n−1 ∏n−1

j=1 w
1/2n−j

j )

× 2z1

(
2−1(2−1t)−1/2n

∏n−1
j=1 w

1/2n+1−j

j

)2

×
(

z12−1(2−1t)−1/2n

∏n−1
j=1 w

1/2n+1−j

j

)−1−1/2

dz1 dw1 · · ·dwn−1

=
√

2(2−1t)−1/2n+1

(2t)1/2n+121−1/2n
(
√

π)n+1
(2.15)
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×
∫ ∞

0

e−x2/(2z1)

√
z1

∫ ∞
0

· · ·
∫ ∞

0
e
−z2

1/(2
2(2−1t)1/2n−1 ∏n−1

j=1 w
1/2n−j

j )

× e
−∑n−1

j=1 wj

n−1∏
j=1

w
−1/2n+1−j −1/2
j dz1 dw1 · · ·dwn−1.

Now we make the similar substitution

2(2−1t)1/2n−1
n−1∏
j=1

w
1/2n−j

j = z2

so that we get again

wn−1 =
(

z22−1(2−1t)−1/2n−1

∏n−2
j=1 w

1/2n−j

j

)2

and

dwn−1 = 2z2 dz2

(
2−1(2−1t)−1/2n−1

∏n−2
j=1 w

1/2n−j

j

)2

.

In view of these substitutions, formula (2.15) is transformed into

u1/2n(x, t)

=
√

2(2−1t)−1/2n+1√
2(2−1t)−1/2n

(2t)1/2n+121−1/2n
(
√

π)n+1

×
∫ ∞

0

e−x2/(2z1)

√
z1

dz1

∫ ∞
0

e−z2
1/(2z2)

√
z2

dz2(2.16)

×
∫ ∞

0
· · ·

∫ ∞
0

e
−z2

2/(2
2(2−1t)1/2n−2 ∏n−2

j=1 w
1/2n−j−1

j )

×
n−2∏
j=1

w
−1/2n−j −1/2
j e

−∑n−2
j=1 wj dw1 · · · dwn−2.

By similar transformations, after (n − 3) additional steps, we arrive at

u1/2n(x, t) =
√

2n−1(2−1t)−1/2n+1−1/2n−···−1/23

(2t)1/2n+121−1/2n
(
√

π)n+1

×
∫ ∞

0

e−x2/(2z1)

√
z1

dz1

∫ ∞
0

e−z2
1/(2z2)

√
z2

dz2 · · ·

×
∫ ∞

0
e−z2

n−1/(2
2[(2−1t)1/2w

1/2
1 ])e−w1w

−1/22−1/2
1 dw1.
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By means of the position

2(2−1t)1/2w
1/2
1 = zn

we get that

w1 = (zn2−1(2−1t)−1/2)2

and

dw1 = 2zn dzn(2
−1(2−1t)−1/2)2.

We arrive at the final expression

u1/2n(x, t) =
√

2n(2−1t)−1/2n+1−1/2n−···−1/23−1/22

(2t)1/2n+121−1/2n
(
√

π)n+1

×
∫ ∞

0

e−x2/(2z1)

√
z1

dz1

∫ ∞
0

e−z2
1/(2z2)

√
z2

dz2 · · ·

×
∫ ∞

0

e−z2
n−1/(2zn)

√
zn

e−z2
n/(2t) dzn

= 2n

2n/2+1/2(
√

π)n+1
√

t

×
∫ ∞

0

e−x2/(2z1)

√
z1

dz1 · · ·
∫ ∞

0

e−z2
n−1/(2zn)

√
zn

e−z2
n/(2t) dzn,

which coincides with (2.10). �

REMARK 2.3. It is well known that the Laplace–Fourier transform of the so-
lution to (1.1) with initial conditions (1.2) or (1.3) is equal, for 0 < ν ≤ 2, to∫ +∞

0
e−st ds

∫ +∞
−∞

eiβxuν(x, t) dx = sν−1

sν + λ2β2 , s > 0, β ∈ R.(2.17)

We check that the Laplace–Fourier transform of (2.10) reduces to (2.17) for
ν = 1

2n and λ2 = 21/2n−2:∫ +∞
−∞

eiβxu1/2n(x, t) dx

= 2n
∫ +∞
−∞

eiβx dx

∫ ∞
0

e−x2/(2z1)√
2πz1

dz1 · · ·
∫ ∞

0

e−z2
n/(2t)

√
2πt

dzn

= 2n
∫ ∞

0
e−β2/2z1

e−z2
1/(2z2)

√
2πz2

dz1

∫ ∞
0

e−z2
2/(2z3)

√
2πz3

dz2 · · ·
∫ ∞

0

e−z2
n/(2t)

√
2πt

dzn
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= 2n
∞∑

r=0

(
−β2

2

)r 1

r!
∫ ∞

0
zr

1
e−z2

1/(2z2)

√
2πz2

dz1 · · ·
∫ ∞

0

e−z2
n/(2t)

√
2πt

dzn

= 2n
∞∑

r=0

(
−β2

2

)r 1

r!
2r/2−1
√

π
�

(
r + 1

2

)

×
∫ ∞

0
z
r/2
2

e−z2
2/(2z3)

√
2πz3

dz2 · · ·
∫ ∞

0

e−z2
n/(2t)

√
2πt

dzn

= 2n
∞∑

r=0

(
−β2

2

)r 1

r!
2r/2−12r/4−1

(
√

π)2 �

(
r

2
+ 1

2

)
�

(
r

4
+ 1

2

)

×
∫ ∞

0
z
r/4
3

e−z2
3/(2z4)

√
2πz4

dz3 · · ·
∫ ∞

0

e−z2
n/(2t)

√
2πt

dzn

= 2n
∞∑

r=0

(
−β2

2

)r 1

r!
2r/2−12r/4−1 · · ·2r/2n−1−1

(
√

π)n−1

× �

(
r

2
+ 1

2

)
�

(
r

22 + 1

2

)
· · ·�

(
r

2n−1 + 1

2

)

×
∫ ∞

0
zr/2n−1

n

e−z2
n/(2t)

√
2πt

dzn

= 2n
∞∑

r=0

(
−β2

2

)r 1

r!
2r/2+r/4+···+r/2n−n

(
√

π)n
tr/2n

× �

(
r

2
+ 1

2

)
�

(
r

22 + 1

2

)
· · ·�

(
r

2n
+ 1

2

)
.

By applying the duplication formula we get that

�

(
r

2
+ 1

2

)
�

(
r

22 + 1

2

)
· · ·�

(
r

2n
+ 1

2

)

= √
π21−r �(r)

�(r/2)

√
π21−r/2 �(r/2)

�(r/22)
· · ·√π21−r/2n−1 �(r/2n−1)

�(r/2n)
(2.18)

= √
πn2n−r−r/2−···−r/2n−1 �(r)

�(r/2n)
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and thus∫ +∞
−∞

eiβxu1/2n(x, t) dx

= 2n
∞∑

r=0

(
−β2

2

)r 1

r!2
r/2+r/4+···+r/2n−n2n−r−r/2−···−r/2n−1

t r/2n �(r)

�(r/2n)

=
∞∑

r=0

(
−β2

2

)r 2r/2n−r t r/2n

r/2n�(r/2n)
(2.19)

=
∞∑

r=0

(
−β2t1/2n

22−1/2n

)r 1

�(r/2n + 1)

= E1/2n,1

(
−β2t1/2n

22−1/2n

)
.

