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Fractional Frequency Reuse in DCO-OFDM-Based

Optical Attocell Networks
Cheng Chen, Student Member, IEEE, Stefan Videv, Dobroslav Tsonev, Member, IEEE,

and Harald Haas, Member, IEEE

Abstract—In this paper a fractional frequency reuse (FFR)
technique is considered in a direct-current optical orthogonal
frequency-division multiplexing-based optical attocell network.
An optical attocell network is proposed as a special type of visible
light communication system that has the complete function of a
cellular network. The cellular network is composed of many cells
of extremely small size—the optical attocells. Two FFR schemes,
strict fractional frequency reuse and soft frequency reuse, are
considered. The signal-to-interference-plus-noise ratio (SINR)
statistics and the spectral efficiency of the optical cellular system
with FFR are analyzed. The performance of the systems with full
frequency reuse and FFR is evaluated and compared. The results
show that the FFR scheme can effectively achieve interference
mitigation in an optical attocell network. The cell edge user SINR
and spectral efficiency are significantly improved. Additionally,
FFR provides improvements in average spectral efficiency. The
effects of important parameters such as cell radius are also studied.

Index Terms—Cellular network, fractional frequency reuse, or-
thogonal frequency division multiplexing, visible light communi-
cations.

I. INTRODUCTION

T
he level of data traffic in wireless communication networks

has increased exponentially in the past two decades. If this

trend continues in the future, the limited radio frequency (RF)

spectrum will no longer meet the wireless data transmission

demand [1]. One of the emerging solutions to this spectrum crisis

is the migration of wireless communication techniques into the

visible light spectrum due to its many promising advantages

[2]. For example, visible light communication (VLC) can be

embedded in the existing lighting infrastructure.

In a typical VLC system, a low-cost commercially available

light emitting diode (LED) and photodiode (PD) can be used as

the front-end devices [2]. Since an LED is an incoherent opti-

cal source, information is encoded using intensity modulation

(IM). At the receiver side, the light intensity is converted to an

electrical signal by a PD using direct detection (DD). A limiting

factor of such an IM/DD system is the bandwidth of the LED

and PD devices. Various techniques have been considered to
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boost the transmission speed of VLC systems. Some researchers

have explored the spatial diversity gain by using multiple-input

multiple-output techniques [3], [4]. Advanced spectral efficient

modulation techniques have also been considered [5], [6]. An-

other approach to improve the spectral efficiency of a wireless

communication system is to increase the spatial reuse of the

spectrum resources [7]. In many large indoor environments,

multiple light fixtures are installed, and this provides the oppor-

tunity to set up a VLC system with dense spatial reuse of the

limited modulation bandwidth. An optical attocell network uses

each of the luminaries as a small base station (BS) or access point

(AP) serving multiple wireless users within the illuminated area

[8]. Such a cellular system would have an uplink connection

to achieve full-duplexing and provide handovers to allow users

to roam within the room or an entire building. This is similar

to a RF femtocell network, but an optical attocell network uses

smaller cell sizes.

Direct-current optical orthogonal frequency division multi-

plexing (DCO-OFDM) has been considered for optical attocell

networks because of its advantages: i) it can eliminate the effect

of the time dispersive channel with low complexity equalisa-

tion [5]; ii) adaptive power and bit loading can be used in an

OFDM system, thus the available spectral resources can be used

with their full potential [9]; iii) a multiple access scheme can

be easily achieved in an optical attocell network by dividing

time and frequency resources among multiple users, which in

RF is known as orthogonal frequency division multiple access

(OFDMA) [10].

Similar to other cellular systems, co-channel interference

(CCI) is an important issue that affects the user performance in

an optical attocell network. Interference mitigation techniques

have been extensively researched for optical wireless systems.

In [11], the use of static resource partitioning was proposed

to avoid CCI in a cellular optical wireless system. In [12], an

optical femtocell system was proposed, which uses different

wavelengths in adjacent cells to avoid CCI. The methods used

in these two studies effectively mitigate CCI. However, the loss

in spectral efficiency is also significant. In [13], a self-organising

interference coordination technique based on the busy-burst sig-

nalling was proposed for an optical wireless cellular system in

an aircraft cabin environment. This method offers improvements

both in cell edge user performance and in average spectral ef-

ficiency, but it requires additional overhead for the busy burst

time slot.

