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The Fokker–Planck equation has been very useful for studying dynamic behavior
of stochastic differential equations driven by Gaussian noises. However, there are
both theoretical and empirical reasons to consider similar equations driven by
strongly non-Gaussian noises. In particular, they yield strongly non-Gaussian
anomalous diffusion which seems to be relevant in different domains of Physics. In
this paper, we therefore derive a fractional Fokker–Planck equation for the prob-
ability distribution of particles whose motion is governed by anonlinearLangevin-
type equation, which is driven by a Le´vy stable noise rather than a Gaussian. We
obtain in fact a general result for a Markovian forcing. We also discuss the exis-
tence and uniqueness of the solution of the fractional Fokker–Planck equation.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1318734#

I. INTRODUCTION AND MOTIVATION

The Fokker–Planck equation is one of the most celebrated equations in Physics, since
been very useful for studying1 the dynamic behavior of stochastic differential equations driven
Gaussian noises. However, it turns out that many physical phenomena are outside of this
work. For instance, it has been argued that diffusion by geophysical turbulence2–7 corresponds,
loosely speaking, to a series of sticking~pauses!, when the particle is trapped by a cohere
structure, and~fast! flights, when the particle moves in the jet flow. A similar phenomenolog
observed for zoo plankton grazing.8,9

Although there have been some attempts6 to analyze and quantify this behavior with the he
of the classical Fokker–Planck equation, i.e., assuming finite moments of all orders, some
ratory experiments3–5 or numerical simulations of geostrophic turbulence10 show that this phe-
nomenology could be rather a consequence of the presence of heavy tails~i.e., power law falloff!
for the probability distribution and a strong anisotropy with a clearly preferred direction of d
sion. One can conclude11 that if the processes are additive, the corresponding walks are´vy
motions.

a!Author to whom correspondence should be addressed. Electronic mail: schertze@ccr.jussieu.fr
2000022-2488/2001/42(1)/200/13/$18.00 © 2001 American Institute of Physics



n-
re-
teps

ly
under
iables
hy the
tion of

Le

of

a

w,

ness

ed

scussed

corre-

e
cal

eed
ce.
ed the

ecent
an
r for

dling
tter.

ck
ery
n

201J. Math. Phys., Vol. 42, No. 1, January 2001 Fractional Fokker–Planck equation
Let us recall that indeed stable Le´vy motionsL(t) generalize the Brownian motionB(t) in the
sense that first they are also motions~e.g., Refs. 12 and 13! whose incrementsDL(t,Dt)5L(t
1Dt)2L(t) are stationary~thereforeDL has no statistical dependence ont! and independent for
any nonoverlapping time lagsDt. Therefore,L(t) corresponds to the sum of independent, ide
tically distributed Lévy stable variables.14–18 The second common property is that these inc
ments satisfy a ‘‘stability property:’’ up to a rescaling and recentring, the sum of different s
has the same probability distribution as one of the steps. Le´vy stable variables are precise
defined by this property. The stability property implies in both cases a property of attraction:
rather general conditions a renormalized sum of independent identically distributed var
converge to a stable law. Furthermore, there are no other attractive laws. This explains w
stable property is so important. The attraction property corresponds to a broad generaliza
the central limit theorem, with the important difference that whereas the classical theorem~Gauss-
ian case! is satisfied with the condition that the variance is finite, the convergence towards a´vy
law is obtained with the condition thatnot only the variance of the summandsXi is infinite, but
also that all their moments of orderq equal to or larger than a critical ordera (0,a,2) are
infinite. This critical ordera is called the Le´vy stability index and corresponds to the exponent
the power law of probability distribution tails:

any s@1: Pr~ uDLu.s!'s2a⇔any q>a: E~ uXuq!5`, ~1!

where Pr denotes the probability,E( ) is the mathematical expectation, ands is a given~large!
non-negative threshold. This statistical divergence of a Le´vy motion is due to jumps, whereas
Brownian motion is almost surely continuous.

