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Abstract Fractional dynamics of relativistic particle is discussed. Derivatives of frac-
tional orders with respect to proper time describe long-term memory effects that corre-
spond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential
four-force is considered as a nonholonomic system. The nonholonomic constraint in four-
dimensional space-time represents the relativistic invariance by the equation for four-
velocity uμuμ + c2 = 0, where c is a speed of light in vacuum. In the general case, the
fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative.
Conditions for fractional relativistic particle to be a Hamiltonian system are considered.

Keywords Fractional derivative · Fractional dynamics · Relativistic dynamics ·
Relativistic particle · Nonholonomic constraints · Dissipation

1 Introduction

The derivatives of non-integer orders are a natural generalization of the ordinary differen-
tiation of integer order. Fractional differentiation with respect to time is characterized by
long-term memory effects. The theory of derivatives and integrals of non-integer order goes
back to Leibniz, Liouville, Riemann, Grunwald, and Letnikov [1, 2]. The interest in frac-
tional equations [2, 3] has been growing continually during the last few years because of
numerous applications in recent studies in mechanics and physics (for example, see books
[4–6] and references therein).

In this paper, we discuss fractional dynamics of relativistic particles that are described as
nonholonomic systems in four-dimensional space-time. It is well known that components of
the four-velocity uμ = dxμ/dτ (μ = 1,2,3,4 and τ is a proper time) are not independent.
The components of the four-velocity are connected by the equation uμuμ + c2 = 0, where
c is a speed of light in vacuum. This equation allows us to consider the relativistic particle
as a system with constraint in four-dimensional space-time. This constraint is nonlinear
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nonholonomic (nonintegrable) constraint. As a result, the relativistic invariance for point
particles is represented by a nonholonomic constraint [7–9].

Note that only mechanics of relativistic particles can be considered as a mechanics with
nonholonomic constraint. The relativistic invariance in the field theory cannot be repre-
sented as a nonholonomic constraint. At the same time, nonholonomic constraints can be
used in the field theory. For example, the higher spin fields are connected with nonholo-
nomic constraints [10] and the gauge fixing conditions for of non-abelian gauge fields can
be described as nonholonomic constraints [11]. The Euler-Lagrange and Hamilton equations
for nonholonomic systems in classical field theory are suggested in [12].

In the framework of the fractional dynamics, we consider a relativistic particle subjected
to a general four-force. In the general case, the four-force is non-potential, and the relativis-
tic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time.
We consider fractional dynamics of non-Hamiltonian and dissipative systems in relativistic
theory. The fractional equations of motion describes power-law memory effects that corre-
spond to intrinsic dissipative processes in the relativistic systems. Note that relativistic par-
ticle with dissipation is discussed in [13, 14]. In [13, 14], the Lagrangian and Hamiltonian
functions for one-dimensional relativistic particles with linear dissipation are suggested. In
general, non-Hamiltonian and dissipative n-dimensional systems with n > 1 cannot be de-
scribed by Hamiltonian or Lagrangian since the Helmholtz’s conditions for these systems
are not satisfied [15]. In this paper, we consider fractional dynamics of relativistic particles
as motions of four-dimensional non-Hamiltonian and dissipative systems.

In Sect. 2, the nonholonomic constraint in four-dimensional space-time for relativistic
particle and some notations are considered. In Sect. 3, we discuss the fractional equations
of motion for relativistic particle that is considered as a nonholonomic system. In Sect. 4,
we discuss the d’Alembert-Lagrange principle for fractional equations of relativistic par-
ticle that is considered as a nonholonomic system. We prove that fractional equations for
relativistic systems with nonholonomic constraint are represented as fractional equations
for holonomic systems. In Sect. 5, the conditions for fractional relativistic particle to be a
Hamiltonian or non-dissipative system are considered. Finally, a short conclusion is given
in Sect. 6.