The fractional frequency reuse (FFR) technique is a cost-

effective approach to achieve interference mitigation in a cellu-

lar system. It maintains the balance between the average spectral

0733-8724 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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efficiency and cell edge user performance with low system com-

plexity [14]. Over the past few years, the FFR technique has

been studied for applications in RF cellular networks. The FFR

scheme does not require precise instantaneous channel state in-

formation (CSI) and is of low computational complexity. There

are two typical FFR schemes: ii) strict fractional frequency reuse

(sFFR) and ii) soft frequency reuse (SFR) [15]. sFFR divides

the whole frequency band into multiple protected sub-bands and

one common sub-band. Cell centre users in each cell experience

minor interference from nearby BS, so the common sub-band is

assigned to them. Since cell edge users receive higher interfer-

ence power, protected sub-bands are assigned to the cell edge

users, and the sub-bands are arranged such that there is a mini-

mum spatial reuse distance between them. The SFR applies an

even shorter reuse distance compared to the sFFR scheme. In

addition to the use of a different sub-band for cell edge users

in each adjacent cell, the SFR scheme allows the centre users

to take the sub-bands that are assigned to cell edge users in

adjacent cells. To protect the cell edge users, the transmission

power for cell edge users is typically higher than that for the

cell centre users.

In [16], an optical AP using two LED sources with different

beam-width is considered. A VLC cellular system using a SFR

scheme based on such an AP is proposed. The corresponding bit

error rate performance and the effect of changing LED beam-

width is evaluated. In a previous study [17], an FFR scheme is

considered in a VLC cellular system using adaptive LED ar-

rays with specified LED orientations as APs. The simulation

results show that the FFR scheme achieves effective interfer-

ence mitigation and improves the spectral efficiency. However,

the improvements reported in these studies result partly from

the spatial diversity. In order to evaluate the benefit solely from

FFR schemes, a more general case is presented in this paper.

A VLC system with APs that only transmit using a LED lumi-

nary with Lambertian radiation pattern is considered. This paper

presents a first analytical framework for the evaluation of FFR

in a DCO-OFDM-based optical attocell network.

The remainder of this paper is organised as follows: the sys-

tem model, including the light propagation model, network

model, modulation and multiple access schemes is presented

in Section II. The statistics of signal-to-interference-plus-noise

ratio (SINR) and spectral efficiency for FFR schemes are anal-

ysed in Section III. The results are presented in Section IV and

the effects of key parameters are discussed. Conclusions are

given in Section V.

II. SYSTEM MODEL

In this study, a system level analysis is carried out to eval-

uate the performance of an optical attocell network. Since the

transmission data rate is much faster than the channel variation

due to user movement, users are considered to be quasi-static.

In addition, this study focuses on the downlink performance of

the system, so the effects on the system performance and the

operation of handover schemes are outside the scope of this

study. User equipment is placed at the desktop height where

a typical height of 0.85 m is used. A PD receiver with a field

Fig. 1. LOS light propagation geometry.

of view (FOV) of 90◦ (full FOV) is mounted on the top of

the user equipment. The FOV of the receiver is defined as the

angle between the normal of the PD surface and the direction

with the maximum incident angle to the receiver, which is illus-

trated in Fig. 1. The receiver is orientated upwards. All BS are

mounted on the ceiling where a typical value for ceiling height

of 3 m is used. The direction of the BS optical transmitter is

vertically downwards.

A. Light Propagation Model

In order to estimate the signal power from a specified BS

to a user, a propagation model is necessary to calculate the

path loss. The dominant transmitted signal component in this

system is the light through the line-of-sight (LOS) path. This

channel can be modelled using the direct-current (dc) channel

gain. The corresponding two-dimensional (2-D) geometry is

shown in Fig. 1. The dc gain from the ith BS to the observed

user can be calculated as [18]:

Gi =
(m + 1)Apd

2πd2
i

cosm (φi) cos(ψi),

where m denotes the Lambertian emission order which is given

by m = − ln(2)/ ln(cos(φ1/2)) in which φ1/2 is the half-power

semi-angle of the LED; Apd is the physical area of the receiver

PD; di denotes the Euclidean distance between BSi and the

user; φi denotes the corresponding light radiance angle; and ψi

is the corresponding light incidence angle. The optical source

has a half-power semi-angle φ1/2 of 60◦, which is sufficient

for a diffused luminary. The variables di , φi and ψi can be

rewritten as a function of ri by using cos(φi) = cos(ψi) = h
d i

and di =
√

r2
i + h2 . As shown in Fig. 1, ri refers to the hor-

izontal separation between the user and the ith BS. The LOS

transmission model can then be converted to a function of ri as:

Gi(ri) =
(m + 1)Apdhm+1

2π

(

r2
i + h2

)−m + 3
2 . (1)

Occasionally, the LOS path may be shadowed or completely

blocked. In these cases, a user may need an alternative serving

BS or rely on a diffused link. Due to the modelling complexity

and the limited space in this paper, these issues are treated

as special cases for future study. Therefore, we assume that

shadowing and non-LOS transmission issues are outside the

scope of this work.
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Fig. 2. An optical attocell network embedded in a large room of size 23 m ×
26 m × 3 m. The number of cells is 27. The cell radius R = 3.3 m and the cell
radius definition is shown in Fig. 7.