By taking the Laplace transform of (2.19) we get

∫ +∞
0

e−stE1/2n,1

(
−β2t1/2n

22−1/2n

)
dt = s1/2n−122−1/2n

β2 + 22−1/2n
s1/2n ,

which coincides with (2.17), for ν = 1
2n and λ2 = 21/2n−2.

The form (2.10) of the solution u1/2n shows that it coincides with the distribu-
tion of the n-times iterated Brownian motion defined in (1.10).

Another representation of the solution to the fractional equation (1.1) can be
inferred from the following result:

THEOREM 2.3. The solution uν(x, t) = uν to the initial value problem (2.1),
for 0 < ν ≤ 1, can be written as

uν(x, t) =
∫ ∞

0

1√
4πwλ

e−x2/(4wλ)u2ν(w, t) dw,(2.20)

where

u2ν(w, t) =
{

2u2ν(w, t), for w ≥ 0,
0, for w < 0

(2.21)

and u2ν is the solution of (2.3) or (2.4).

PROOF. We first note that for the solutions to (2.3) or (2.4) the following result
holds:

L(x, s) =
∫ ∞

0
e−stu2ν(x, t) dt = sν−1

2λ
e−|x|sν/λ,(2.22)
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as can be obtained by taking the Laplace transform of ∂2νu
∂t2ν = λ2 ∂2u

∂x2 . The solution
to the corresponding equation

s2νL − s2ν−1δ(x) = λ2 d2L

dx2

coincides with the solution to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2 d2L

dx2 = s2νL, x �= 0,

dL

dx

∣∣∣+ −dL

dx

∣∣∣−= −s2ν−1

λ2 ,

L(s,0+) = L(s,0−),

and easily yields (2.22); see also (3.3) of Orsingher and Beghin (2004). Therefore,
by taking the Laplace transform of (2.20), we get

∫ ∞
0

1√
4πwλ

e−x2/(4wλ)

{
2
∫ ∞

0
e−stu2ν(w, t) dt

}
dw

= 2
∫ ∞

0

1√
4πwλ

e−x2/(4wλ) s
ν−1

2λ
e−sν/λw dw

= [2w = z]

= sν−1

2λ

∫ ∞
0

1√
2πzλ

e−x2/(2zλ)e−sν/λz/2 dz

= sν/2−1

2λ
e−|x|sν/2/λ

and this coincides with the Laplace transform of uν(x, t). �

REMARK 2.4. Formula (2.20) suggests that we should represent the solution
of (2.1) as the distribution of the process

B(T2ν(t)), t > 0,(2.23)

where B is a Brownian motion with infinitesimal variance 2λ and T2ν(t), t > 0, is
a process, independent from B, with law equal to (2.21).

It is straightforward that, for ν = 1/2, the process (2.23) coincides with the
iterated Brownian motion I1; see (1.6).

By comparing the relationship (2.20) with (2.2) we note also that, in the compo-
sition of processes, Brownian motion plays in the second case the role of “time,”
while in the first one it represents “space.”
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3. On moments and functionals of the iterated Brownian motion. Some
properties of the classical iterated Brownian motion have been obtained by several
authors and include the law of iterated logarithm [Burdzy and San Martìn (1995)]
and the modulus of continuity [Khoshnevisan and Lewis (1996)]. Applications of
the iterated Brownian motion to diffusion in cracks are dealt with in De Blassie
(2004).

We start by presenting the distribution of the maximum of the n-times iterated
Brownian motion and, in an explicit form, for the usual iterated Brownian motion.

THEOREM 3.1. For the n-times iterated Brownian motion

In(t) = B1(|B2(|B3(· · · (|Bn+1(t)|) · · ·)|)|), t > 0,

where Bj , j = 1, . . . , n+1, are independent Brownian motions, we have for β > 0
that

Pr
{

max
0≤s≤t

In(s) ∈ dβ

}

= 2
∫ +∞

0
· · ·

∫ +∞
0

Pr{B1(y1) ∈ dβ}Pr
{

max
0≤z1≤y2

|B2(z1)| ∈ dy1

}
(3.1)

× Pr
{

max
0≤z2≤y3

|B3(z2)| ∈ dy2

}
· · ·Pr

{
max

0≤zn≤t
|Bn+1(zn)| ∈ dyn

}
.

PROOF. For I1(t) = B1(|B2(t)|) we can write that

Pr
{

max
0≤s≤t

I1(s) ∈ dβ

}

= Pr
{

max
0≤z≤max0≤w≤t |B2(w)|B1(z) ∈ dβ

}

= E

{
Pr
{

max
0≤z≤max0≤w≤t |B2(w)|B1(z) ∈ dβ

∣∣∣ max
0≤w≤t

|B2(w)|
}}

(3.2)

=
∫ +∞

0
Pr
{

max
0≤z≤y

B1(z) ∈ dβ

}
Pr
{

max
0≤w≤t

|B2(w)| ∈ dy

}

= 2
∫ +∞

0
Pr{B1(y) ∈ dβ}Pr

{
max

0≤w≤t
|B2(w)| ∈ dy

}
.

For In(t) = B1(|In−1(t)|), n ≥ 1, we have analogously that

Pr
{

max
0≤s≤t

In(s) ∈ dβ

}
(3.3)

= 2
∫ +∞

0
Pr{B1(y) ∈ dβ}Pr

{
max

0≤w≤t
|In−1(w)| ∈ dy

}

and, by induction, we obtain (3.1). �
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REMARK 3.1. In the case n = 1 we can give an explicit expression for (3.1)
as follows:

Pr
{

max
0≤s≤t

I1(s) ∈ dβ

}

= 2dβ

∫ +∞
0

e−β2/(2w)

√
2πw

×
{ +∞∑

k=−∞
(−1)k

[
(1 + 2k)

e−w2/(2t)(1+2k)2

√
2πt

(3.4)

+ (1 − 2k)
e−w2/(2t)(1−2k)2

√
2πt

]}
dw

= 2
+∞∑

k=−∞
(−1)k

[
Pr
{
I1

(
t

(1 + 2k)2

)
∈ dβ

}
+ Pr

{
I1

(
t

(1 − 2k)2

)
∈ dβ

}]

= 2dβ

+∞∑
k=−∞

(−1)k
[
u1/2

(
β,

t

(1 + 2k)2

)
+ u1/2

(
β,

t

(1 − 2k)2

)]
,

where u1/2(x, t) is given in (2.7) and in the first step we applied the well-known
result for the maximal distribution of the absolute value of Brownian motion [see
Shorack and Wellner (1986), page 34]. The last term of (3.4) shows that the distri-
bution of the maximum of the iterated Brownian motion can be expressed in terms
of its probability law u1/2 = u1/2(x, t), as in the case of the classical Brownian
motion.

In principle we could write explicitly the distribution of the maximum of In(t)

in terms of u1/2n , but this produces a sum of 2n terms, each of which has a very
entangled structure.

On the basis of the same principles it is possible to write down the distribution
of the sojourn time on the positive half-line of the process In(t) = B1(|In−1(t)|),
t > 0, n ≥ 1, defined as

�t =
∫ max0≤w≤t |In−1(w)|

0
1{z:B1(z)>0} dz.(3.5)

This random variable takes values in [0,+∞), because during the interval [0, t)

the process |In−1| (which plays the role of time for B1) can span the whole positive
real axes.