This index is the most important of the four parameters defining a Le´vy stable law. The
second one is the skewnessb (21<b<1) which defines the degree of asymmetry of the la
which is maximal forb521 or b511, and the law is symmetric whenb50. In spite of its
name and some common properties,b nevertheless does not correspond to the classical skew
of a quasi-Gaussian law. The latter is indeed undefined for a stable Le´vy law due to the above-
mentioned statistical divergences. The centerg corresponds to the statistical mean when defin
~i.e., a.1! and/or to the median when symmetric~i.e., b50!. The scale parameterD(D>0)
corresponds to a generalization of the variance of the Gaussian case. More precisely, as di
below, it corresponds to the intensity scale of the cumulant of~possibly noninteger! order a. It
yields an anomalous19 generalization of the classical Einstein relation: Var@X(t)2X(t0)#52D(t
2t0), where Var( ) denotes the variance. Finally, let us emphasize that the Gaussian case
sponds to the limit casea52, which also impliesb50, i.e., no asymmetry.

Further comments are now in order on the relevance of Le´vy motions in Physics. On the on
hand, claims in favor of the relevance of Le´vy motions have been made on many physi
phenomena ranging from subrecoil laser cooling20,21 to diffusion by flows in porous media,22,23

including finance fluctuations,24,25 see Refs. 26 and 27 for other examples. Many systems ind
display a phenomenology rather similar to that we reported above on geostrophic turbulen

On the other hand, important questions have been raised. In particular, Ref. 28 question
resulting infinite variance of the advecting field for porous media. Indeed, it turns out that r
estimates29 of the power law of the probability distributions of the hydraulic conductivity yields
exponenta'3.5. The question of finite variance might apply to other examples, in particula
atmospheric turbulence where different studies30 yield a critical exponenta'7 for the wind field.
Therefore, in spite of their clear phenomenological interest, the relevance of pure Le´vy motions
could be questioned.

The main goal of this paper is to clarify and define a framework adequate for han
motions more general than pure Le´vy motions and which are nevertheless generated by the la
We will do it by building upon a series of rather recent works31–37,19,38which show that the
probability density of particles moving with a Le´vy motion satisfies a generalized Fokker–Plan
equation involving fractional orders of differentiation. Indeed, it could be first argued in a ‘‘v
formal and phenomenological’’ manner31 that a fractional power of the Laplacian yields a
anomalous scaling for the corresponding diffusion.
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A fractional Fokker–Planck equation was obtained in a less formal manner by Refs. 32 a
in the framework of the continuous time random walks~CTRWs! model of anomalous diffusion.33

However, this method does not involve directly a stable Le´vy process, but a walk sharing som
behavior common with the latter, without being equivalent to it. A different fractional Fokk
Planck equation was introduced37 with the help of a phenomenological and interesting trans
mation of the classical Fick law into a fractional Fick law. However, it is not clear that its solu
corresponds to a~non-negative! probability distribution. A rather distinct approach was follow
by Refs. 34 and 19 since it starts with alinear Langevin-type equation with random forces whic
are exactstable Lévy processes, which can be symmetric as well as asymmetric, and wit
limitation on the possible values of the Le´vy index a. The fundamental mathematical tool whic
is used is the second characteristic~or cumulant generating! function of the motion defined by this
Langevin-type equation. The particular case of symmetric processes correspond to wh
previously inferred by Refs. 31, 32, 35, and 37. However, it was shown that in the more ge
case of asymmetric processes, a new nontrivial advective–diffusive term appears. This
firmed with the help of a reinterpretation of the characteristic function of a Le´vy motion.38

We already discussed that theoretically and empirically the nonfiniteness of the variance
be questioned. There are two more general questions: the inhomogeneities of the medium
are first emphasized for the introduction of the Le´vy motions, are finally reduced to a~homoge-
neous! distribution of times when the particle is strongly kicked. As soon as this representat
granted, the medium~and its properties! does not intervene any longer. This is very restrictive a
for instance incompatible with the multifractality of the medium39,8 ~or of the diffusion! when
observed. The second reason is that the underlying processes are thought to be strongly no
whereas the transport is modeled with the help of a~stochastic! linear equation.

Both the successes and limitations of the previous results plead in favor of investiga
local and nonlinear modeling with the help of Le´vy motions. This is the reason that we investiga
the properties ofnonlinearLangevin-type equation forced by a Le´vy stable motion.

II. STATEMENT OF THE PROBLEM

Further to our above discussion, we consider the followingnonlinearLangevin-type equation
for a stochastic~real! quantityX(t) ~e.g., location of a particle!:

dX~ t !5m~X~ t !,t !dt1s~X~ t !,t !dL, ~2!

where the driving source is a Le´vy stable motionL(t) instead of Brownian motionB(t). The latter
case corresponds to the basis of stochastic calculus~e.g., Ref. 40! and the corresponding differ
ential equation is often called the Ito–Skorokhod equation. The extension to Le´vy stable motion
L(t) is rather natural and straightforward~e.g., Ref. 41! due to the common properties ofL(t) and
B(t) that we discussed in Sec. I, i.e., their infinitesimal increments are independent iden
distributed and furthermore stable.