2 Nonholonomic Constraint

We consider a four-dimensional pseudo-Euclidean space-time of points with coordinates
xμ: x1 = x, x2 = y, x3 = z, x4 = ct . The point coordinates in the four-dimensional
space-time can be considered as components radius four-vector of the point particle,
�R = (x1, x2, x3, x4) = (x, y, z, ct). The square of the elementary radius four-vector in the

four-dimensional space-time is defined by (d �R)2 = ημνdxμdxν . Here and later we mean the
sum on the repeated indices μ and ν from 1 to 4. The coefficients ημν define a metric of
pseudo-Euclidean space-time. This metric is a diagonal tensor such that η11 = η22 = η33 = 1
and η44 = −1. Note that xμ is not equal to xμ, since xμ = ημνx

ν and x1 = x1, x2 = x2,
x3 = x3, and x4 = −x4.

Assume that we have two radius four-vectors �R and �R′ with coordinates xμ and x ′μ

of two reference frames to describe a relativistic particle. If the coordinate transformation
x ′μ = aμ

νx
ν , where aμ

ν are constant values, satisfies the invariant condition:

(d �R′)2 = (d �R)2: ημνdx ′μdx ′ν = ηαβdxαdxβ, (1)
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then this transformation is a Lorenz transformation. The coordinates of the radius four-
vector in the proper reference frame are �R0 = (0,0,0, cτ ), where τ is a proper time. Condi-
tion (1) leads us to the relation

(d �R)2 = (d �R0)
2: ημνdxμdxν = −c2dτ 2. (2)

Using the definition of three-velocity vk = dxk/dt , k = 1,2,3, we get

dt = γ dτ, γ = (1 − v2/c2)−1/2. (3)

Four-velocity of the point particle is defined as a derivative of the radius four-vector with
respect to proper time:

�V = d �R
dτ

: uμ = dxμ

dτ
.

The components of the four-velocity �V are uk = dxk

dτ
= γ vk , k = 1,2,3, and u4 = dx4

dτ
= cγ .

Note that rest particles (�v = 0) have u4 = c.
Equation (2) leads to the relation

(
d �R
dτ

)2

=
(

d �R0

dτ

)2

: ημν

dxμ

dτ

dxν

dτ
= −c2,

which means that square of the four-velocity is a constant value: �V 2 = −c2. Therefore we
have the constraint equation

ημνu
μuν + c2 = 0. (4)

As a result, a relativistic particle in the covariant formulation of relativistic mechanics is
a system with the nonholonomic constraint. The constraint (4) is nonholonomic since it
depends of velocity. Relativistic mechanics can be considered as nonholonomic mechanics
in the four-dimensional space.

It is known that constraints in mechanics are some simplifications of real particle interac-
tions. (Note that this statement is not correct in the field theory. For example, if we consider
the pendulum then we usually neglect of the forces of thread deformation. We also neglect
of an interaction for constraint (4), which defines the relativistic invariance. If we use the
nonholonomic constraint (4), then we neglect of a gravity interaction between particles.)
Let us consider the deformation of (2), (3) and (4) in general theory of relativity [16]. In the
approximation of weak gravity fields, we have

(d �R)2 = ημνdxμdxν − 2ϕdt2 = −c2dτ 2,

where

dt = γ ′dτ, γ ′ =
(

1 + 2ϕ

c2
− v2

c2

)−1/2

,

and ϕ is a classical (Newtonian) gravity potential. As a result, we have

ημνu
μuν + c2 = 2ϕ γ ′2.