THEOREM 3.2. For the process In(t), t > 0, the distribution of �t reads

Pr{�t ∈ ds} = ds

∫ +∞
s

1

π
√

s(z − s)
Pr
{

max
0≤w≤t

|In−1(w)| ∈ dz

}
,

(3.6)
0 ≤ s < ∞.
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PROOF. The definition of �t given in (3.5) implies that

Pr{�t ∈ ds}

= E

{
Pr

{[∫ max0≤w≤t |In−1(w)|
0

1{z:B1(z)>0} dz

]
∈ ds

∣∣∣∣ max
0≤w≤t

|In−1(w)|
}}

(3.7)

=
∫ +∞
s

Pr{�z ∈ ds}Pr
{

max
0≤w≤t

|In−1(w)| ∈ dz

}
.

By inserting the arc-sine law in (3.7) we get (3.6).
We can check that (3.6) integrates to one∫ +∞

0
Pr{�t ∈ ds}

=
∫ +∞

0
ds

∫ +∞
s

1

π
√

s(z − s)
Pr
{

max
0≤w≤t

|In−1(w)| ∈ dz

}

=
∫ +∞

0
Pr
{

max
0≤w≤t

|In−1(w)| ∈ dz

}∫ z

0

ds

π
√

s(z − s)
= 1. �

REMARK 3.2. For the iterated Brownian motion I1(t) = B1(|B2(t)|) the dis-
tribution of �t can be written explicitly as follows:

Pr{�t ∈ ds}
= ds

∫ +∞
s

dz

π
√

s(z − s)

×
+∞∑

k=−∞
(−1)k

{
e−z2/(2t)(1+2k)2

√
2πt

(1 + 2k) + e−z2/(2t)(1−2k)2

√
2πt

(1 − 2k)

}
(3.8)

= ds

π
√

2πts

+∞∑
k=−∞

(−1)k
{
(1 + 2k)

∫ +∞
s

e−z2/(2t)(1+2k)2

√
z − s

dz

+ (1 − 2k)

∫ +∞
s

e−z2/(2t)(1−2k)2

√
z − s

dz

}
.

By the transformation z = s(1 + x2) the integrals in (3.8) are converted [for

A = (1±2k)2

2t
] into

2s

∫ +∞
0

e−s2A(1+x2)2

√
s

dx

= 2
√

se−s2A
∫ +∞

0
e−s2A(x4+2x2) dx

=
√

s

2
e−s2A/2K1/4

(
As2

2

)
,



226 E. ORSINGHER AND L. BEGHIN

where, in the last step, we have applied formula 3.469.1 of Gradshteyn and Rhyzik
(1994) and K1/4(x) = π√

2
[I−1/4(x) − I1/4(x)] [by formula 8.485 of Gradshteyn

and Rhyzik (1994)]. By Iν we denote the Bessel function of imaginary argument

of order ν, that is, Iν(x) = ∑+∞
k=0

(x/2)2k+ν

k!�(k+ν+1)
. Therefore we get

Pr{�t ∈ ds}

= ds

2π
√

πt

+∞∑
k=−∞

(−1)k
{
(1 + 2k)e−s2/(4t)(1+2k)2

K1/4

(
s2(1 + 2k)2

4t

)

+ (1 − 2k)e−s2/(4t)(1−2k)2
K1/4

(
s2(1 − 2k)2

4t

)}
.

We now derive the explicit form of the moments of even order of In(t).

THEOREM 3.3. For the process In(t), t > 0, the moments of order 2k are
given by

EI2k
n (t) = (2k)!

k!
2n

2k

∫ ∞
0

xk dx

∫ ∞
0

e−x2/(2z1)√
2πz1

dz1 · · ·
∫ ∞

0

e−z2
n−1/(2t)

√
2πt

dzn−1

(3.9)

= 2k/2n

22k

(2k)!
�(k/2n + 1)

tk/2n

.

PROOF. The first expression in (3.9) can be proved by observing that, for
n ≥ 1,

EI2k
n (t) = E[B2k

1 (|B2(|B3(· · · |Bn+1(t)| · · ·)|)|)]
= (2k)!

k!
1

2k
E|B2(|B3(· · · |Bn+1(t)| · · ·)|)|k

(3.10)

= (2k)!
k!

1

2k
2
∫ +∞

0
xk Pr{B2(|B3(· · · |Bn+1(t)| · · ·)|) ∈ dx}

= (2k)!
k!

1

2k
2
∫ +∞

0
xk Pr{In−1(t) ∈ dx},

which coincides with the second line of (3.9). By performing the integrations in
(3.10) we get the explicit expression of the moments of order 2k:

EI2k
n (t) = �(k/2 + 1/2)�(k/22 + 1/2) · · ·�(k/2n + 1/2)2k/2+···+k/2n

tk/2n

2n
√

πn

× (2k)!2n

k!2k

= [by (2.18)](3.11)
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= √
πn2n−k−k/2−···−k/2n−1 �(k)

�(k/2n)

2k/2+···+k/2n
tk/2n

2k
√

πn

(2k)!
k!

= tk/2n

2n−2k+k/2n (2k)!
k�(k/2n)

. �

REMARK 3.3. For n = 0 formula (3.9) coincides with the moments EB2k(t),
which is as it should be, since I0(t) = B(t).

For n = 1, the moments of the iterated Brownian motion I1(t) = B1(|B2(t)|)
can be evaluated directly as follows:

EI2k
1 (t) = EB2k

1 (|B2(t)|)
= (2k)!

k!
1

2k
E|B2(t)|k

= (2k)!
k!

2

2k

∫ +∞
0

xk e−x2/(2t)

√
2πt

dx

= 2k/2

22k

(2k)!
�(k/2 + 1)

tk/2,

which coincides with (3.9) for n = 1.

For any n ≥ 1 and k = 1, we obtain the explicit form of the variance

varIn(t) = 21/2n
t1/2n

2�(1/2n + 1)
,

while, for n = 0, it is varI0(t) = t , as expected.

REMARK 3.4. For all t > 0, the sequence In(t) converges in distribution,

for n → ∞, to the Gauss–Laplace exponential random variable and its density is
independent from t. From (1.11) we get that

lim
n→∞u1/2n(x, t) = e−2|x|, t > 0, x ∈ R.(3.12)

By working on the Fourier transform (2.19) of u1/2n we have the following
alternative proof:

lim
n→∞

∫ +∞
−∞

eiβxu1/2n(x, t) dx = E0,1

(
−β2

22

)
=

∞∑
k=0

(
−β2

22

)k

= 22

22 + β2 .(3.13)

Formula (3.13) coincides with the characteristic function of (3.12). Loosely
speaking, this shows that the composition of infinite Brownian motions produces
the bilateral exponential distribution.
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In view of (1.9) we have also the identity

lim
n→∞ 2n

∫ ∞
0

· · ·
∫ ∞

0

e−x2/(2z1)√
2πz1

e−z2
1/(2z2)

√
2πz2

· · · e−z2
n/(2t)

√
2πt

dz1 · · ·dzn

(3.14)
= e−2|x|,

which is a rather striking result. Furthermore, if we assume that

lim
n→∞

∂1/2n
u

∂t1/2n = u,

the fractional equation (1.1) is converted into

u = 1

22

∂2u

∂x2 ,

subject to

u(x,0) = δ(x),

which is satisfied by (3.12) for all x �= 0.

