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A fractional fourier transform (FrFT) based chirplet signal decomposition (FrFT-CSD) algorithm is proposed to analyze ultrasonic
signals for NDE applications. Particularly, this method is utilized to isolate dominant chirplet echoes for successive steps in
signal decomposition and parameter estimation. FrFT rotates the signal with an optimal transform order. The search of optimal
transform order is conducted by determining the highest kurtosis value of the signal in the transformed domain. A simulation
study reveals the relationship among the kurtosis, the transform order of FrFT, and the chirp rate parameter in the simulated
ultrasonic echoes. Benchmark and ultrasonic experimental data are used to evaluate the FrFT-CSD algorithm. Signal processing
results show that FrFT-CSD not only reconstructs signal successfully, but also characterizes echoes and estimates echo parameters
accurately. This study has a broad range of applications of importance in signal detection, estimation, and pattern recognition.

1. Introduction

In ultrasonic imaging applications, the ultrasonic signal
always contains many interfering echoes due to the complex
physical properties of the propagation path. The pattern of
the signal is greatly dependent on irregular boundaries, and
the size and random orientation of material microstruc-
tures. For material characterization and flaw detection
applications, it becomes a challenging problem to unravel
the desired information using direct measurement and
conventional signal processing techniques. Consequently,
signal processing methods capable of analyzing the nonsta-
tionary behavior of ultrasonic signals are highly desirable
for signal analysis and characterization of propagation
path.

Various methods such as short-time Fourier transform,
Wigner-Ville distribution, discrete wavelet transform, dis-
crete cosine transform, and chirplet transform have been
utilized to examine signals in joint time-frequency domain
and to reveal how frequency changes with time in those
signals [1–8]. Nevertheless, it is still challenging to adaptively
analyze a broad range of ultrasonic signal: narrowband or

broadband; symmetric or skewed; nondispersive or disper-
sive.

Recently, there has been a growing attention to fractional
Fourier transform (FrFT), a generalized Fourier transform
with an additional parameter (i.e., transform order). It
was first introduced in 1980, and subsequently closed-form
FrFT was studied [8–11] for time-frequency analysis. FrFT
is a power signal analysis tool. Consequently, it has been
applied to different applications such as high-resolution SAR
imaging, sonar signal processing, blind source separation,
and beamforming in medical imaging [12–15]. Short term
FrFT, component-optimized FrFT, and locally optimized
FrFT have also been proposed for signal decomposition [16–
18].

In practice, signal decomposition problem is essentially
an optimization problem under different design criteria.
The optimization can be achieved either locally or glob-
ally, depending on the complexity of the signal, accuracy
of estimation, and affordability of computational load.
Consequently, the results of signal decomposition are not
unique due to different optimization strategies and signal
models. For ultrasonic signal analysis, local responses from



2 Advances in Acoustics and Vibration

Table 1: Parameter estimation results of two slightly overlapped ultrasonic echoes.

τ (us) fc (MHz) β α1 (MHz)2 α2 (MHz)2 θ (Rad)

Echo 1

Actual parameter 2.5 7.0 1 20 35 π/6

Estimated parameter 2.50 7.00 1.00 20.00 35.00 0.52

Echo 2

Actual parameter 3.0 5 1 25 20 0

Estimated parameter 3.00 5.00 1.00 25.00 19.98 0

Table 2: Parameter estimation results of two moderately overlapped ultrasonic echoes.

τ (us) fc (MHz) β α1 (MHz)2 α2 (MHz)2 θ (Rad)

Echo 1

Actual parameter 2.7 7.0 1 20 35 π/6

Estimated parameter 2.70 7.02 1.00 20.04 33.55 0.67

Echo 2

Actual parameter 3.0 5 1 25 20 0

Estimated parameter 3.00 5.00 1.00 24.87 20.38 0.01
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Figure 1: (a) A simulated LFM signal. (b) The optimal transform
order tracked by Maximum amplitude of FrFT for different FrFT
orders.

microstructure scattering and structural discontinuities are
more of importance for detection and material characteri-
zation. Chirplet covers a board range of signals representing
frequency-dependent scattering, attenuation and dispersion
effects in ultrasonic testing applications. This study shows
that FrFT has a unique property for processing chirp-
type echoes. Therefore, in this paper, the application of
fractional Fourier transform for ultrasonic applications
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Figure 2: (a) a simulated ultrasonic single echo with Θ =