More precisely the Ito stochastic calculus corresponds to consider that thedL is, similarly to
dB, a forward increment in time@it should be understood asdL(t,dt)5L(t1dt)2L(t)#. This
means that the value ofX at timet is determined by events prior to the application of the stocha
force dL(t), which acts only from timet to t1dt.

The Eq.~2! can also be understood under its integral form

X~ t !5X~ t0!1E m~X~ t !,t !dt1E s~X~ t !,t !dL, ~3!

where the last term corresponds to a stochastic integration of a stochastic process. The inte
of a stochastic processF(t) @in the case of Eq.~2!: F(t)5s(X(t),t)# with respect to the Le´vy
motion L, is rather straightforward in the case of step processes:42

F~ t !5Fn , for tP~ tn ,tn11!, n50,1,...,N21;E F~ t !dL5 (
n50

N21

Fn~L~ tn11!2L~ tn!! ~4!
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and this rather suggestive definition is naturally extended to functional spaces in which th
processes are dense.

In order to establish local properties, for instance the time evolution of the probability o
particles, we will use the differential form@Eq. ~2!#, whereas Refs. 34 and 19 rather used
integral form@Eq. ~4!# which becomes cumbersome in the nonlinear case and is in fact usefu
to establish global properties~Sec. IX!.

After having emphasized the similarities betweenL(t) andB(t), it is important to underline
the nontrivial consequences due to the fact, contrary to the Gaussian case which has
moments finite, Le´vy motions have a finite critical order of divergence of statistical mome
(0,a,2). These include the fact that the mathematical techniques which could be used
rather distinct. For instance, our derivation will rely on the use of the second characte
function of the increments, Sec. III, instead of probabilities of the increments as done usua
the derivation of the classical Fokker–Planck equation. An obvious reason is that the form
relatively simple~see Sec. VII!, while the latter are not, with the only exception of the thr
following cases:a52, b50; a51, b50; a51/2,b51. The fundamental reason is that both t
stability property and the divergence of moments are related to the presence of a cumu
noninteger ordera. In relation to this problem, the convenientL2 Hilbert structure of Gaussian
processes is reduced to aLa Banach structure for stable Le´vy processes. This is particularl
important for the integral equation~3!, when defining functional spaces where step processes
dense.

The linear case, which is the hitherto studied case, corresponds to

m~X~ t !,t ![m5const; s~X~ t !,t ![s5const. ~5!

X(t)2X(t0) is also a Le´vy motion which has the same Le´vy stability indexa as its increments,
but with a different center or trend and scale or amplitude.

In the nonlinear case,m(X(t),t) ands(X(t),t) are~possibly nonlinear! functions ofX(t) and
t, which satisfy certain regularity constraints to be discussed later~Sec. IX!. They correspond to
inhomogeneities of the medium, which were ignored in the linear case. As a possibly impo
but simple example, let us mention the Le´vy extension of the so-called geometric Brownia
motion, which is rather ubiquitous and for instance is at the core of the Black–Scholes mod
option pricing:m(X(t),t)5mX(t) ands(X(t),t)5sX(t), wheres is the votality constant of the
price X(t) of a given stock share.

We will demonstrate the following proposition:
Proposition 1: The transition probability density:

;t>t0 : p~x,tux0 ,t0!5Pr~X~ t !5xuX~ t0!5x0! ~6!

corresponding to the nonlinear stochastic differential equation (2), with a Le´vy forcing of param-
etersaÞ1 or b50, g, D>0, is solution of the following fractional Fokker–Planck equation:

]

]t
p~x,tux0 ,t0!52

]

]x
~gs~x,t !1m~x,t !!p~x,tux0 ,t0!

2DF ~2D!a/2~ us~x,t !uap~x,tux0 ,t0!!