REMARK 3.5. For the random process

T (|B2(|B3(· · · |Bn+1(t)| · · ·)|)|), t > 0,(3.15)

where T is a telegraph process (with parameters λ and c) independent from the
Brownian motions Bk, k = 2, . . . , n + 1, we have a similar result. The distribution
u1/2n of (3.15) is a solution to⎧⎨

⎩
∂2/2n

u

∂t2/2n + 2λ
∂1/2n

u

∂t1/2n = c2 ∂2u

∂x2 ,

u(x,0) = δ(x),

x ∈ R, t > 0

and its characteristic function is equal to∫ +∞
−∞

eiβxu1/2n(x, t) dx

= 1

2

[(
1 + λ√

λ2 − c2β2

)
E1/2n,1(η1t

1/2n

)(3.16)

+
(

1 − λ√
λ2 − c2β2

)
E1/2n,1(η2t

1/2n

)

]
,

where η1 = −λ +
√

λ2 − c2β2 and η2 = −λ −
√

λ2 − c2β2 [see Orsingher and
Beghin (2004), formula (2.7), for α = 1/2n].
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For n → ∞ we get from (3.16) that

lim
n→∞

∫ +∞
−∞

eiβxu1/2n(x, t) dx = 1 + 2λ

1 + 2λ + c2β2 ,(3.17)

which is the characteristic function of the bilateral exponential random variable,
with density

f (x) =
√

1 + 2λ

2c
e−|x|√1+2λ/c, x ∈ R.(3.18)

Clearly, for λ = 0 and c = 1/2, (3.18) reduces to (3.12) and (3.17) coincides
with (3.13).

4. The explicit solution of the fractional diffusion equation for ν = 1/3,
ν = 2/3 and ν = 4/3. In some special cases it is possible to present the solutions
of the fractional equations (1.1) in a more attractive fashion. This is the case for
ν = 2

3 . The explicit form of u2/3(x, t) is given in the next theorem, in terms of Airy
functions.

By combining this result with the relationship given in Theorem 2.1, u1/3(x, t)

can be represented consequently in an interesting form.

THEOREM 4.1. The solution to⎧⎨
⎩

∂2/3u

∂t2/3 = λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

x ∈ R, t > 0(4.1)

can be represented as

u2/3(x, t) = 3

2

1

λ
3
√

3t
Ai

( |x|
λ

3
√

3t

)
,(4.2)

where

Ai(w) = 1

π

∫ +∞
0

cos
(
αw + α3

3

)
dα

(4.3)

= w1/2

3

[
I−1/3

(
2w3/2

3

)
− I1/3

(
2w3/2

3

)]
is the Airy function and Iν denotes the Bessel function of imaginary argument of
order ν.

PROOF. From (1.4) we readily have that

u2/3(x, t) = 1

2λt1/3

∞∑
k=0

(−|x|/(λt1/3))k

k!�(1 − (k + 1)/3)

(4.4)

= 1

2πλt1/3

∞∑
k=0

(−|x|/(λt1/3))k�((k + 1)/3) sin(π(k + 1)/3)

k! .
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By direct inspection the following identity is proven to hold:

sin
π(k + 1)

3
= (−1)k sin

2π(k + 1)

3
(4.5)

and, by inserting this into (4.4), we get that

u2/3(x, t) = 1

2πλt1/3

∞∑
k=0

(|x|/(λt1/3))k�((k + 1)/3) sin(2π(k + 1)/3)

k! .(4.6)

We note that, from (4.3), for all |w| < ∞,

Ai(w) = w1/2

3

[
I−1/3

(
2w3/2

3

)
− I1/3

(
2w3/2

3

)]

= w1/2

3

[ ∞∑
k=0

(
w3/2

3

)2k−1/3 1

k!�(k − 1/3 + 1)

−
∞∑

k=0

(
w3/2

3

)2k+1/3 1

k!�(k + 1/3 + 1)

]
(4.7)

=
∞∑

k=0

w3k

32k+2/3

1

k!�(k + 2/3)
−

∞∑
k=0

w3k

32k+4/3

1

k!�(k + 4/3)

= 2

37/6

∞∑
k=0

(
w

32/3

)k sin(2π(k + 1)/3)

�((k + 2)/3)�((k + 3)/3)
.

The last step can be justified by taking k = 3m,3m + 1 and 3m + 2. While for
k = 3m + 2 the last term in (4.7) is equal to zero, in the other two cases the two
series are obtained.

The triplication formula of the Gamma function [see Lebedev (1972), page 14],
that is,

�(z)�

(
z + 1

3

)
�

(
z + 2

3

)
= 2π

33z−1/2 �(3z),(4.8)

for z = k+1
3 yields

�

(
k + 2

3

)
�

(
k + 3

3

)
= 2π

3k+1/2

�(k + 1)

�((k + 1)/3)
.(4.9)

From (4.9) we have that

Ai(w) = 3−2/3

π

∞∑
k=0

(31/3w)k
sin(2π(k + 1)/3)

k! �

(
k + 1

3

)
,(4.10)

and (4.2) easily follows by comparing (4.10) and (4.6). �
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(a) (b)

FIG. 1. The Airy function and the function Ai(|x|).

REMARK 4.1. The expression of u2/3(x, t) obtained in the previous theorem
can be recognized (up to the factor 3/2) as the solution of the third-order heat-type
equation ⎧⎨

⎩
∂v

∂t
= −λ3 ∂3v

∂y3 ,

v(y,0) = δ(y),

y ∈ R, t > 0,(4.11)

evaluated at y = |x|. Since Ai(y), for y > 0, is positive-valued [see Figure 1(a)]
and the function (4.2) integrates to one (as we show below), u2/3(x, t) is a true
probability distribution:∫ +∞

−∞
u2/3(x, t) dx

= 3

2

[∫ +∞
0

1

λ
3
√

3t
Ai

(
x

λ
3
√

3t

)
dx +

∫ 0

−∞
1

λ
3
√

3t
Ai

(
− x

λ
3
√

3t

)
dx

]

= 2
3

2

∫ +∞
0

Ai(y) dy = 1,

where the last step follows by noting that
∫+∞

0 Ai(y) dy = 1/3; see Nikitin and
Orsingher (2000).

Therefore we can think of u2/3(x, t) as the probability law of a process A(t), t >

0, whose distribution at time t is obtained from the solution v(x, t) of equation
(4.11), as follows:

u2/3(x, t) = 3
2v(|x|, t).

REMARK 4.2. For the case ν = 1
3 the solution u1/3(x, t) to (1.1) can be writ-

ten, thanks to the relationship (2.2), as

u1/3(x, t) = 1√
πt

∫ ∞
0

e−z2/(4t)u2/3(x, z) dz(4.12)
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= 1√
πt

∫ ∞
0

e−z2/(4t) 32/3

2λz1/3 Ai

( |x|
λ

3
√

3z

)
dz.

We can represent (4.12) as the distribution of the process

J1/3(t) = A(|B(t)|), t > 0,

with A and B independent. The results (4.2) and (4.12) show that the solutions
u2/3(x, t) and u1/3(x, t) are both unimodal with maximum at x = 0; see Fig-
ure 1(b). This is in accordance with the general result that, for 0 < ν ≤ 1, the
solutions to the fractional equation (1.1) have a unique maximal point at x = 0.

We consider now the case ν = 4/3, which is qualitatively different from those
dealt with so far, because the solutions of fractional equations of order 1 < ν < 2
display a substantially different behavior.