[3.6 us 5 MHz 1 25 MHz2 25 MHz2 0]. (b) Fractional
Fourier transform of the signal in (a) for different transform orders.

has been explored. In particular, FrFT is introduced as a
transformation tool for ultrasonic signal decomposition.
FrFT is employed to estimate an optimal transform order,
which corresponds to highest kurtosis value in the transform
domain. The searching process of optimal transform order
is based on a segmented signal for a local optimization.
Then, the FrFT with the optimal transform order is applied
to the entire signal in order to isolate the dominant echo
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Signal s(t) containing
multiple echoes

Initialization j = 1

Signal windowing:

Fractional Fourier transform:

j = j + 1
which generates a maximum Kurtosis value

Search an optimal transform order, αopt,

Inverse fractional fourier transform

Fractional fourier transform:

Signal windowing

Estimate parameters of

Obtain residual signal by subtracting

decomposed echo from the signal

Calculate energy of residual signal (Er)

Er < Emin

Yes

No

Signal decomposition and

parameter estimation complete

Use residual
signal for next

echo estimation

FrFT αopt (x)s(t)

FrFT α(x)s win(t)

for FrFT α(x)s win(t)

FrFT win(x) = FrFt αopt (x)s(t) ×win j(x)

decomposed echo, fΘ j (t)

fΘ j (t) = FrFT −αopt (t)FrFT win (x)

s win(t) = s(t)×w j(t)

Figure 3: Flowchart of FrFT-CSD algorithm.

for parameter estimation. This echo isolation is applied
iteratively to ultrasonic signal until a predefined stop cri-
terion such as signal reconstruction error or the number
of iterations is satisfied. Furthermore, each decomposed
component is modeled using six-parameter chirplet echoes
for a quantitative analysis of ultrasonic signals.

A bat signal is utilized as a benchmark to demonstrate
the effectiveness of fractional Fourier transform chirplet
signal decomposition (FrFT-CSD). To further evaluate the
performance of FrFT-CSD, ultrasonic experimental data
from different types of flaws such as flat bottom hole, side-
drilled hole and disk-type cracks are evaluated using FrFT-
CSD.

The outline of the paper is as follows. Section 2 reviews
the properties of FrFT and the process of FrFT-based signal
decomposition. Section 3 addresses how kurtosis, transfor-
mation order and chirp rate are related using simulated
data. Section 4 presents the steps involved in FrFT-CSD
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Figure 4: (a) Simulated ultrasonic echoes (20% overlapped). (b)
The first signal component. (c) The second signal component
(simulated signal in blue, estimated signal in red).
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Figure 5: (a) Simulated ultrasonic echoes (50% overlapped). (b)
The first signal component. (c) The second signal component
(simulated signal in blue, estimated signal in red).

algorithm. Section 5 performs a simulation study of FrFT-
CSD and parameter estimation for complex ultrasonic
signals. Sections 5 and 6 show the results of a benchmark data
(i.e., bat signal); the echo estimation results of benchmark
data from side-drilled hole, and disk-shape cracks; the results
of experimental data with high microstructure scattering
echoes.
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2. FrFT of Ultrasonic Chirp Echo

FrFT of a signal, f (t), is given by

Fα(x) =
e−i ((π/4) sgn(πα/2)− (πα/4))

(2π|sin(πα/2)|)1/2 e(1/2)ix2cot (πα/2)

×

∫∞

−∞

e(−i (xt/ sin(πα/2))+(1/2)it2cot (πα/2)) f (t) dt,

(1)

where α denotes transform order of FrFT and x denotes the
variable in transform domain.

It has been shown that if the transform order, α, changes
from 0 to 4, (i.e., the rotation angle, φ, changes from 0 to 2π),
Fα(x) rotates the signal, f (t), and projects it onto the line
of angle, φ, in time-frequency domain [19]. This property
contributes to FrFT-based decomposition algorithm when
applied to ultrasonic signals.

For ultrasonic applications, ultrasonic chirp echo is a
type of signal often encountered in ultrasonic backscattered
signals accounting for narrowband, broadband, and disper-
sive echoes. It can be modeled as [8]:

fΘ(t) = β exp
[

−α1(t − τ)2 + i2π fc(t − τ)

+iα2 (t − τ)2 + iθ
]

,
(2)

where Θ =

[

τ fc β α1 α2 θ
]

denotes the parameter vector,
τ is the time-of-arrival, fc is the center frequency, β is the
amplitude, α1 is the bandwidth factor, α2 is the chirp-rate,
and θ is the phase.