1bv~a!
]

]x
~2D!~a21!/2~ us~x,t !ua21s~x,t !p~x,tux0 ,t0!!G ~7!

with the initial condition

p~x,t0ux0 ,t0!5d~x2x0!, ~8!

whered(x2x0) is the degenerate Dirac measure in x0 and v~a! is defined by
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aÞ1: v~a!5tan
pa

2
~9!

and where the fractional powers of the LaplacianD will be discussed in Sec. VI. Proposition 1 an
Eq. ~7! are for scalar processes~i.e., D[]2/]x2! and their extension to vector processes will
discussed and presented in Sec. VIII. One may note that the fractional diffusive isotropic op
2(2D)a/2 applies via a fractional diffusivityus(x,t)ua, whereas the advective–diffusive ter
corresponds to a conjugate action of a fractional diffusive term2(2D)(a21)/2us(x,t)ua21 and a
convective term (]/]x)s(x,t) on the transition probability.

This fractional Fokker–Planck equation will be established with the help of the much
general proposition.

Proposition 2: The inverse Fourier transform of the second characteristic function or cu
lant generating function of the increments of a Markov process X(t) generates by convolution th
Fokker–Planck equation of evolution of its transition probability p(x,tux0 ,t0).

We will demonstrate this proposition in a straightforward, yet rigorous way. More preci
we will establish the following:

]p

]t
~x,tux0 ,t0!5E dy

]K̃

]t
~x2yuy,t !p~y,tux0 ,t0!, ~10!

whereK̃ is the inverse Fourier transform of the cumulant generating function of the increm
The K̃ arguments will become explicit in Sec. III.

Equation~10! not only holds for processes with stationary and independent increments,
the linear case@Eq. ~5!# but also for any Markov process, including those defined by the nonli
Langevin-type equation@Eq. ~2! with mÞconst,sÞconst#. As a consequence of Eq.~10!, we will
demonstrate the following.

Proposition 3: When the increment’s cumulant generating function of a Markov process(t)
is defined by its expansion in cumulants Cn , its Fokker–Planck equation is

]p

]t
~x,tux0 ,t0!5 (

nPJ

~21!n

n!

]n

]xn @Cn~x,t !p~x,tux0 ,t0!#. ~11!

An obviously sufficient condition of convergence is obtained when the setJ of the orders of
differentiationn is finite. This is true in particular for Gaussian forcing:J5$1,2%. It corresponds
to the classical Fokker–Planck equation. On the other hand,J5N would correspond to an analyti
expansion of cumulants. In spite of its interest, we will not discuss the latter case in this pap
its relationship to the classical Kramers–Moyal expansion~e.g., Ref. 43!.

Below, we concentrate on the case of a finite, but nonanalytic expansion:J5$1,a% ~noninte-
ger a, 0,a,2!, since it corresponds to the Le´vy extension~Sec. VII and yields Proposition 1
with the help of fractional derivatives, as discussed in Sec. VI.

III. THE CUMULANT GENERATING FUNCTION OF THE INCREMENTS

The first and second~conditional! characteristic functions are, respectively, the moment g
erating functionZX(k,t2t0ux0 ,t0) and the cumulant generating functionKX(k,t2t0ux0 ,t0), as-
sociated with the transition probabilityp(x,tux0 ,t0) of a processX(t). These are defined by th
Fourier transform of the latter, withk being the conjugate variable ofx2x0 :

F@p~x,tux0 ,t0!#[ZX~k,t2t0ux0 ,t0! ~12!

[exp~KX~k,t2t0ux0 ,t0!! ~13!

[E@exp~ ik~X~ t !2X~ t0!!uX~ t0!5x0#, ~14!
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where E@•u•# denote the conditional mathematical expectation,F and F21, respectively, the
Fourier transform and its inverse:

F@ f #5 f̂ ~k!5E
2`

`

dx exp~ ikx! f ~x!, ~15!

F21@ f̂ #5 f ~x!5E
2`

` dk

2p
exp~2 ikx! f̂ ~k!. ~16!

The corresponding quantities for incrementsdX(dt)5X(t1dt)2X(t), corresponding to a
given time lagdt.0, are defined in a similar way:

F@p~x1dx,t1dtux,t !#5dZX~k,dtux,t ! ~17!

[exp~dKX~k,dtux,t !! ~18!

5E@exp~ ik~X~ t1dt !2X~ t !!uX~ t !5x#, ~19!

wherek is the conjugate variable ofdx. The cumulants of the incrementsCn are the coefficients
of the Taylor expansion ofdKX :

dKX~k,dtux,t !5dt (
nPJ

~ ik !n

n!
Cn~x,t !1o~dt !. ~20!

As already mentioned, the classical case corresponds to an analytic expansion ofdKX , i.e.,
J#N, whereas we will be interested by a finite but nonanalytic expansionJ5$1,a% ~nonintegera,
0,a,2!.