In addition to the LOS transmission, light from reflec-

tions (mainly from walls, ceiling and floor) causes multi-

path distortion to the optical channel. In order to observe this

multi-path distortion effect, information about the channels

considering multi-path reflection is required. An effective way to

estimate this information is by using the multi-path ray-tracing

simulation [19] to generate the channel data. However, it is

time-consuming and difficult to show cases for all indoor en-

vironments and all user positions. Therefore, a number of ex-

amples are demonstrated to reflect the typical and worst cases.

In these examples, the simulated environment is a large empty

room of size 23 m × 26 m × 3 m. The room size is related to

the cell size and the number of cells in the network. The op-

tical source of each BS has a half-power semi-angle φ1/2 of

60◦, which is sufficient for a diffused luminary. The reflectivity

of walls and the ceiling is 0.7, and the reflectivity of the floor

is 0.3. Reflected signal components up to the third order are

considered in the simulation. The network deployment and the

user receiver positions are shown in Fig. 2. Each user in the

room is served by the closest BS. Among all of the tessellating

shapes, a hexagon cell shape shows a reasonable approximation

to a circle [20]. Therefore, the hexagonal network deployment is

preferred in the modelling of the cellular network. In this initial

performance evaluation of a VLC based cellular system, it is

intuitive to adopt the same network deployment.

Based on the method introduced in [19], the initial generated

data are in the form of impulse responses. It is observed from

these impulse responses that the overall signal power contribu-

tion from wall reflections is not as significant as those shown in

[19] due to the large size of the considered room. Furthermore,

the contribution from the third and higher order reflections is

negligible due to the significant path loss and absorptions. The

second order reflection generally corresponds to the reflections

between floor and ceilings, and contributes significantly to the

reflected signal power. The first order reflection corresponds

to the reflections by the walls to the receiver. Its significance

Fig. 3. Normalised channel gain against frequency. The corresponding re-
ceiver locations are shown in Fig. 2.

strongly depends on whether the transmitter and the receiver is

close to one or more walls of the room. When a user is in the

edge of the room, the first order reflection contributes signifi-

cantly to the reflected signal. Therefore, the channel frequency

response of the users in the room edge would be the worst case

due to wall reflections. The channels corresponding to ‘Rx5’

and ‘Rx6’ are in the centre of the room as shown in Fig. 2. Their

performance would reflect the typical channel characteristics in

an optical attocell network. The user positions for the remaining

nine channels are in the edge of the room, which would reflect

the characteristics of the worst case channel.

It is important to assess whether the channel is flat in a wide

frequency range, and therefore the simulated results are shown

in the form of channel gain calculated as a function of frequency

|H(f)|2 . Conventionally, the channel gain is normalised with

the channel gain at dc. In this study, two cases are compared:

with, and without the reflected signal. In order to highlight the

difference, the channel gain is normalised by the channel gain

with only a LOS component. The normalised channel gain is

calculated by
|H (f )|2

|HL O S (f )|2 . The result is shown in Fig. 3.

With an increase of frequency, all of the normalised channel

gains fluctuate around 0 dB (channel gain with LOS only). The

variation of the fluctuation is less than 3 dB. In addition, for

users that are further away from the room edges, due to the

lower significance of the first order reflection, the channel gain

variation with frequency is less significant compared with the

room edge user case. For example, the channel gain variation

for Rx5 and Rx6 are less than 1.5 dB as shown in Fig. 3.

The maximum achievable signal-to-noise ratios (SNRs) in many

VLC experiments are around 30 dB [9], [21], [22]. However,

the received SNR decreases when the user is away from the cell

centre due to a larger path loss. In order to ensure that the system

is not limited by the receiver noise, the considered systems in

this study are configured to have a worst case SNR (user at cell

edge) of more than 10 dB. In the case of a SNR of 10 dB, uncoded

four-quadrature amplitude modulation is used, which requires a

minimum SNR of about 10 dB. Therefore, compared with the

considered SNR range of 10 to 30 dB, the variation in channel

gain is minor. In addition, the effect of adding reflected signals

offers extra channel gain at some frequencies while it decreases

the channel gain at other frequencies. On average, adaptive bit
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Fig. 4. Two-layer optical attocell network model with 19 cells. The patterns in
the edge regions of every cells demonstrate the FR pattern for the FFR schemes,
and the corresponding reuse factor is 3.

loading in OFDM can compensate for the variation in channel

gain. Therefore, approximating the frequency domain channel

gain to be flat would not cause significant inaccuracy in the

analysis. The reason for this minor multi-path distortion is the

dominance of the LOS in the channel. When the Rician factor

is high enough, the channel gain can be approximated to be flat

in the frequency domain [23]. Therefore, the multi-path effect

caused by wall reflections is assumed to be negligible and can

be mitigated by OFDM [24] in this study.