Therefore nonholonomic constraint (4), which defines the relativistic invariance, is con-
nected with the neglect of the gravity interaction, ϕ = 0 (in general theory of relativity).
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3 Fractional Equations of Motion of Relativistic Particle

Let m0 be a rest mass of a point relativistic particle. The four-momentum of the particle is
defined by �P = m0 �V . The components of the four-momentum are pμ = m0u

μ. Equation (4)
gives

ημνp
μpν + m2

0c
2 = 0. (5)

In relativistic mechanics the Newtonian equations are replaced by some generalization,
which is invariant under the Lorenz transformations [16, 17]. The Newtonian equations are
satisfied in the proper reference frame. The four-vector analog of the Newtonian equations
is

d �P
dτ

= �F (τ, �R, �P ). (6)

This equation is postulated as a main equation of relativistic dynamics. Equation (6) de-
scribes a relativistic particle subjected to a four-force �F = �F (τ, �R, �P ). Equation (6) must
be considered with condition (5). As a result, we have the equations

dxμ

dτ
= 1

m0
pμ,

dpμ

dτ
= F μ(τ, x,p), ημνp

μpν + m2
0c

2 = 0. (7)

If dm0/dτ = 0, then (7) give

m0D
2
τ x

μ = F μ(τ, x,p), (8)

where ημνD
1
τ x

μD1
τ x

ν = −c2. These equations of motion can be generalized for fractional
dynamics to take into account a power-law memory. We consider a generalization of (8) in
the form of the fractional differential equations

m0
C
0 Dα

τ xμ = F μ(τ, x,p) (1 < α < 2) (9)

involving the Caputo fractional derivative C
0 Dα

τ . The left-sided Caputo fractional derivative
[2] of order α > 0 is defined by

C
0 Dα

τ xμ = 1

	(n − α)

∫ τ

0

dτ ′ Dn
τ ′xμ(τ ′)

(τ − τ ′)α−n+1
= 0I

n−α
τ Dn

τ x
μ, (10)

where n − 1 < α < n, Dn
τ = dn/dτn, and 0I

α
τ is the left-sided Riemann-Liouville fractional

integral

0I
α
τ f (τ ) = 1

	(α)

∫ τ

0

f (τ ′)dτ ′

(τ − τ ′)1−α
(τ > 0). (11)

Fractional derivative with respect to proper time describes a power-law memory effects that
correspond to intrinsic dissipative processes.

Using pμ = m0D
1
τ x

μ, (9) can be rewritten in the form

D1
τ x

μ = 1

m0
pμ, (12)

C
0 Dα−1

τ pμ = F μ(τ, x,p) (1 < α < 2). (13)
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Fractional integration of (13) of order α − 1 gives

0I
α−1
τ

C
0 Dα−1

τ pμ = 0I
α−1
τ F μ(τ, x,p). (14)

Using the fundamental theorem of fractional calculus [18]

0I
α−1
τ

C
0 Dα−1

τ pμ = pμ(τ) − p(0) (0 < 1 − α < 1),

we obtain

pμ(τ) = pμ(0) + 0I
α−1
τ F μ(τ, x,p). (15)

Differentiation of (15) gives

D1
τ p

μ = 0D
2−α
τ F μ(τ, x,p) (0 < 2 − α < 1), (16)

where 0D
2−α
τ is the left-sided Riemann-Liouville fractional derivative defined by

0D
α
τ xμ = Dn

τ 0I
n−α
τ xμ = 1

	(n − α)

dn

dτn

∫ τ

0

xμ(τ ′)dτ ′

(τ − τ ′)α−n+1
(n − 1 < α ≤ n). (17)

As a result, (9) is equivalent to the fractional equations

D1
τ x

μ = 1

m0
pμ, (18)

D1
τ p

μ = 0D
2−α
τ F μ(τ, x,p) (1 < α < 2). (19)

These equations describe fractional dynamics of relativistic particle. Fractional differenti-
ation with respect to proper time is characterized by long-term memory effects that corre-
spond to intrinsic dissipative processes in the relativistic systems.