IV. PROCESSES WITH STATIONARY AND INDEPENDENT INCREMENTS

Let us first consider the simple subcase of a process with stationary and independen
ments. It corresponds toCn(x,t)[Cn5const in Eqs.~11! and ~20! and as already discussed
Sec. I, it includes the linear case@Eq. ~5!# of the Langevin-type equation~2!.

However, we believe that the following derivation is not only somewhat pedagogical o
role of the characteristic functions for the nonlinear case, but also terser than derivations
ously presented for the linear case.

The stationarity of the increments implies that the transition probability depends only o
time and space lags, i.e.,

p~x,tux0 ,t0!5p~x2x0 ,t2t0! ~21!

and similarly, the characteristic functions of the increments are no longer conditioned, fo
stance,

ZX~k,t2t0ux0 ,t0![ZX~k,t2t0!, ~22!

KX~k,t2t0ux0 ,t0![KX~k,t2t0!. ~23!

On the other hand, the independence of the increments implies that the transition proba
satisfy a convolution~over any possible intermediate positiony! for any given time lagdt:

;dt.0: p~x2x0 ,t1dt2t0!5E dy p~x2y,dt !~y2x0 ,t2t0! ~24!
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and the corresponding characteristic functions merely factor~respectively, add!. Therefore, we
have,

ZX~k,t1dt2t0!2ZX~k,t2t0!5ZX~k,t2t0!~dZX~k,dt !21!. ~25!

This in turn leads to

ZX~k,t1dt2t0!2ZX~k,t2t0!5ZX~k,t2t0!dKX~k,dt !1o~dt !. ~26!

Its inverse Fourier transform yields

p~x,t1dtux0 ,t0!2p~x,tux0 ,t0!5E dy F21@dKX~k,dt !#p~y2x0 ,t2t0!1o~dt !. ~27!

This demonstrates~in the limit dt→0! Proposition 2 and Eq.~10!, as well as Proposition 3
since Eq.~27! corresponds, with the help of Eq.~20!, to

p~x,t1dtux0 ,t0!2p~x,tux0 ,t0!5dt (
nPJ

~21!n

n! FCnE dy dx2y
~n! p~y,tux0 ,t0!G1o~dt !, ~28!

wheredx
n denotes thenth derivative of the Dirac function. Therefore, we obtain

]

]t
p~x,tux0 ,t0!5 (

nPJ

~21!n

n!
Cn

]n

]xn p~x,tux0 ,t0! ~29!

which corresponds to the linear case of Eq.~11!.

V. MORE GENERAL MARKOV PROCESSES

In the case of a Markov process which does not have stationary and independent incre
there is no longer a simple convolution equation@Eq. ~24!# of the transition probabilities, nor a
simple factorization of characteristic functions@Eq. ~25!#. However, the former satisfies a gene
alized convolution equation which corresponds to the Chapman–Kolmogorov identity17 valid for
any Markov processX(t):

;dt.0: p~x,t1dtux0 ,t0!)5E dy p~x,t1dtuy,t !p~y,tux0 ,t0! ~30!

which indeed reduces to a mere convolution@Eq. ~24!# in the case of processes with stationary a
independent increments. This identity can be written under the equivalent form:

p~x,t1dtux0 ,t0!5E dyE dk

2p
e2 iky1dKX~k,dtuy,t !p~y,tux0 ,t0!. ~31!

Noting that we have

p~x,tux0 ,t0!5E dy p~y,tux0 ,t0!E dk

2p
e2 iky, ~32!

we obtain

p~x,t1dtux0 ,t0!2p~x,tux0 ,t0!5dtE dy F21@dKX~k,dtuy,t !#p~y,tux0 ,t0!1o~dt !. ~33!

In the limit dt→0, this corresponds to Proposition 2 and Eq.~10!. WhenJ#N, it yields with
the help of Eq.~20!:
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dp~x,tux0 ,t0!5dt (
nPJ

E dy dx2y
~n! F ~21!n

n!
Cn~y,t !p~y,tux0 ,t0!G1o~dt !. ~34!

The limit dt→0 corresponds to Eq.~11! and demonstrates Proposition 3 for a Marko
process.