THEOREM 4.2. The solution to⎧⎪⎪⎨
⎪⎪⎩

∂4/3u

∂t4/3 = λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

ut (x,0) = 0,

x ∈ R, t > 0,(4.13)

is given by

u4/3(x, t) = 1

λ
√

π

(
3

4t

)2/3 ∫ +∞
0

e−ww−1/6Ai

(
−|x|

λ

(
2

t

√
w

3

)2/3)
dw.(4.14)

PROOF. From (1.4) we have that

u4/3(x, t) = 1

2λt2/3

∞∑
k=0

(
− |x|

λt2/3

)k 1

k!�(1 − 2/3(k + 1))

(4.15)

= 1

2λπt2/3

∞∑
k=0

(
− |x|

λt2/3

)k �(2/3(k + 1)) sin(2π(k + 1)/3)

k! .

By means of the duplication formula for the Gamma function we have that

�

(
1

3
(k + 1) + 1

2

)
=

√
π21−2/3(k+1)�(2/3(k + 1))

�((k + 1)/3)
,

and therefore u4/3(x, t) can be rewritten as

u4/3(x, t) = 1

2λπ
√

π21/3t2/3

×
∞∑

k=0

(
−22/3|x|

λt2/3

)k sin(2π(k + 1)/3)

k! �

(
k + 1

3

)
�

(
k + 1

3
+ 1

2

)
(4.16)
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= 1

2λπ
√

π21/3t2/3

×
∞∑

k=0

∫ +∞
0

e−ww1/3(k+1)+1/2−1

× �

(
k + 1

3

)(
−|x|

λ

(
2

t

)2/3)k sin(2π(k + 1)/3)

k! dw

= 1

2λπ
√

π21/3t2/3

×
∞∑

k=0

∫ +∞
0

e−ww1/2−2/3
(
−|x|

λ

(
2

t

)2/3

w1/3
)k

× sin(2π(k + 1)/3)

k! �

(
k + 1

3

)
dw

= [by (4.10)]

= 32/3

2λ
√

π21/3t2/3

∫ +∞
0

e−ww−1/6Ai

(
−|x|

λ

(
2

t

√
w

3

)2/3)
dw. �

We can show that
∫+∞
−∞ u4/3(x, t) dx = 1. Indeed, from (4.14) we have that

1

λ
√

π

(
3

4t

)2/3 ∫ +∞
0

e−ww−1/6
∫ +∞
−∞

Ai

(
−|x|

λ

(
2

t

√
w

3

)2/3)
dx dw

= 2

λ
√

π

(
3

4t

)2/3 ∫ +∞
0

e−ww−1/6
∫ +∞

0
Ai

(
−x

λ

(
2

t

√
w

3

)2/3)
dx dw

=
[
by the substitution y = −x

λ

(
2

t

√
w

3

)2/3]

= 2

λ
√

π

(
3

4t

)2/3

λ

(
2

t

√
1

3

)−2/3 ∫ +∞
0

e−ww−1/2
∫ 0

−∞
Ai(y) dy dw

= 1√
π

2

3
2
(

3

4

)2/3 2−2/3

3−1/3

∫ +∞
0

e−ww−1/2 dw = 1.

REMARK 4.3. In view of Theorem 2.1 we have the following representation
for u2/3(x, t), which is alternative to (4.2):

u2/3(x, t) = 1√
πt

∫ ∞
0

e−z2/(4t)u4/3(x, z) dz(4.17)
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= 32/3

2λ
√

π21/3

∫ +∞
0

e−z2/(4t)

z2/3
√

πt
dz

×
∫ +∞

0
e−ww−1/6Ai

(
−|x|

λ

(
2

z

√
w

3

)2/3)
dw.

By inserting (4.2) into the left-hand side of (4.17) we obtain that

3

2λ
3
√

3t
Ai

( |x|
λ

3
√

3t

)

= 32/3

2λ
√

π21/3

∫ +∞
0

e−z2/(4t)

√
πtz2/3

dz

×
∫ +∞

0
e−ww−1/6Ai

(
−|x|

λ

(
2

z

√
w

3

)2/3)
dw

= [
by the substitution s = 3

√
22twz−2

]

= 32/3

2λ
√

π21/3

∫ +∞
0

e−z2/(4t)

√
πtz2/3

3z5/3

25/3t5/6 s3/2 dz(4.18)

×
∫ +∞

0
e−z2s3/(4t)Ai

(
− |x|s

λ
3
√

3t

)
ds

= 35/3

23λπt4/3

∫ +∞
0

Ai

(
− |x|s

λ
3
√

3t

)
s3/2 ds

∫ +∞
0

ze−z2(1+s3)/(4t) dz

= 35/3

22λπt1/3

∫ +∞
0

s3/2

1 + s3 Ai

(
− |x|s

λ
3
√

3t

)
ds

= 32/3

2λt1/3

∫ +∞
0

Pr{|B(T0)| ∈ ds}Ai

(
− |x|s

λ
3
√

3t

)
,

where

Pr{|B(T0)| ∈ ds} = 3

2π

s3/2

1 + s3 ds, s > 0,

is the McKean law representing the distribution of the position of a Brownian
motion B at the instant

T0 = inf
{
t > 0 : 1 +

∫ t

0
B(s) ds = 0

}
;

see McKean (1963).
By setting y = |x|

λ
3√3t

in (4.18) and performing some simplifications we get

Ai(|y|) =
∫ +∞

0
Pr{|B(T0)| ∈ ds}Ai(−|y|s), y ∈ R.(4.19)
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Formula (4.19) shows an interesting property of Airy functions: The value of the
exponentially decreasing part of Ai(|y|) can be obtained by averaging its oscillat-
ing component Ai(−|y|s) with the well-known density of |B(T0)| (see Figure 1).

REMARK 4.4. The solution u4/3(x, t) can also be expressed in terms of a
stable density of order 3

2 . Indeed, by using the representation of the stable density
below

pα(x;γ, η) = 1

2π

∫ +∞
−∞

e−iβx exp
{−η|β|αe−iπγ /2β/|β|}dβ, α �= 1,(4.20)

we know that for α ∈ (1,2), η = 1 and for x > 0 the following series representation
holds true:

pα(x;γ,1) = 1

π

∞∑
k=1

(−x)k−1 sin(kπ(γ + α)/(2α))

k! �

(
1 + k

α

)
;(4.21)

see formula (6.9), page 583 of Feller (1971) (up to some corrections) and Lukacs
(1969).

For α = 3
2 and γ = 1

2 formula (4.21) reads

p3/2

(
x; 1

2
,1
)

= 1

π

∞∑
r=0

(−x)r
sin{(r + 1)2/3π}

(r + 1)! �

(
1 + 2

3
(r + 1)

)
(4.22)

= 2

3

1

π

∞∑
r=0

(−x)r
sin{(r + 1)2/3π}

r! �

(
2

3
(r + 1)

)
.

If we compare (4.15) with (4.22) we get that

u4/3(x, t) = 3

2

1

2λt2/3 p3/2

( |x|
λt2/3 ; 1

2
,1
)
.(4.23)

A different proof of the relationship between stable laws and the solutions of
fractional diffusion equations, based on the inversion of the Fourier transform, can
be found in Fujita (1990).

Formula (4.23) proves the nonnegativity of the expression (4.16), as a function
of x.

5. Some generalizations of the previous results. In this section we present
some generalizations of the results of Sections 2 and 4.