4 d’Alembert-Lagrange Principle for Fractional Relativistic Dynamics

It is known that the general principle, which allows us to derive equations of motion with
holonomic and nonholonomic constraints, is the d’Alembert-Lagrange principle. For equa-
tions (18) and (19) this principle leads to the variation equation(

dpμ

dτ
− 0D

2−α
τ F μ(τ, x,p)

)
ημνδx

ν = 0. (20)

Multiplying (19) on the variation δxμ = ημνδx
ν and summing over μ we obtain this varia-

tional equation.
The variations of coordinates δxμ, μ = 1, . . . ,4 are defined by the relation of the ideal

constraint

Rμδxμ = 0, (21)

where Rμ are components of the constraint force vector. The four-vector Rμ can be con-
sidered as a contribution of the reaction associated with the constraint to the four-force
0D

2−α
τ F μ(τ, x,p). Because a reaction force does no work in a virtual movement that is

consistent with the corresponding kinematical restriction, we conclude that Rμ must be per-
pendicular to any δxμ that satisfies the constraint equation. Thus, if δxμ satisfies constraint
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equation, we have Rμδxμ = 0. We now consider which condition δxμ must be realized in
order to satisfy a constraint equations. We can derive the usual relativistic equations of mo-
tion only under the condition (21). For nonholonomic systems a definition of the variations
was suggested by Chetaev [19, 20]. The variations δxμ are defined by the condition:

∂f

∂uμ
δxμ = 0, (22)

where

f = ημνu
μuν + c2. (23)

Using (21) and (22), we have the functions Rμ as linear combinations of ∂f/∂uμ, i.e.

Rμ = λ
∂f

∂uμ
,

where λ is a Lagrange multiplier. We note that substitution of (23) into (22) gives

ημνu
μδxν = 0.

Equations (20) and (22) give the variational equation(
dpμ

dτ
− 0D

2−α
τ F μ(τ, x,p) − λ

∂f

∂uμ

)
δxμ = 0. (24)

This variational equation is equivalent to the fractional equations of motion

dpμ

dτ
= 0D

2−α
τ F μ(τ, x,p) + λ

∂f

∂uμ
(μ = 1,2,3,4). (25)

We cannot use constraint equation for the function f in variational equation before the
partial derivative on uμ is taken.

Substitution of (23) into (25) gives the equations of motion

dpμ

dτ
= 0D

2−α
τ F μ(τ, x,p) + 2λuμ, uμuμ + c2 = 0, (26)

where pμ = m0u
μ and uμ = dxμ/dτ . The system of (26) is a closed system of five equations

in the same number of unknowns xμ and λ. Using these equations, we can find the multiplier
λ as a function λ = λ(τ, x,p). Substituting this function in (25), we get the equations for
coordinates xμ. It allows us to represent the fractional equations of motion for relativistic
systems with nonholonomic constraint as fractional equations for holonomic systems.

Differentiating of constraint (5) with respect to τ , we obtain

ημν

dpμ

dτ
pν + m0

dm0

dτ
c2 = 0. (27)

Substituting of (27) into (26) with m0u
μ = pμ and dm0/dτ = 0, we get

ημνp
ν

0D
2−α
τ F μ(τ, x,p) + 2λημνu

μpν = 0.

Using the constraint equation ημνu
μuν = −c2 and the four-momentum pμ = m0u

μ, we ob-
tain the Lagrange multiplier

λ = 1

2c2
(ημνu

μ
0D

2−α
τ F ν(τ, x,p)).
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Therefore the reaction four-force Rμ of the nonholonomic constraint is

Rμ = 2λuμ = 1

c2
uμ(uν 0D

2−α
τ F ν).

As a result, we have the fractional equation

dpμ

dτ
= 0D

2−α
τ F μ(τ, x,p) + 1

c2
uμ(uν 0D

2−α
τ F ν). (28)

These equations define a holonomic system subjected to the sum of four-forces 0D
2−α
τ F μ +

Rμ. If initial dates satisfy constraint (4), then the solution of (28) describes a fractional
dynamics of the relativistic point particle as a holonomic system.

As a result, we prove the following statement.