VI. EXTENSION TO FRACTIONAL ORDERS

In the two preceding sections~Secs. IV and V!, the fact that the indicesnPJ should be
integers intervened at best only in the correspondence between~integer order! differentiation
]n/]xn @in Eq. ~11!# and powers of the conjugate variablekn @in Eq. ~20!#. However, by the very
definition of fractional differentiation~e.g., Ref. 44!, this correspondence holds also for noninteg
orders. However, there is not a unique definition of fractional differentiation and therefor
discussed in some details in Ref. 19, we cannot expect to have a unique expression
fractional Fokker–Planck equation.

Since in the following it will be sufficient to consider an expansion of the character
function involving fractional powers of only the wave numberuku, it is interesting to consider
Riesz’s definition of a fractional differentiation. Indeed, the latter corresponds to consider
tional powers of the Laplacian:

2~2D!a/2f ~x!5F21@ ukua f̂ ~k!# ~35!

which has furthermore the advantage of being valid for the vector cases. However, we will
Sec. VIII that in general it does not apply in a straightforward manner for vector stable´vy
motions. Indeed the latter introduces rather~one-dimensional! directional Laplacians, i.e.,~one-
dimensional! Laplacians along a given directionuI (uuI u51):

2~2DuI !
a/2f ~x!5F21@ u~kI ,uI !ua f̂ ~k!#, ~36!

where~.,.! denotes the scalar product. On the other hand, it will be useful to consider the frac
power of the contraction of the Laplacian tensorD= :

D i , j5
]

]xi

]

]xj
~37!

by a tensors= ~s= * denotes its transpose!, with the following definition:

2~2D= :s= .s= * !a/2[F21@ u~kI ,s= .s= * .kI ua/2#5F21@ us= * .kI ua#. ~38!

VII. LÉVY CASE

The second characteristic function of the incrementsdL of the ~scalar! Lévy forcing is the
following:

dKL~k,dt !5dtF ikg2DukuaS 12 ib
k

uku Dv~k,a!G1o~dt !, ~39!

wherev(k,a) is defined by

aÞ1: v~k,a![v~a!5tan
pa

2
, a51: v~k,a!5

p

2
loguku. ~40!

Considering an Ito-type forward integration of Eq.~2!, the incrementsdL generates the
following ~first! characteristic function for the incrementsdX of the motionX(t):
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dZX~k,dtux2dx,t !5E~eikm~X,t !!dZsL~k,dtux,t !1o~dt ! ~41!

which yields the following elementary cumulant generating functiondKX :

dKX~k,dtux,t !5dtF ikm~x,t !1 ikgs~x,t !2Dukuaus~x,t !uaS 12 ib
ks~x,t !

ukuus~x,t !u
v~k,a! D G1o~dt !

~42!

and which is of the same type as Eq.~20!, with J5$1,a%. Therefore, as discussed in Sec. VI, w
have fractional differentiations in the corresponding Eq.~11!, which will precisely correspond to
Eq. ~7!, and therefore establishes Proposition 1.

VIII. EXTENSION TO VECTOR PROCESSES

With but one important exception, the extension of the previous results to higher dimen
is rather straightforward. The starting point of this extension is the following nonlinear stoch
equation (XI (t)PRd):

dXI ~ t !5mI ~XI ~ t !,t !dt1s= ~XI ~ t !,t !.dLI , ~43!

wheremI is the naturald-dimensional vector extension of the deterministic-like trend,s= is thed
3d8-dimensional tensor extension of the modulation of the random driving force, andLI is a
d8-dimensional Le´vy stable motion. As discussed below, the expression of the characte
function of the latter corresponds to the source of the difficulty in extending the scalar resu
higher dimensions. On the contrary, it is straightforward to check that Propositions 2 and
valid in the vector case, with the following extensions (xI PRd) for Eq. ~10!:

]p

]t
~xI ,tuxI 0 ,t0!5E dyI

]K̃

]t
~xI 2yI uyI ,t !p~yI ,tuxI 0 ,t0! ~44!

and for Eq.~11! (nI PJ#Nd,unI u5( i 51
d ni):

]p

]t
~xI ,tuxI 0 ,t0!5 (

nI PJ

~21! unI u

~n1!! ~n2!!..~nd!!

] unI u

]x1
n1]x2

n2..]xd
nd

@CnI ~xI ,t !p~xI ,tuxI 0 ,t0!#. ~45!

On the other hand, Eq.~43! yields the following extension to Eq.~41!:

dZXI ~k,dtuxI ,t !5ei kI .mI ~xI ,t !dZs= .LI ~kI ,dtuxI ,t ! ~46!

and therefore we have

dKXI ~kI ,dtuxI ,t !5 i kI .mI ~xI ,t !1dKLI ~s= * .kI ,dtuxI ,t !1o~dt !. ~47!