We start by giving a relationship between the solutions uν and umν , m ≥ 3,
and obtain some explicit expressions for m = 3. In this case the interpretation of
u2/3n as the distribution of compositions of different types of processes is possible.
Also in this case we encounter processes with a random time which possesses a
branching structure (depending on n).

We now state a general result which is alternative to (2.2) and permits us to
exploit the explicit expression of uν(x, t).
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THEOREM 5.1. The solution to the initial value problem (1.1)–(1.2), for 0 <

ν ≤ 2/3, can be represented as

uν(x, t) = 3

2π
√

t

∫ +∞
0

∫ +∞
0

se−(s3+v3)/(3
√

3t)u3ν(x, sv) ds dv,(5.1)

where u3ν(x, z) is the solution to⎧⎨
⎩

∂3νu

∂z3ν
= λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

x ∈ R, z > 0, 0 < ν ≤ 1

3
,(5.2)

and ⎧⎪⎪⎨
⎪⎪⎩

∂3νu

∂z3ν
= λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

ut (x,0) = 0,

x ∈ R, z > 0,
1

3
< ν <

2

3
.(5.3)

PROOF. In view of the triplication formula (4.8), for z = 1
3 − ν(k+1)

2 , we have
that

uν(x, t) = 1

2λtν/2

∞∑
k=0

(−|x|/(λtν/2))k

k!�(1 − ν(k + 1)/2)

= 1

2λ2πtν/2

×
∞∑

k=0

(
− |x|

λtν/2

)k

× 31−3/2ν(k+1)−1/2�(2/3 − ν(k + 1)/2)�(1/3 − ν(k + 1)/2)

k!�(1 − 3ν(k + 1)/2)

=
√

3

2233/2νλπtν/2

×
∫ +∞

0

∫ +∞
0

e−w−zw−ν/2−1/3z−ν/2−2/3

×
∞∑

k=0

(
− |x|

λ(
3
√

33wzt)3ν/2

)k dw dz

k!�(1 − 3ν(k + 1)/2)

=
√

3

2π33/2νtν/2

∫ +∞
0

∫ +∞
0

e−w−zw−ν/2−1/3z−ν/2−2/3

× ( 3
√

33wzt
)3ν/2

u3ν

(
x,

3
√

33wzt
)
dw dz(5.4)
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=
√

3(33t)ν/2

2π33/2νtν/2

∫ +∞
0

∫ +∞
0

e−w−zw−ν/2−1/3z−ν/2−2/3

× (wz)ν/2u3ν

(
x,

3
√

33wzt
)
dw dz

=
√

3

2π

∫ +∞
0

∫ +∞
0

e−w−zw−1/3z−2/3u3ν

(
x,3 3

√
wzt

)
dw dz,

which reduces to (5.1), after the change of variables{
s = √

3 3
√

w
3
√

t1/2,

v = √
3 3
√

z
3
√

t1/2. �

It can be easily checked that, also in this form, the solution integrates to one. By
using the last expression in (5.4) we get∫ +∞

−∞
uν(x, t) dx

=
√

3

2π

∫ +∞
0

∫ +∞
0

e−w−zw−1/3z−2/3
∫ +∞
−∞

u3ν

(
x,3 3

√
wzt

)
dx dw dz

=
√

3

2π

∫ +∞
0

e−ww−1+2/3 dw

∫ +∞
0

e−zz−1+1/3 dz

=
√

3

2π
�

(
2

3

)
�

(
1

3

)
= 1,

since, by the triplication formula for z = 1/3, it is �(2
3)�(1

3) = 2π/
√

3.

REMARK 5.1. By using the previous result it is possible to obtain alternative
forms for the solution to the initial value problem for ν = 1/3 and for ν = 2/9.

Indeed, in the first case it is

u1/3(x, t) = 3

2π
√

t

∫ +∞
0

∫ +∞
0

se−(s3+v3)/(3
√

3t)u1(x, sv) ds dv

(5.5)

= 3

2π
√

t

∫ +∞
0

∫ +∞
0

se−(s3+v3)/(3
√

3t) e
−x2/(4λ2(sv))

2λ
√

πsv
ds dv.

The relationship (5.5) shows that u1/3 can be interpreted as the distribution of a
Brownian motion (with infinitesimal variance 2λ2) at a random time G1(t) ·G2(t),
that is,

J1/3(t) = B[G1(t) · G2(t)],(5.6)

where (G1(t),G2(t)) possesses joint density

p(G1(t),G2(t))(s, v) = 3

2π
√

t
se−(s3+v3)/(3

√
3t), s > 0, v > 0.(5.7)
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This result corresponds to (1.7), for ν = 1/3 and it represents a counterpart of
result (1.6) with the reflecting Brownian motion replaced by the product G1(t) ·
G2(t), with joint distribution given in (5.7).

In the case ν = 2/32, from (5.1) we have that

u2/32(x, t) = 3

2π
√

t

∫ +∞
0

∫ +∞
0

se−(s3+v3)/(3
√

3t)u2/3(x, sv) ds dv(5.8)

and this suggests that we interpret u2/32(x, t) as the distribution of the process

J2/32(t) = A[G1(t) · G2(t)].(5.9)

The process (5.9) is analogous to (5.6) with the role of Brownian motion played
by the process A.

Analogously to (5.9), for ν = 2/33, we get

J2/33(t) = A{G1[G1(t) · G2(t)] · G2[G1(t) · G2(t)]}
which has distribution coinciding with

u2/33(x, t)

= 3

2π
√

t

∫ +∞
0

∫ +∞
0

se−(s3+v3)/(3
√

3t)

×
(

3

2π
√

sv

∫ +∞
0

∫ +∞
0

we−(w3+z3)/(3
√

3sv)u2/3(x, zw)dz dw

)
ds dv,

as an application of (5.1) and (5.8) shows.

The results of Theorem 2.1 and 5.1 can be furthermore generalized in order to
relate the solutions uν(x, t) with umν(x, t).

THEOREM 5.2. The solution to equation (2.1), for ν ≤ 2/m, m ≥ 1 can be
represented as

uν(x, t) = m(m−1)/2

(2π)(m−1)/2
√

t

×
∫ +∞

0
· · ·

∫ +∞
0

e−(wm
1 +···+wm

m−1)/
m−1√

mmtw2 · · ·wm−2
m−1(5.10)

× umν(x,w1w2 · · ·wm−1) dw1 · · ·dwm−1.

PROOF. From (1.4), by using the multiplication formula of the Gamma func-
tion [see Magnus and Oberhettinger (1948)], that is,

�(z)�

(
z + 1

m

)
�

(
z + 2

m

)
· · ·�

(
z + m − 1

m

)

= (2π)(m−1)/2m1/2−mz�(mz),
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for z = 1
m

− ν(k+1)
2 , we get that

uν(x, t)

= 1

2λtν/2

∞∑
k=0

(
− |x|

λtν/2

)k 1

k!�(1 − ν(k+1)
2 )

=
√

m

2λtν/2(2π)(m−1)/2

×
∞∑

k=0

(
− |x|

λtν/2

)k

× �

(
1

m
− ν(k + 1)

2

)
�

(
2

m
− ν(k + 1)

2

)
· · ·

× �

(
m − 1

m
− ν(k + 1)

2

)
m−m/2ν(k+1)

[
k!�

(
1 − m

2
ν(k + 1)

)]−1

=
√

m

2λtν/2(2π)(m−1)/2mm/2ν

×
∫ +∞

0
· · ·

∫ +∞
0

e−w1−···−wm−1w
−1/m
1 w

−2/m
2 · · ·w−(m−1)/m

m−1

× umν

(
x,m m

√
w1 · · ·wm−1t

)
dw1 · · ·dwm−1.