Hence, for the ultrasonic Gaussian chirp echo, fΘ(t), the
magnitude of Fα(x) given by (1) can be expressed as

|Fα(x)| =
1

(2π|sin(πα/2)|)1/2

∣
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∣

∣
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√
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|sin(πα/2)|

)1/2

∣

∣

∣e(B2
−4AC)/4A
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where the integration part can be written as
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∣
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(4)

with A = α1 − α2i − (1/2)i cot (πα/2), B = 2α2τi − 2α1τ −
2π f0i + xicsc(πα/2), and C = α1τ2

− α2iτ2
− θ + 2π f0τi.

From (3), it can be seen that, for a linear frequency
modulation (LFM) signal (i.e., α1 = 0), if the transformation
order, α, satisfies the following equation:

(

α2 +
1

2
cot

πα

2

)

sin
πα

2
= 0,

α = −
2

π
tan−1

(

1

2α2

)

,

(5)

then the |Fα(x)| compacts to a delta function. This means
that fractional Fourier transform can be used to compress the
duration and compact the energy of ultrasonic chirp echo
with an optimal transform order. Optimal transform order
can be determined using kurtosis. The energy compaction
is a desirable property for ultrasonic signal decomposition,
which allows using a window in FrFT domain for isolation of
an echo of interest.

3. Kurtosis and FrFT Order

Kurtosis is commonly used in statistics to evaluate the degree
of peakedness for a distribution [20, 21]. It is defined as the
ratio of 4th-order central moment and square of 2nd-order
central moment:

K(α) =
µ4(Fα(x))
[

µ2(Fα(x))
]2 , (6)

where µ4(•) denotes 4th-order central moment and µ2(•)
denotes 2nd-order central moment. A signal with high
kurtosis means that it has a distinct peak around the mean.
In the literatures of FrFT [18, 19, 22], kurtosis is typically
used as a metric to search the optimal transform order of
FrFT. Different transform order directs the degree of signal
rotation caused by FrFT, and this rotation affects the extent
of energy compaction of the transformed signal.

Figure 1(a) shows a chirp signal with the param-
eters, Θ = [3.6 us 5MHz 1 0 25MHz 0]. For this
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Figure 6: (a) Simulated ultrasonic echoes (70% overlapped). (b) The first estimated echo component. (c) The second estimated echo
component (simulated signal in blue, estimated signal in red).
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Figure 7: Left column (top to bottom): decomposed bat signal components in time domain. Right column (top to down): Wigner-Ville
distribution of the corresponding signals in left column.
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Table 3: Parameter estimation results of two heavily overlapped ultrasonic echoes.

τ (us) fc (MHz) β α1 (MHz)2 α2 (MHz)2 θ (Rad)

Echo 1

Actual parameter 2.7 6 1 20 55 π/6

Estimated parameter 2.70 6.11 0.97 18.87 53.79 0.72

Echo 2

Actual parameter 3.0 5 1 25 20 0

Estimated parameter 3.00 5.00 1.00 25.14 20.38 0.01
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Figure 8: (a) Reconstructed bat signal. (b) Summed Wigner Ville
distribution of the decomposed signals in (a).
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Figure 9: Experiment setup for SDH blocks.

example, the bandwidth factor equals to zero (see (2)),
and according to (5), the optimal transform order can be
calculated as

α = −
2

π
tan−1

(

1

2α2

)

= −0.013. (7)

As shown in Figure 1(b), this optimal order can also be
determined by direct search for the maximum amplitude
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Figure 10: Ultrasonic data from the front surface superimposed
with the estimated chirplet (depicted in dashed red color line).
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Figure 11: Experiment setup for disc-shaped cracks in a diffusion-
bonded titanium alloy.

of FrFT using different transform orders according to (3).
The transform order corresponding to the maximum FrFT
among all transform orders matches the theoretical result
given in (7).