Proposition Fractional equations for the relativistic particle subjected to a non-potential
four-force F μ, which have the form

dxμ

dτ
= 1

m0
pμ,

dpμ

dτ
= 0D

2−α
τ F μ(τ, x,p), ημνp

μpν + m2
0c

2 = 0, (29)

with dm0/dτ = 0, are equivalent to the equations

dxμ

dτ
= 1

m0
pμ,

dpμ

dτ
= 0D

2−α
τ F μ(τ, x,p) + Rμ(τ, x,p), (30)

where

Rμ(τ, x,p) = 1

m2
0c

2
pμ (pν 0D

2−α
τ F ν), (31)

and the initial dates satisfy constraint condition (4).

The solution of (30) describes the fractional dynamics of the relativistic particle.

5 Fractional Non-Hamiltonian and Dissipative Relativistic Systems

The system is called locally Hamiltonian if the sum of applied forces satisfies the Helmholtz
conditions [21, 22]. If (x,p) ∈ M and M is a simply connected region, then a locally
Hamiltonian system is globally Hamiltonian. A region is simply connected if it is path-
connected and every path between two points can be continuously transformed into every
other. A region where any two points can be joined by a path is called path-connected.

The Helmholtz conditions for fractional equations (30) have the form

∂( 0D
2−α
τ F μ)

∂pν
+ ∂Rμ

∂pν
= 0, (32)

∂( 0D
2−α
τ F μ)

∂xν
+ ∂Rμ

∂xν
− ∂( 0D

2−α
τ F ν)

∂xμ
− ∂Rν

∂xμ
= 0. (33)
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Substitution of (31) into (32) and (33) gives

∂( 0D
2−α
τ F μ)

∂pν
+ 1

m2
0c

2

∂[pμ(pσ 0D
2−α
τ F σ )]

∂pν
= 0, (34)

∂( 0D
2−α
τ F μ)

∂xν
+ 1

m2
0c

2
pμ

(
pσ

∂( 0D
2−α
τ F σ )

∂xν

)

− ∂( 0D
2−α
τ F ν)

∂xμ
− 1

m2
0c

2
pν

(
pσ

∂( 0D
2−α
τ F σ )

∂xμ

)
= 0. (35)

These equations are the Helmholtz conditions [21, 22] for fractional relativistic dynam-
ics. If these conditions are satisfied then the fractional dynamics of relativistic particle is
Hamiltonian. The fractional relativistic particle subjected to a four-force F μ(τ, x,p) is non-
Hamiltonian if the Helmholtz conditions (34) and (35) are not satisfied [15].

If

�(x,p) =
4∑

μ=1

(
∂( 0D

2−α
τ F μ)

∂pμ
+ ∂( 0D

2−α
τ Rμ)

∂pμ

)
�= 0,

then we have a generalized dissipative system [15]. If �(x,p) ≤ 0 for all points (x,p) and
�(x,p) < 0 for some points (x,p), then the system is a dissipative system.

Note that a one-dimensional relativistic particle with dissipation is considered in [13, 14].
The Lagrangian and Hamiltonian functions for one-dimensional relativistic particles with
linear dissipation are suggested. In general, non-Hamiltonian and dissipative n-dimensional
systems with n > 1 cannot be described by Hamiltonian or Lagrangian since the Helmholtz’s
conditions for these systems are not satisfied [15].

In fractional relativistic dynamics the principle of stationary action for particle subjected
to non-potential forces F μ(τ, x,p) can be used if the Helmholtz conditions (34) and (35)
are satisfied. The Hamilton’s principle and the principle of stationary action are equivalent
only for special forms of the four-force F μ(τ, x,p). We note that the Hamilton’s principle
is described by nonholonomic variational equation [23–28]. It allows us to use this principle
to obtain fractional equations of motion for non-Hamiltonian and dissipative systems. The
principle of stationary action is defined by holonomic variational equation. Therefore the
principle of stationary action cannot be to derive fractional equations of motion in the gen-
eral case. In general, the Hamilton’s principle and nonholonomic variational equations can
be used to describe fractional dynamics of relativistic systems. We note that the fractional
equations of motion which follow from the d’Alembert-Lagrange principle are not equiv-
alent to the fractional equations which follow from the principle of stationary action. In
[23–25, 29, 30], authors give proofs that the solutions to the equations of motion which fol-
low from the d’Alembert-Lagrange principle and the Hamilton’s principle do not in general
satisfy the equations which follow from the action principle with nonholonomic constraints.
The variational Sedov’s equation [26–28] (see also [31, 32]) can be used in fractional rela-
tivistic dynamics instead of the principle of stationary action. We note that relativistic mod-
els of continuous media with dissipation are considered in [28, 32].