By means of the transformation

zj = m−1
√

m m
√

wj
m
√

t1/(m−1),

we finally get (5.10). �

We prove now a general result, valid for any 0 < ν < 2, which gives another
representation for the solution uν = uν(x, t), alternative to those presented in the
previous sections.

THEOREM 5.3. The solution to (1.1) with initial condition (1.2) or (1.3) has
the following form:

uν(x, t) = 1

2πλtν/2

∫ +∞
0

e−wwν/2−1e−|x|wν/2/(λtν/2) cos(νπ/2)

× sin
(

νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))
dw(5.11)

= 1

νπ

∫ +∞
0

e−|x|y cos(νπ/2)−(λy)2/ν t sin
(

νπ

2
− |x|y sin

(
νπ

2

))
dy,
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for 0 < ν < 2.

PROOF. By applying the reflection property of the Gamma function we rewrite
(1.4) as

uν(x, t) = 1

2λtν/2

∞∑
k=0

(−|x|/(λtν/2))k

k!�(1 − ν/2(k + 1))

= 1

2πλtν/2

∞∑
k=0

(
− |x|

λtν/2

)k sin(νπ/2(k + 1))

k! �

(
ν

2
(k + 1)

)

= 1

2πλtν/2

∫ +∞
0

e−w
∞∑

k=0

wν(k+1)/2−1

k!
(
− |x|

λtν/2

)k

sin
(

νπ

2
(k + 1)

)
dw

= 1

2πλtν/2

∫ +∞
0

e−wwν/2−1

(5.12)

×
∞∑

k=0

[(
−|x|wν/2

λtν/2

)k 1

k!
eiνπ(k+1)/2 − e−iνπ(k+1)/2

2i

]
dw

= 1

2πλtν/2

×
∫ +∞

0
e−w wν/2−1

2i

× [
e−|x|wν/2eiν/2π/(λtν/2)eiν/2π

− e−|x|wν/2e−iν/2π/(λtν/2)e−iν/2π ]dw,

which coincides with the first form of (5.11). The second line can be obtained by
the change of variable w = (λy)2/νt . �

REMARK 5.2. We can check that, for ν = 1 (i.e., for the heat equation), the
first expression in (5.11) reduces to the Gaussian density:

u1(x, t) = 1

2πλt1/2

∫ +∞
0

e−ww1/2−1 sin
(

π

2
− |x|w1/2

λt1/2

)
dw

= 1

2πλt1/2

∫ +∞
0

e−ww1/2−1 cos
( |x|w1/2

λt1/2

)
dw

(5.13)
= [w = y2]
= 1√

4πtλ2
e−x2/(4tλ2).
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In the last step we used formula 3.896.4, page 514, of Gradshteyn and Ryzhik
(1994). The same check can be done for the second expression in (5.11).

An alternative form of (5.11) can be obtained by means of a double integration
by parts, as follows:

COROLLARY 5.1. The solution to (1.1) with initial condition (1.2) or (1.3)
can be rewritten as

uν(x, t) = 1

πν|x|
∫ +∞

0
e−we−|x|wν/2/(λtν/2) cos(νπ/2)

(5.14)

× sin
( |x|wν/2

λtν/2 sin
(

νπ

2

))
dw,

for 0 < ν < 2.

PROOF. The first integration in (5.11) gives

uν(x, t) = 1

πν|x| sin(νπ/2)
cos

(
νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))

× e−we−|x|wν/2/(λtν/2) cos(νπ/2)
∣∣∣+∞
0

+ 1

πν|x| sin(νπ/2)

∫ +∞
0

e−we−|x|wν/2/(λtν/2) cos(νπ/2)

× cos
(

νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))
dw

+ cos(νπ/2)

2π sin(νπ/2)λtν/2

∫ +∞
0

e−wwν/2−1e−|x|wν/2/(λtν/2) cos(νπ/2)

× cos
(

νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))
dw

= −cot(νπ/2)

πν|x|
+ 1

πν|x| sin(νπ/2)

∫ +∞
0

e−we−|x|wν/2/(λtν/2) cos(νπ/2)

× cos
(

νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))
dw

− cos(νπ/2)

πν|x| sin2(νπ/2)
e−we−|x|wν/2/(λtν/2) cos(νπ/2)
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× sin
(

νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

)) ∣∣∣+∞
0

− cos(νπ/2)

πν|x| sin2(νπ/2)

∫ +∞
0

e−we−|x|wν/2/(λtν/2) cos(νπ/2)

× sin
(

νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))
dw

− cos2(νπ/2)

2π sin2(νπ/2)λtν/2

∫ +∞
0

e−wwν/2−1e−|x|wν/2/(λtν/2) cos(νπ/2)

× sin
(

νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))
dw.

Therefore, from (5.11) we have that

{
1 + cos2(νπ/2)

sin2(νπ/2)

}
uν(x, t)

= 1

πν|x| sin(νπ/2)

×
∫ +∞

0
e−we−|x|wν/2/(λtν/2) cos(νπ/2)

×
[
cos

(
νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))

− cot
(

νπ

2

)
sin

(
νπ

2
− |x|wν/2

λtν/2 sin
(

νπ

2

))]
dw

= 1

πν|x| sin(νπ/2)

∫ +∞
0

e−we−|x|wν/2/(λtν/2) cos(νπ/2)

×
{[

cos
(

νπ

2

)
cos

( |x|wν/2

λtν/2 sin
(

νπ

2

))

+ sin
(

νπ

2

)
sin

( |x|wν/2

λtν/2 sin
(

νπ

2

))]

− cot
(

νπ

2

)[
sin

(
νπ

2

)
cos

( |x|wν/2

λtν/2 sin
(

νπ

2

))

− cos
(

νπ

2

)
sin

( |x|wν/2

λtν/2 sin
(

νπ

2

))]
,

which easily gives (5.14). �
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REMARK 5.3. We can check that, for ν = 1, (5.14) reduces again to the
Gaussian density:

u1(x, t) = 1

π |x|
∫ +∞

0
e−w sin

( |x|w1/2

λt1/2

)
dw

=
[
w = y2

2

λ2t

|x|2
]

= λ2t

π |x|3
∫ +∞

0
ye−y2/2λ2t/|x|2 sin

y√
2

dy

= 1√
2π |x|

∫ +∞
0

e−y2/2λ2t/|x|2 cos
y√
2

dy

= 1

2
√

πtλ2
e−x2/(4tλ2)

as in (5.13).
With respect to (5.11), formula (5.14) is more appealing as it allows an easier

analysis of the limit for |x| → 0:

lim|x|→0
uν(x, t) = 1

πν

sin(νπ/2)

λtν/2

∫ +∞
0

wν/2e−w dw(5.15)

= 1

πν

sin(νπ/2)

λtν/2 �

(
ν

2
+ 1

)
.

For t → +∞, (5.15) decreases for all values of ν ∈ (0,2].
Moreover in the case ν = 1, formula (5.15) gives the maximum value of the

Brownian density. For ν = 2 (5.15) is zero for all t > 0, because in this case (1.1)
becomes the wave equation and its solution has the form of the sum of Dirac’s
impulse functions travelling in opposite directions.

