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Abstract  In this paper, we introduce conformable fractional Fourier series. We use such series to solve certain partial 
fractional differential equations. 
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1. Introduction 
Fourier series is one of the most important tools in applied 

sciences. For example one can solve partial differential 
equations using Fourier series. Further one can find the sum 
of certain numerical series using Fourier series. Fractional 
partial differential equations appeared to have many 
applications in physics and engineering. There are many 
definitions of fractional derivative. One of the most recent 
ones is the conformal fractional derivative [5]. 

Recently [1], fractional Taylor power series was 
introduced, and a beautiful theory was layed there. However, 
no work is done on fractional Fourier series, though there is 
some work on fractional fourier transform. 

The aim of this paper is to introduce conformable 
fractional Fourier series. As an application we solve some 
fractional partial differential equations using fractional 
Fourier series. 

For more applications on conformable fractional 
derivative we refer to [2-4]. 

2. Basics of Conformable Fractional 
Derivative 

The subject of fractional derivative is as old as calculus. In 

1695, L’Hopital asked if the expression 
0.5

0.5
d f
dx

 has any 

meaning. Since then, many researchers have been trying to 
generalize the concept of the usual derivative to fractional 
derivatives. These days, many definitions for the fractional 
derivative are available. Most of these definitions use an 
integral form. The most popular definitions are: 

(i) Riemann - Liouville Definition: If n  is a positive  
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integer and [ )1,n nα ∈ − , the αth derivative of f is 
given by 

( )( ) ( )
( )

( ) 1
1 .

tn

a n n
a

f xdD f t dx
n dt t x

α
αα − +=  

Γ − −
∫  

(ii) Caputo Definition. For [ )1,n nα ∈ − , the α 

derivative of f  is 

( )( ) ( )

( ) ( )
( ) 1

1 .
nt

a n
a

f x
D f t dx

n t x
α

αα − +=  
Γ − −

∫  

Now, all definitions are attempted to satisfy the usual 
properties of the standard derivative. The only property 
inherited by all definitions of fractional derivative is the 
linearity property. However, the following are the set- backs 
of one definition or another: 

(i) The Riemann-Liouville derivative does not satisfy 

( ) ( )(1 0 1 0a aD Dα α=   =  for the Caputo derivative), 

if α is not a natural number. 
(ii) All fractional derivatives do not satisfy the known 

product rule: 

( ) ( ) ( ).a a aD fg f D g g D fα α α=  +   

(iii) All fractional derivatives do not satisfy the known 
quotient rule: 

( ) ( ) ( )
2/ .a a

a
g D f f D g

D f g
g

α α
α  −  

=  

(iv) All fractional derivatives do not satisfy the chain 
rule: 

( )( ) ( ) ( ) ( ) ( )g .aD f g t f g t tα αα  ο =  

(v) All fractional derivatives do not satisfy: 
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D D f D fα β α β+=  in general 

(vi) Caputo definition assumes that the function f  is 
differentiable. 

(vii) ( )1 0T λ = , for all constant functions ( )f t λ= . 

In a new definition called conformable fractional 
derivative was introduced. 

Definition. If α > 0 then we define 

( )( )
[ ]( ) [ ]( ) [ ]( ) ( )1 1

0
lim ,

f t t f t
T f t

α αα α

α
ε

ε

ε

− −−

→

+ −
=  

where [ ]α  is the ceiling of α. We call Tα  the fractional 

derivative of f  of order α. We shall write ( ) ( )f tα  for 

( )( )T f tα . 

The new definition satisfies: 

1. ( ) ( )T af bg aT bT gα α α+ = + , for all , .a b∈   

2. ( ) 0Tα λ = , for all constant functions ( )f t λ= . 

Further, for (0,1]α ∈  and ,f g  be α-differentiable at 

a point t , with ( ) 0.g t ≠  Then 

3. ( ) ( ) ( ).T fg fT g gT fα α α= +  

4. 
( ) ( )

2
gT f fT gfT

g g
α α

α
− 

= 
 

 

We list here the fractional derivatives of certain functions, 
for the purpose of comparing the results of the new definition 
with the usual definition of the derivative: 

1. 2.1. ( ) .p pT t p t α
α

−=   

2.2. 
1 1sin cos .T t tα α

α α α
  =   
 

 

2.3. 
1 1cos sin .T t tα α

α α α
  = −   
 

 

2.4. 
1 1

.
t t

T e e
α α

α α
α

 
  =
 
 

 

On letting 1α =  in these derivatives, we get the 
corresponding ordinary derivatives. 