Let us recall that a stable Le´vy vector in the classical sense14,45,46~see Ref. 47 for a discussio
on a rather straightforward generalization, or Refs. 48, 49, and 50 for a more abstract gene
tion! corresponds to the limit of a sum of jumps, with a power-law distribution, along ran
directionsuI P]B1 , B1 being the unit ball, distributed according to a~positive! measuredS(uI ).
The latter, which generalizes the scale parameterD of the scalar case, is the source of the difficu
since in general the probability distribution of a stable Le´vy vector depends on this measure, a
therefore is a nonparametric distribution. However, as discussed below, there is at least a
exception: the case of isotropic stable Le´vy vectors.

Corresponding to our previous remarks, a~classical! stable Lévy vector has the following
~Fourier! cumulant generating function:
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KLI ~kI !5dtF i ~kI ,gI !2E
uI P]B1

~ ikI ,uI !a dS~uI !G1o~dt ! ~48!

which yields with the help of Eq.~47!:

]

]t
K̃XI ~kI !52div~mI 1s= .gI !2F21F E

uI P]B1

~ is= * ~xI ,t !.kI ,uI !a dS~uI !G . ~49!

The scalar case@Eq. ~39!# corresponds to

0<p<1: b52p21, dS~u!5D cosS pa

2 D @pd~u21!1~12p!d~u11!#. ~50!

For any dimensiond, the second term on the right-hand side of Eq.~49! corresponds to a
fractional differentiation operator of ordera. This operator can be slightly rearranged. With t
help of the odddS2(uI ) and evendS1(uI ) parts of the measuredS(uI ):

2 dS1~uI !5dS~uI !1dS~2uI !, 2 dS2~uI !5dS~uI !2dS~2uI ! ~51!

and the identity~u being the Heaviside function!:

~ ik !a5ukua@u~k!ei ~ap/2!1u~2k!e2 i ~ap/2!# ~52!

one can write the extension of Eq.~7! under the following form:

]

]t
p~xI ,tuxI 0 ,t0!52div@mI ~xI ,t !1s= ~xI ,t !.gI !] p~xI ,tuxI 0 ,t0!

2@^~2D= :s= .s= * !a/2&S12^~¹I .s= * !.~2D= :s= .s= * !a21/2&S2#

3p~xI ,tuxI 0 ,t0!, ~53!

where the symmetric fractional diffusive and, respectively, the antisymmetric advective–diff
terms are defined, similarly to Eq.~38!, in the following manner:

2^~2D= :sI .sI * !a/2&S15E
uI P]B1

dS1~uI !F21@ u~s= * ~xI ,t !.kI ,uI !ua# ~54!

2^~“I .s= * !.~2D= :s= .s= * !a21/2&S25E
uI P]B1

dS2~uI !F21@~2 is= * ~xI ,t !.kI ,uI !u~s= * ~xI ,t !.kI ,ū!ua21#.

~55!

In general, each term corresponds to a rather complex integration~which is indicated by the
symbol ^.&S! by the measuredS of directional fractional Laplacians@Eq. ~36!#. However, the
symmetric term becomes simpler as soon as the even partdS1 of the measuredS is isotropic.
Indeed, the integration over directions yields only a prefactorD:

^2~D= :s= .s= * !a/2&S15D~2D= :s= .s= * !a/2D5E
uI P]B1

dS1~uI !u~uI 1 ,uI !ua ~56!

and for a52 this corresponds to the classical term (D= :s= .s= * ) of the standardd-dimensional
Fokker–Planck equation. IfdS itself is rotation invariant, then the asymmetric operator vanish
sincedS250. If furthermore,s= is scalar, i.e.,s= 5s1= , then one obtains the following Fractiona
Fokker–Planck equation:
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]

]t
p~xI ,tuxI 0 ,t0!52div@s= .gI ~xI ,t !1mI ~xI ,t !#p~xI ,tuxI 0 ,t0! ~57!

2D@~2D!a/2#us~x,t !uap~xI ,tuxI 0 ,t0!. ~58!

Therefore, as one might expect the rotation symmetries yield a rather trivial extension
standard Gaussian case: a fractional powera of thed-dimensional Laplacian, as in the pure sca
case@Eq. ~7!#. Obviously, the integration performed in Eq.~53! is also greatly simplified as soo
asdS(uI ) is discrete, i.e. its support corresponds to a discrete set of directionsuI i .