For ultrasonic applications, the chirp echo is band-
limited. For example, Figure 2(a) shows a band-limited
single chirp echo with the parameters Θ = [3.6 us 5MHz
1 25MHz 25MHz 0]. Chirplet is a model widely used
in ultrasonic NDE applications. Figure 2 illustrates the FrFT
of a chirplet using different transform orders. In particular,
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Figure 12: Experimental data of crack C (with normalized amplitudes) superimposed with the estimated chirplets. (a) Front surface
reference signal superimposed with sum of 2 chirplets. (b) Experimental data (refracted angle 0) superimposed with sum of 2 chirplets.
(c) Experimental data (refracted angle 30 at point a) superimposed with sum of 4 chirplets. (d) Experimental data (refracted angle 30 at
point b) superimposed with sum of 4 chirplets. (e) Experimental data (refracted angle 45 at point a) superimposed with sum of 4 chirplets.
(f) Experimental data (refracted angle 45 at point b) superimposed with sum of 4 chirplets.

Table 4: Estimated parameters of chirplets (block with 1 mm SDH).

Chirplet parameters
Refracted angle

0◦ 30◦ 45◦

Amplitude (m-Volt) 42.5 29 16.01

Spherically focused
transducer

TOA (us) 76.62 82.6 89.39

Frequency (MHz) 4.55 4.6 4.32

Amplitude (m-Volt) 22.71 20.43 14.53

Planar transducer TOA (us) 76.57 82.80 89.82

Frequency (MHz) 4.48 4.67 4.81

the transform order from (7) (i.e.,−0.013) is used for a com-
parison. Our simulation shows that the optimal transform
order for the band-limited echo is different compared with

Table 5: Estimated parameters of chirplets (block with 4 mm SDH).

Chirplet parameters
Refracted angle

0◦ 30◦ 45◦

Amplitude (m-Volt) 87.75 59.34 32.61

Spherically focused
transducer

Time of arrival (us) 76.10 82.05 88.88

Frequency (MHz) 4.61 4.54 4.39

Amplitude (m-Volt) 41.72 37.62 27.97

Planar transducer Time of arrival (us) 76.11 82.36 89.42

Frequency (MHz) 4.46 4.67 4.84

the one for the LFM echo due to the impact of bandwidth
factor in chirp echoes.
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Figure 13: Experimental data of Crack D (with normalized amplitudes) superimposed with the estimated chirplets (depicted in dashed red
line). (a) Front surface reference signal superimposed with sum of 2 chirplets. (b) Experimental data (refracted angle 0) superimposed with
sum of 2 chirplets. (c) Experimental data (refracted angle 30) superimposed with sum of 4 chirplets. (d) Experimental data (refracted angle
45) superimposed with sum of 4 chirplets.

Table 6: Estimated parameters of chirplets (crack D).

TOA (us) Center frequency (MHz) Amplitude (m-Volt)

Reference signal
34.583 9.42 363.3

34.725 10.60 54.4

Refracted angle 0◦
38.776 10.38 4.64

38.891 13.06 0.50

Refracted angle 30◦

39.777 7.68 0.50

40.040 9.10 0.14

39.674 12.57 0.18

39.861 2.18 0.03

Refracted angle 45◦

40.677 9.85 0.17

40.956 9.85 0.07

40.675 4.51 0.04

40.620 15.65 0.03
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Figure 14: (a) Measured ultrasonic backscattered signal (blue)
superimposed with the reconstructed signal consisting of 8 domi-
nant chirplets (red). (b) Measured ultrasonic backscattered signal
(blue) superimposed with the reconstructed signal consisting of 23
chirplets (red).

One can conclude that the compactness in the fractional
Fourier transform of an ultrasonic echo can be used to track
the optimal transform order. It is also important to point
out that the optimal transform order is highly sensitive to a
small change in the order. Therefore, using kurtosis becomes
a practical approach to obtain the optimal FrFT order for
ultrasonic signal analysis.

4. FrFT Chirplet Signal
Decomposition Algorithm

The objective of FrFT-CSD is to decompose a highly
convoluted ultrasonic signal, s(t), into a series of signal
components:

s(t) =
N
∑

j=1

fΘ j(t) + r(t), (8)

where fΘ j(t) denotes the jth fractional chirplet component
and r(t) denotes the residue of the decomposition process.