By means of the following formula∫ +∞
0

sinqx

x
e−px dx = arctan

q

p
, p > 0

[Gradshteyn and Ryzhik (1994), formula 3.941.1, page 523] we can check that
(5.14) integrates to one, as follows:∫ +∞

−∞
uν(x, t) dx = 2

πν

∫ +∞
0

e−w
∫ +∞

0

1

x
e−xwν/2/(λtν/2) cos(νπ/2)

× sin
(

xwν/2

λtν/2 sin
(

νπ

2

))
dx dw

= 2

πν

νπ

2

∫ +∞
0

e−w dw = 1.
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FIG. 2. (A) The solution uν(x, t), for 0 < ν < 1. (B) The solution uν(x, t), for 1 < ν < 2.

Finally it is interesting to analyze the behavior of the solution (for x varying
and t fixed), which is substantially different in the two intervals 0 < ν ≤ 1 and
1 < ν ≤ 2 (see Figure 2 above). We rewrite formula (5.14) as follows: for x > 0,

uν(x, t) = 1

πν

∫ +∞
0

g(x,w, t)

x
e−w dw,

where g(x,w, t) = e−xA cos(νπ/2) sin(xA sin(νπ/2)) and A = wν/2/λtν/2.
The first derivative of g(x,w,t)

x
with respect to x is equal to zero if

gx

g
= 1

x
,(5.16)

where

gx = −A cos
νπ

2
e−xA cos(νπ/2) sin

(
xA sin

νπ

2

)

+ A sin
νπ

2
e−xA cos(νπ/2) cos

(
xA sin

νπ

2

)

= Ae−xA cos(νπ/2) sin
(

νπ

2
− xA sin

νπ

2

)
.

The solution to (5.16) is

lgg = lgx + const

or, otherwise,

g = xconst.

By choosing const = 1, we obtain that uν(x, t) attains its maximum on the positive
half-line if

xexA cos(νπ/2) = sin
(
xA sin

νπ

2

)
.(5.17)



PROCESSES WITH RANDOMLY VARYING TIME 245

For 1 < ν ≤ 2 there exists only one value of x which verifies the condition
(5.17) and this is in accordance with the behavior of the solutions uν presented in
Fujita (1990), where the relationship with stable laws is exploited.

On the other hand, for 0 < ν ≤ 1, no positive value satisfies (5.17) and therefore
the maximum is in the origin. The previous results are confirmed by the following
theorems.

We now present the general results concerning the relationship between the
solution uν(x, t) and the stable densities. We need to analyze the two intervals
0 < ν ≤ 1 and 1 < ν ≤ 2 separately.

THEOREM 5.4. For 0 < ν ≤ 1, the solution to⎧⎨
⎩

∂νu

∂tν
= λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

x ∈ R, t > 0,(5.18)

can be represented as

uν(x, t) = 1

ν

λ2/νt

|x|2/ν+1 pν/2

(
λ2/νt

|x|2/ν
; ν

2
,1
)

(5.19)

= 1

ν|x|2/ν+1 pν/2

(
1

|x|2/ν
; ν

2
,

1

λtν/2

)

where pν
2
(·; ν

2 ,1) is the density of a stable distribution of parameters γ = ν
2 and

η = 1; see (4.20).

PROOF. From (1.4), by using the reflection formula for the Gamma function
we have that

uν(x, t) = 1

2λtν/2

∞∑
k=0

(
− |x|

λtν/2

)k 1

k!�(1 − ν(k + 1)/2)

(5.20)

= 1

2λtν/2

∞∑
k=0

(
− |x|

λtν/2

)k 1

k!
sin(πν(k + 1)/2)

π
�

(
ν(k + 1)

2

)
.

In view of the series representation of stable functions, which for 0 < α < 1
reads

pα(x;γ,1) = α

π

∞∑
r=0

(−1)r
�(α(r + 1))

r! x−α(r+1)−1 sin
[
π

2
(γ + α)(r + 1)

]

[see Feller (1971), formula (6.10), page 583, with some corrections, Lukacs (1969)
and Zolotarev (1986)], we can obtain the first expression in (5.19). The second
expression can be derived by applying the self-similarity property of the stable
random variables. �

Finally we consider the case 1 ≤ ν ≤ 2 and we state the following result:
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THEOREM 5.5. The solution to⎧⎪⎪⎨
⎪⎪⎩

∂νu

∂tν
= λ2 ∂2u

∂x2 ,

u(x,0) = δ(x),

ut (x,0) = 0,

x ∈ R, t > 0,(5.21)

for 1 ≤ ν ≤ 2, can be represented as

uν(x, t) = 2

ν

1

2λtν/2 p2/ν

( |x|
λtν/2 ; 2

ν
(ν − 1),1

)
(5.22)

= 1

ν
p2/ν

(
|x|; 2

ν
(ν − 1), λ2/νt

)
,

where p2/ν(·; 2
ν
(ν − 1),1) is the density of a stable distribution of parameters

γ = 2
ν
(ν − 1) and η = 1.

PROOF. By following the same steps as in the previous theorem we can recog-
nize in (5.20), up to the normalizing constant, the series representation of the stable
law p2/ν of order α = 2/ν [see (4.21)], so that we get (5.22). �

REMARK 5.4. In view of Theorems 2.3 and 5.5 and by considering the prop-
erty of self-similarity of the stable laws, we can write that

uν(x, t) = 1

ν

∫ ∞
0

e−x2/(4wλ)

√
4πwλ

1

λtν
p1/ν

( |w|
λtν

,
1

ν
(2ν − 1),1

)
dw

(5.23)

= 1

ν

∫ ∞
0

e−x2/(4wλ)

√
4πwλ

p1/ν

(
|w|, 1

ν
(2ν − 1), λ1/νt

)
dw.

Formula (5.23) shows that the solution uν, for 1
2 < ν ≤ 1, can be interpreted

as the distribution of the process B(|Sν(t)|), t > 0, where Sν is the stable process
with density 1

ν
p1/ν(| · |, 1

ν
(2ν − 1), λ1/νt).

Moreover, as a consequence of Theorems 2.1 and 5.5, the solution of our prob-
lem (1.1)–(1.2), for 1

2 < ν ≤ 1, can be written in an alternative to the form (2.2)
also as a stable law evaluated at a Brownian time:

uν(x, t) = 1

ν

∫ ∞
0

e−s2/(4t)

√
πt

1

2λsν
p1/ν

( |x|
λsν

,
1

ν
(2ν − 1),1

)
ds.

REMARK 5.5. We check that, for ν = 1, both expressions (5.19) and (5.22)
yield the Gaussian density

u1(x, t) = 1

2λ
√

πt
e−x2/(4λ2t).(5.24)
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We start by considering the last expression in (5.19)

u1(x, t) = 1

|x|3 p1/2

(
1

|x|2 ; 1

2
,

1

λt1/2

)
,(5.25)

where [from (4.20)], for y > 0,

p1/2

(
y; 1

2
,

1

λt1/2

)
= 1

2π

∫ +∞
−∞

e−iβy exp
{
−|β|1/2

λt1/2 e−iπ/4β/|β|
}

dβ

(5.26)

= 1√
2λt1/2

e−1/(2y(
√

2λt1/2)2)√
2πy3

.

By taking in (5.26) y = 1
|x|2 we get from (5.25) the Gaussian density (5.24).

Formula (5.22) immediately supplies (5.24) for ν = 1.
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