One should notice that a function could be α-differentiable 
at a point but not differentiable, for example, take

( ) 2f t t= . Then ( )( )1
2

1T f t = . Hence 

( )( )1
2

0 1T f = . But ( )( )1 0T f  does not exist. This is 

not the case for the known classical fractional derivatives. 

3. Fractional Fourier Series 

Let 0 1,α< ≤  and [: 0, ) Rϕ ∞ →  be defined by 

( ) tt
α

ϕ
α

=
 

and [: 0, )g R∞ →  be any function. Let 

[: 0, )f R∞ →  be defined by ( ) ( )( )f t g tϕ=   

For example, if ( ) cosg t t= , then ( ) cos tf t
α

α
 

=   
 

 

Definition 3.1. A function ( )f t  is called α-periodical 
with period p  if 

( ) ( )( ) ( ) pf t g t g t
α

ϕ ϕ
α

 
= = +  

 

 

for all [0, )t ∈ ∞  

As an example, ( ) cos tf t
α

α
 

=   
 

 is α-periodic with 

period ( )
1

2p ααπ=   

Definition 3.2. Two functions ,f h  are called 

α-orthogonal on [ ]0,b  if 
( ) ( )

1
0

0
b f t h t

dt
t α− =∫   

Examples 3.1. cos tα

α
 
  
 

 and cos 2 tα

α
 
  
 

 are 

α-orthogonal on ( )
1

0, 2 αα π
 
 
 

. 

Proof. Put t x
α

α
= . Then 1

1
dtdx t dt

t
α

α
−

−= =   

Further, when t = 0, x = 0, and when 
1

2t ( )a απ= , x = 2π. 
Hence 

1

( 2 )

1

2

0

1cos( )cos(2 )

cos( ) cos(2 ) 0

aa a a

a
t t dt
a a t

x x dx

π

π

−
0

= =

∫

∫
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In general, using the idea in example 3.1 one can easily 
prove: 

Theorem 3.1.  

(i) cos
atn
a

 
  
 

 and cos
atm
a

 
  
 

 are orthogonal on 

1

, )0 2a α


π


 
 
  , for all n ≠ m. 

(ii) sin
atn
a

 
  
 

 and sin
atm
a

 
  
 

 are orthogonal on 

1

, )0 2a α


π


 
 
  , for all n ≠ m. 

(iii) sin
atn
a

 
  
 

 and cos
atm
a

 
  
 

 are orthogonal on 

1

, )0 2a α


π


 
 
  , for all n, m. 

Now let us define the Fourier coefficients of an α-periodic 
function with period p. 

Definition 3.3. Let f: [0, ) R∞ →  be a given peicewise 
continuous α-periodic with period p: Then we define: 

(i) The cosine α-Fourier coefficients of f as 

1
0

2 (t) cos( ) , 1, 2,3......
p a

n a a
a t dta f n n

ap t −=  =∫  

(ii) The sine α-Fourier coefficients of f as 

1
0

2 (t)sin( ) , 1, 2,3......
p a

n a a
a t dtb f n n

ap t −= =∫  

For example, the cosine 
1
2

-Fourier coefficients of the 

function cos 2 t  is: a1 = 1, and an = 0 for all n ≠ 1, 

where 
1

*2( )p αα π= , 
1
2

α = . 

Now, we give the definition of the fractional Fourier 
series: 

Definition 3.4. Let f: [0, ) R∞ →  be a given peicewise 
continuous function which is α-periodical with period p: 
Then the α-fractional Fourier series of f associated with the 
interval [0, p] is 

0

1
( )( ) cos( ) sin( )

2

a a

n
n

a t tS f t a n n
a a

∞

=
= + +∑  

where an and bn are as in Definition 3.3 
Let us have some examples. 
Example 3.2. Let 

2

2 2

2 0 ( )
2(t)

2 2 ( )
2

t if t
f

t if t

π

ππ π

                ≤ ≤  =  
 −         < ≤
  

, and 
1
2

α = , 

with p = π2 on the interval [0, π2]: Then, 

2

1
0

( )

0

2 ( ) cos( )

1 ( ) cos( 2 )

p

n
t dta f t n

p t

dtf t n t
t

α

α α

π

α
α −=

=
π

∫

∫
 

2

2

2

( )
2

0

( )

( )
2

1 2 cos( 2 )