The steps involved in the iterative estimation of an
experimental ultrasonic signal are

(1) initialize the iteration index j = 1;

(2) obtain a windowed signal s win(t) after applying a
window, w j(t), in time domain;

swin(t) = s(t)×w j(t). (9)

(3) determine the FrFT of the signal, s win(t),
FrFTα(x)s win(t), for different orders, α;

(4) calculate kurtosis of FrFTα(x)s win(t) for different
orders, α:

K(α) =
µ4

(

FrFTα(x)s win(t)

)

[

µ2

(

FrFTα(x)s win(t)

)] 2 ; (10)

(5) estimate the optimal transform order, αopt:

αopt = argαMAX (K(α)), (11)

αopt corresponds to the FrFT transform order where
K(α) has the max value. In our study, a brute-force
search is used to estimate the optimal transform
order. The step size of searching is set to 0.005.
The computation load of calculating the kurtosis
and searching for the optimal order is significant.
Some researchers used the maximum peak in the
transform domain as an alternative metric [17].
For ultrasonic signal decomposition, the optimal
transform order is related to the chirp rate of the
signal. The search range of transform order can be
reduced by considering prior knowledge of ultrasonic
transducer impulse response;

(6) apply FrFT with the estimated order αopt to the signal
s(t) and obtain FrFTαopt (x)s(t);

(7) obtain a windowed signal from FrFTαopt (x)s(t):

FrFTwin(x) = FrFTαopt (x)s(t) ×win j(x), (12)

(8) apply the transformation order, −αopt, to the signal
FrFT win(x), then reconstruct the jth component by
estimating parameters of the decomposed echo:

fΘ j (t) = FrFT−αopt (t)FrFT win(x), (13)

the parameter estimation process here becomes a
single-echo estimation problem. A Gaussian-Newton
algorithm used in [23–25] is adopted in FrFT-CSD;

(9) obtain the residual signal by subtracting the esti-
mated echo from the signal, s(t), and use the residual
signal for next echo estimation;

(10) calculate energy of residual signal (Er) and check con-
vergence: (Emin is predefined convergence condition)
If Er < Emin, STOP; otherwise, go to step 2.

For further clarification, the flowchart of FrFT-CSD
algorithm is shown in Figure 3. It is important to mention
that two windowing steps are used in FrFT-CSD algorithm.
One window is used in step 2 in order to isolate a dominant
echo in time domain. It is inevitable to have an incomplete
echo due to windowing process. A good strategy of choosing
this window is to keep as much of echo information
as possible. The other window is applied in step 7. For
ultrasonic chirp echoes, the energy compactness of FrFT
helps to reduce the window size centered on a desired peak
in the transform domain. As shown in Figure 2, a chirplet
is compressed to a great extent after the transform. An
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automatic windowing process is used to detect the valleys
of the dominant echo. In the cases of heavily overlapping
echoes and high noise levels (i.e., the cases of poor signal-
to-noise ratio), the performance of windowing method
may be compromised. In this situation, a window with a
predetermined size can be used to isolate desirable peaks.

5. Simulation and Benchmark
Study of FrFT-CSD

To demonstrate the advantages of FrFT signal decomposition
in ultrasonic signal processing, ultrasonic chirp echoes
with three different overlapping scenarios are simulated,
where chirp rate models the dispersive effect in ultrasonic
testing of materials. Two slightly overlapped (about 20%
overlapped) echoes is simulated using the sampling fre-
quency of 100 MHz. The parameters of these two echoes
are

Θ1 =

[

2.5us 7 MHz 1 20 MHz2 35 MHz2 π

6

]

,

Θ2 =

[

3.0 us 5 MHz 1 25 MHz2 20 MHz2 0
]

.

(14)

Figure 4 shows the simulated signal (in blue) super-
imposed with estimated echoes (in red). The estimated
parameters perfectly match the parameters of simulation
signal as compared in Table 1. One can conclude that
the FrFT-CSD not only decomposes the signal efficiently,
but also leads to precise parameter estimation results. A
moderately overlapped (about 50% overlapped) simulated
signal consisting of two echoes is shown in Figure 5. For
this simulated signal, Table 2 shows that the estimated
parameters are accurate within a few percents.

Finally, Figure 6 and Table 3 show the simulated and
estimated two heavily overlapped (about 70% overlapped)
echoes. The decomposition results (Figure 6) and estimated
parameters (Table 3) confirm the robustness and effective-
ness of FrFT-CSD in echo estimation for ultrasonic signal
analysis.

An experimental bat data is commonly used as a
benchmark signal in time-frequency analysis. It is a 400-
sample data digitized 2.5 µs echolocation pulse emitted by a
large brown bat with 7 µs sampling period. To evaluate the
performance of FrFT-based signal decomposition algorithm,
the bat data is utilized to demonstrate the effectiveness of
algorithm.