On the other hand, let us note that the framework of generalized stable Le´vy vectors,47–50

allows one to introduce a much stronger anisotropy than the measuredS allows for classical
stable Lévy vectors. This therefore diminishes the importance of the asymmetry of the l
Indeed, the components of a generalized stable Le´vy vector do not necessarily have the same Le´vy
stability index, the latter being generalized into a second rank tensor. Similarly, the differ
operators involved in the corresponding fractional Fokker–Planck equation no longer h
unique order of differentiation. This is rather easy to check in case of a discrete measuredS(uI )
and we will explore the general case elsewhere.

IX. EXISTENCE AND UNIQUENESS OF THE SOLUTION

The preceding sections established a generalization of the Fokker–Planck equation
evolution of the probability distribution of nonlinear stochastic differential equations driven
Lévy stable noises. This is the main goal of this paper. Naturally, one would also like to ha
possible a theorem of existence and uniqueness of the solution of this equation. Due to its
such a theorem will also imply that the solution will remain positive and normalized, as req
for a transition probability. In this section we argue that the general results obtained51 in the
classical Gaussian case (a52) are also relevant for the Le´vy extension, whereas up until now
existence and uniqueness conditions of partial fractional differential equations have been s
explored~see however Refs. 52 and 53! and therefore we cannot rely on general results.

The classical Fokker–Planck equation belongs to the well-explored domain of parabolic
tions. Existence and uniqueness of the solution fundamentally result54 from the fact that the linear
operatorA52D is a ~self-adjoint! positive generator of a semigroup of contraction operat
T(t)5e2tA, t>0. In the case of constant coefficients~linear Langevin equation!, the solution is
directly obtained with the help ofT(t) and this ensures its existence, uniqueness, and positive
Note that in our case, the semigroup action corresponds to the equation of convolution@Eq. ~24!#.

Similar results hold for a Lipschitz variation of the coefficients, i.e.,

um~x,t !2m~y,t !u1us~x,t !2s~y,t !u<Dux2yu ~59!

as well as a condition of slow growth in time of the coefficientsm(X(t),t) ands(X(t),t), e.g.,

um~x,t !u1us~x,t !u<Cu11xu, ~60!

whereD andC are given positive constants.
These conditions have been extensively used for the classical Fokker–Planck equatio

non constant coefficients~e.g., Ref. 43!. Considering now the fractional generalization, it is im
portant to note that the fractional power of the Laplacian2(2D)a/2 remains positive, since its
definition Eq.~35! corresponds to replacing the eigenvaluesk2 by eigenvalues having as real pa
ukua. Therefore, we remain inside of the previous framework of contraction semigroup an
previous results should hold.

This could also be seen from the integral form of the differential equation. Indeed, in
classical case, the Lipschitz condition is classical for the Brownian forcing,55,41 as well as for the
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more general case of martingale and semimartingale forcing.56–58The latest case is relevant for th
stable Lévy forcing. The Lipschitz condition can be rather understood as a condition of con
gence of the Picard iteration method towards a fixed point:

Xn11~ t !5X~ t0!1E m~Xn~ t !,t !dt1E s~Xn~ t !,t !dL;X0~ t !5X~ t0!. ~61!

On the other hand, the condition of slow growth~60! in time prevents a finite explosion time
i.e., X(t) remains finite for any given finite timet: this condition is rather general, since it
already required by the deterministic part of the Langevin-type equation.

X. CONCLUSION

We have derived a fractional Fokker–Planck equation, i.e., a kinetic equation which inv
fractional derivatives, for the evolution of the probability distribution of nonlinear stocha
differential equations driven by non-Gaussian Le´vy stable noises. We first established this equ
tion in the scalar case, where it has a rather compact expression with the help of fractional p
of the Laplacian, and then discussed and presented its extension to the vector case. This fr
Fokker–Planck equation generalizes broadly previous results obtained for a linear Langev
equation with a Le´vy forcing, as well as the standard Fokker–Planck equation for a nonli
Langevin equation with a Gaussian forcing. As suggested in Ref. 36 and in the comments o
19 on Refs. 32 and 35, we will show elsewhere, that the present results could be exten
include fractional time derivative in the Langevin equation and in the corresponding Fok
Planck equation. This is particularly important for multifractal modeling, since the generato
dynamic universal multifractals30 are defined by this type of equations.
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