Let us consider the four-vector 0D
2−α
τ F μ as the sum

0D
2−α
τ F μ = Gμ + �μ, (36)
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where (Gμuμ) = 0, and (�μuμ) �= 0. Substitution of (36) into (30) of the form (28) gives

dpμ

dτ
= Gμ + �μ + 1

c2
uμ(�νuν).

The four-force Gμ is usually called [17] a real mechanical force, which satisfies the orthog-
onal condition uμGμ = 0. The four-vector �μ describes the energy-momentum exchange
between the point particle and medium. The components of �μ are

�μ = (γ ��,(γ /c)�),

where �� and � are momentum and energy, which are transmitted by convection per unit
time. For the heat transfer, three-momentum δ �p and energy δQ transmitted per time dτ are
defined by the formulas δ �p = ��dt , and δQ = �dt . The components of δQμ are

δQμ = �μdτ =
(

δ �p,
1

c
δQ

)
=

(
γ ��dτ,

γ

c
�dτ

)
,

where δQμ is a four-vector of the heat energy-momentum, which is transmitted per time dτ .
Note that the value −uμ�μ = −γ 2(( ��, �v)−�), is a velocity of the convective transmission
of incoming energy in the rest reference frame. The four-vectors Gμ and �μ allow us to
describe non-Hamiltonian and dissipative processes in fractional relativistic mechanics.

6 Conclusion

We formulate fractional dynamics of relativistic point particleû as mechanics of the sys-
tems with nonholonomic constraint in the four-dimensional pseudo-Euclidean space-time.
We consider fractional dynamics of relativistic particles subjected to four-forces that can be
non-potential. The conditions on the four-forces that allow us to consider fractional dynam-
ics of relativistic particles subjected to non-potential forces as Hamiltonian dynamics are
suggested. We prove that the nonholonomic constraint, which represents relativistic invari-
ance, and the non-potential four-force can be compensated such that the fractional dynamics
is Hamiltonian (and non-dissipative).

Let us note some possible extensions of the fractional relativistic dynamics.

1. Nonholonomic constraints with power-law memory [33], which are described by frac-
tional equations, can be considered in relativistic mechanics by using fractional deriva-
tives [2] with respect to proper time.

2. The suggested fractional relativistic dynamics can be used to generalize quantum theory
of non-Hamiltonian and dissipative systems [15].

3. In the framework of the fractional relativistic dynamics it is possible to consider a rela-
tivistic generalization of the fractional variational problems [34, 35] in Lagrangian and
Hamiltonain form [36–40, 44]. Note that nonholonomic variational equations must be
used since the fractional equations which follow from the d’Alembert-Lagrange prin-
ciple (and the Hamilton’s principle) do not in general equivalent the equations which
follow from the action principle with nonholonomic constraints [23–25, 29, 30].

The study of plasma systems containing ensembles of particles (dust) is a rapidly devel-
oping field of complex systems research. One of the general features of complex plasma
systems is the presence of non-potential interaction forces between the dust particles due to
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the dynamic interaction between the dust particles and the plasma (for example, see [41–43]
and references therein). In general, these systems cannot be described as Hamiltonian, since
the energy is not conserved because of the openness of the systems due to plasma-particle in-
teraction. We hope that fractional dynamics of relativistic particle subjected to non-potential
forces can be used to describe relativistic complex plasma systems.
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