Through the processing of FrFT-CSD, there are four
main chirp-type signal components identified in the bat
signal. The decomposed signals and their Wigner-Ville dis-
tribution (WVD) are shown in Figure 7. The reconstructed
signal and its superimposed WVD are shown in Figure 8.
The results in Figures 7 and 8 are consistent with the analysis
results from other techniques in time-frequency analysis
[26]. The FrFT-based signal decomposition algorithm not
only reveals that the bat signal mainly contains four chirp
stripes in time-frequency domain, but provides a high-
resolution time-frequency representation.

6. Experimental Studies

For experimental studies, two aluminum blocks with differ-
ent size of side-drilled hole (SDH) are used [27]. One is with
1 mm diameter, another is 4 mm diameter. The experimental
setting is shown in Figure 9. It can be seen that the water path
is 50.8 mm and the depth of SDH is 25.4 mm (i.e., from the
water-aluminum interface to the center of SDH).

To provide a rigorous test, two 5 MHz transducers are
used to acquire ultrasonic data at normal or oblique refracted
angles, θ. One is planar transducer. Another is spherically
focused transducer with 172.9 mm focal length.

To verify the experiment setup, the FrFT-CSD is utilized
to analyze the ultrasonic data from the front surface of
the specimen. The ultrasonic data superimposed with the
estimated chirplet is shown in Figure 10.

It can be seen that the estimated time-of-arrival (TOA)
of the front surface echo is 68.72 µs. In addition, from the
experimental setting, the TOA can be calculated as

TOA =
2×D

v
, (15)

where D denotes the water distance, and in the case of
incidence angle 0 this distance is 50.8 mm. The round trip
of ultrasound is twice of the water distance, D. The term
v denotes the velocity of ultrasound in medium: v =

1.484 mm/µs for water.
From (15), the theoretical value of TOA is 68.47 µs.

The estimated TOA is in agreement (within 0.4%) with the
theoretical TOA.

Furthermore, the parameters of chirplet are strongly
related to the crack size, location, and orientation. For
example, the amplitude is a good indicator of crack size. In
Tables 4 and 5, the estimated amplitude from a 4 mm SDH
is roughly twice of the estimated amplitude from a 1 mm
SDH. In NDE applications, the estimated amplitude of a
known-size crack could be used as a reference to estimate
the size of crack. As shown in (15) and (16), the estimated
TOA can be used to approximate the location of crack.
In addition, different types of cracks could have different
frequency variations. From [8, 26], the response of crack
usually shows a downshift in the frequency compared with
the responses of grains inside the material.

These results indicate that the estimated parameters from
FrFT-CSD algorithm track with reasonable accuracy the
physical parameters of experimental setup. Moreover, the
FrFT-CSD algorithm provides more detailed information
describing the reflected echoes such as phase, bandwidth
factor and chirp rate that can be used for further analysis.

Another experiment is set up to evaluate disk-shaped
cracks in a diffusion-bonded titanium alloy sample [28].
The ultrasonic data of these synthetic cracks are obtained at
normal or oblique refracted angles, θ using a 10 MHz planar
transducer. The diameter of the transducer is 6.35 mm. The
water depth is 25.4 mm. The surface of diffusion bond is
13 mm below the front surface of water/titanium alloy inter-
face. Two different sizes of cracks are made with the diameter
0.762 mm (i.e., crack D) and the diameter 1.905 mm (i.e.,
crack C). For crack C, the responded ultrasonic data is
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Table 7: Estimated parameters of chirplets (crack C).

TOA (us) Center frequency (MHz) Amplitude (m-Volt)

Reference signal
34.583 9.42 363.3

34.725 10.60 54.4

Refracted angle 0◦
38.754 9.78 14.48

38.863 12.93 1.86

Refracted angle 30◦ (point a)

39.784 11.02 0.58

40.029 6.06 0.19

40.560 7.68 0.13

40.122 10.63 0.06

Refracted angle 45◦ (point a)

40.825 9.88 0.14

41.157 9.92 0.07

40.795 15.64 0.04

41.658 6.87 0.05

Refracted angle 30◦ (point b)

39.757 7.78 0.49

39.536 5.32 0.11

39.905 4.63 0.10

39.426 11.13 0.10

Refracted angle 45◦ (point b)

40.632 9.09 0.21

40.270 9.65 0.07

40.468 3.40 0.16

41.100 7.97 0.07

Table 8: Estimated parameters of the 8 dominant chirplets for ultrasonic experimental data.