1 (2 2 )cos( 2 )

dtt n t
t

dtt n t
t

π

π

π
π

=
π

+ −
π

∫

∫
 

Using change of variables: 2 tθ = , we get d t
t

dθ = , 

θ = 0 if t = 0, t = 0, θ = π 

if 
2

2
t π =  

 
, and θ = 2π if t = (π)2. Hence, the integral 

becomes 
2

0

1 cos( ) ( 2 )cos 0na n d n d
π π

π

θ θ θ θ π θ θ= + − =
π ∫ ∫  

Similarly 
2

0

2

1 sin( ) ( 2 )sin

4 1
2 1

nb n d n d

n n

π π

π

θ θ θ θ π θ θ= + −
π

= −
+

∫ ∫
 

So, 

2
1

4 1( )( ) ( )sin 2
2 1n

S f t n t
n n

∞

+
= −

+∑  
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Example 3.3. Let 2

2

0 0

( ) 0
2

0
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tf t if t

if t

π π

π

                 = 
 

− =        < < 
 
                 = 

 

Then 

21( 2 )
2

0

1 cos 2 0
2n

t dta n t
t

π
π −

= =
π ∫  

and 

21( 2 )
2

0

1 1sin 2
2n

t dtb n t
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π
π −

= =
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Hence ( )( ) ( )
1

1 sin 2
n

S f t n t
n

∞

=
= ∑   

One can easily prove the following classical result. 
Theorem 3.2. The fractional Fourier series of a piece wise 

continuous α- periodical function converges pointwise to the 
average limit of the function at each point of discontinuity, 
and to the function at each point of continuity. 

4. Applications 
In this section we will use fractional Fourier series to solve 

some fractional partial differential equations. Namely, we 
will solve the equation 

( ) ( ), ,u x t u x t
t t

α β

α β
∂ ∂

=
∂ ∂

         (4.1) 

0 1, 0 1α β< ≤ < ≤          (4.2) 

( ) ( ) ( ), , 0, ,0 0u o t u L t u x= = = , 

 and ( ),1 1 , 0u x x x L= − < <      (4.3) 

Solution. We will use separation of variables technique. 
So let ( ) ( ) ( ),u x t P x Q t= . Substitute in the equation 

to get 

( ) ( ) ( ) ( ) ( ) ( )P x Q t P x Q tα β=  

From which we get 

( ) ( )
( )

( ) ( )
( )

P x Q t
P x Q t

α β
=  

Since x and t are independent variables, then we get 

( ) ( )
( )

( ) ( )
( )

P x Q t
P x Q t

α β
λ= = , constant to be determined. 

Hence 

( ) ( ) ( ) 0P x P xα λ− =         (4.4) 

and 

( ) ( ) ( ) 0Q t Q tβ λ− =         (4.5) 

Conditions (4.3) suggests that we work with equation (4.4) 
first.  

There are three possibilities for λ: 

(i) λ = 0. Then equation (4.4) becomes ( ) ( ) 0P xα = , 
and from the property (2) of conformable fractional 
derivative, we get ( )P x c= . Condition (4.3) shows 
that c = 0: 

(ii) λ > 0. Then equation (4.4) becomes 
( ) ( ) ( )P x P xα λ= , and from formula (2.4) of the 

conformable fractional derivative, we get 

( )
x

P x ce

α
λ

α= . Condition (4.3) shows that c = 0: 

(iii) λ < 0. Then equation (4.4) becomes 
( ) ( ) ( )2 0P x P xα µ+ = . Using formulas (2.2) and 

(2.3) we get  

( ) 1 2cos sinx xP x c c
α α

µ µ
α α

= +    (4.6) 

Condition (4.3) implies that c1 = 0. So 

( ) 2 sin xP x c
α

µ
α

= . Another use of condition (4.3) 

gives sin 0Lα
µ

α
= . Hence 

, 1, 2.......n with n
Lα
αµ π= =     (4.7) 

So 

( ) 2 sin xP x c n
L

α

α
απ

α
=         (4.8) 

Now, we go back to equation (4.5) to get 
( ) ( ) ( )2 0Q t Q tβ µ− = . Using formula (2.4) we get 
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( ) 1 2

t t

Q x a e a e

β β
µ µ

β β
−

= +
      (4.9) 

Condition (4.3) implies that a2 = - a1. Hence 

( ) 12 sinh tQ x a
β

µ
β

=          (4.10) 

Combining (4.8) and (4.10) to get 

( )
1

, sin sinhn
n

x tu x t b n n
L L

α β

α α
α απ π

α β

∞

=
= ∑  (4.11) 

Now, using the condition ( ),1 1u x xα= − , to get 

1

11 sin sinh .n
n

xx b n n
L L

α
α

α α
α απ π

α β

∞

=
− = ∑  

Using the α - Fourier series of 1 - xα, we find bn 
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