τ (us) fc (MHz) β α1 (MHz)2 α2 (MHz)2 θ (Rad)

Echo 1 2.95 3.87 1.06 20.16 13.17 2.80

Echo 2 3.47 5.53 0.63 56.86 −41.06 −2.70

Echo 3 0.33 6.57 0.54 37.45 28.66 1.76

Echo 4 1.18 7.24 0.54 27.14 30.17 3.71

Echo 5 2.08 6.66 0.53 39.13 −15.50 2.75

Echo 6 2.40 6.00 0.47 62.91 60.24 2.47

Echo 7 4.64 6.23 0.18 4.75 −0.18 −2.36

Echo 8 1.49 3.97 0.12 0.73 −0.04 −6.64

recorded from the two edges of the crack, which are marked
as point a and point b. The thickness of both disk-shaped
cracks is 0.089 mm. Figure 11 shows the experiment setup for
the alloy sample [28].

From Figure 11, the TOA of crack at refracted angle θ is
calculated as follows:

TOAθ = TOAref +
2×D/ cos θ

v
, (16)

where TOAref denotes the estimated TOA of reference signal
(i.e., 34.58 µs from Tables 6 and 7). The round trip of
ultrasound inside titanium from the front surface to the
diffusion bound is 2 × D/ cos θ, where D denotes the depth
of diffusion bond, which is 13 mm; θ denotes the refracted
angle and v denotes the velocity of ultrasound in medium:
v = 6.2 mm/µs for titanium. Therefore, TOAθ at the angle 0◦

is 38.777 µs. TOAθ at the angle 30◦ is 39.425 µs. At the angle
45◦, TOAθ is 40.514 µs.

From Tables 6 and 7, it can be seen that the estimated
TOAθ at angle 0◦ is 38.776 µs and 38.754 µs. Taking the
thickness of the cracks (0.089 mm) into consideration, it
can be asserted that the estimated TOAs at incident angle
0◦ are in good agreement with experimental measurements.
Experimental signals of crack C and crack D (with normal-
ized amplitudes) superimposed with the estimated chirplets
(depicted in dashed line and red color) are shown in Figures
12 and 13. It also can be seen that the front surface reference
signal and the experimental data obtained at angle 0◦ are well
reconstructed by the FrFT-CSD algorithm (see Figures 12(a),
12(b), 13(a) and 13(b)). Nevertheless, with the increase of
refracted angle, more chirplets needed to decompose the
experimental data (see the refracted angle 30 and 45 degree
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cases). In addition, Tables 6 and 7 show that the signal
energy is more evenly distributed to estimated chirplets in
the high refracted angle cases. This spreading of signal might
be caused by geometrical effect of the beam profile of the
planner transducer and corners/edges of disk-shaped crack.

To further evaluate the performance of FrFT-based
signal decomposition algorithm, experimental ultrasonic
microstructure scattering signals are utilized to demonstrate
the effectiveness of the algorithm. The experimental signal
is acquired from a steel block with an embedded defect
using a 5 MHz transducer and sampling rate of 100 MHz.
The acquired experimental data superimposed with the
reconstructed signal consisting of 8 dominant chirplets
are shown in Figure 14(a). The estimated parameters of
dominant chirplets are listed in Table 8. It can be seen
that the 8 dominant chirplets not only provide a sparse
representation of experimental data, but successfully detect
the embedded defect.

To improve the accuracy of signal reconstruction, FrFT-
CSD could be used iteratively to decompose the signal
further. A reconstructed signal using 23 chirplets is shown
in Figure 14(b). The comparison between the experimental
signal and the reconstructed signals clearly demonstrates
that the FrFT-CSD is highly effective in ultrasonic signal
decomposition.

7. Conclusion

In this paper, fractional Fourier transform is studied for
ultrasonic signal processing. Simulation study reveals the
link among kurtosis, the transform order, and the parameters
of each decomposed components. Benchmark and experi-
mental data sets are utilized to test the FrFT-based chirplet
signal decomposition algorithm. Signal decomposition and
parameter estimation results show that fractional Fourier
transform can successfully assist signal decomposition algo-
rithm by identifying the dominant echo in successive esti-
mation iteration. Parameter estimation is further performed
based on the echo isolation. The FrFT-CSD algorithm could
have a broad range of applications in signal analysis including
target detection and pattern recognition.
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