B. Cellular Network Model

When evaluating the user performance in the room shown in

Fig. 2, the serving BS changes depending on the position of a

user. In addition, for users in different cells, the set of interfering

BS is different. Furthermore, the coverage area of cells in the

edge of the room is part of a hexagon. All of these factors mean

that it is complex to analyse the system performance. Therefore,

an alternative simplified model is considered to estimate the per-

formance of a realistic system. Here, a network which extends

to infinity in the 2-D plane is considered. In this case, the layout

of the interfering BS and the cell shape would be identical for

the users in any cell. As the interference is generally dominated

by the closest interfering BS, the interference from BS further

away from the user is not considered for simplicity. Thus, a

two-layer hexagonal network model shown in Fig. 4 is used to

analyse the user performance. In this two-layer network model,

19 BS with index i are considered, where i = 0, . . . , 18. The

performance of the users in the central cell served by the 0th
BS is evaluated to estimate the performance of users in the net-

work deployed in a room. For the convenience of description,

the network deployed in a room is termed as a ‘deployed net-

work’ in the remainder of this paper. Some of the neighbouring

Fig. 5. The 2-D spatial distribution of D in the deployed networks with
different network sizes. (a) 11.4 m × 13.2 m room with seven cells. (b)
14.3 m × 16.5 m room with 12 cells. (c) 17.1 m × 19.8 m room with 17 cells.
(d) 22.9 m × 26.4 m room with 27 cells. The used cell radius is R = 3.3 m.

Fig. 6. Statistics of the horizontal separation between the serving BS and
the user in different networks. ‘two-layer network’ refers to the results for
the two-layer network model. ‘7 cells’, ‘12 cells’, ‘17 cells’ and ‘27 cells’
refer to the results for the deployed networks with different network sizes. The
corresponding network deployments are shown in Fig. 5.

BSs cause interference to the users in the central cell. Whether

the ith BS causes interference depends on the reuse scheme in

the system.

Despite the difference in the user performance in the two-layer

network model and the deployed networks, the results shown in

Figs. 5 and 6 demonstrate that this is minor. Firstly, the closer

the considered cell is to the room edge, the less the number of

interfering BS to the users. Consequently, it would seem that

the two-layer network model only offers a good estimation to

the user performance in the cells in the room central area. How-

ever, as mentioned above, the interference is dominated by the

closest interfering BS. Even if the user is in the cell in the edge
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TABLE I
INTERFERENCE LEVEL DIFFERENCE

number of cells 7 12 17 27

D < 0.5 dB 48% 64% 76% 77%

D < 3 dB 75% 89% 95% 94%

of the room, as long as it is close to the cell edge towards the

room centre, the received interference should be close to that

received in the two-layer network model. To demonstrate the

accuracy of the interference estimation by using the two-layer

network model, simulations of the 2-D spatial distribution of

the interference power in the deployed networks with full fre-

quency reuse (FR) are carried out. In addition, the interference

power estimated by using the two-layer network model in all

positions in the deployed network is calculated and compared to

the simulated interference. The interference calculation is based

on (1). The interference in the deployed network is defined as

Ĩ. The interference estimated for the two-layer network model

is defined as I. The difference between Ĩ and I is defined as

D = |10log10(Ĩ/I)|. A lower value of D indicates a better ap-

proximation of the interference by using the two-layer network

model. The spatial distributions of D in rooms with 7, 12, 17

and 27 cells are shown in Fig. 5. It shows that a significant inter-

ference difference occurs only in the room edges. The notable

results are summarized in Table I, and it shows that the propor-

tion of the area showing significant deviation in the interference

estimation decreases with an increase of the number of cells in

a room. In the case of 27 cells, 77% of the area has D lower

than 0.5 dB and 94% of the area has D lower than 3 dB. In

other words, the interference level is poorly estimated by the

two-layer network model in only 6% of the room area. Since a

large number of deployed cells is the typical case in an optical

attocell network, the two-layer network model is considered to

offer good approximation in terms of interference.

In addition, due to the limitation of the room edge, the non-

hexagon cells in the edge of the room cause a deviation in the

statistics of the path loss corresponding to the transmission of

the desired signal in the deployed network from the case in the

two-layer network model. In order to evaluate this difference,

the empirical statistics of r0 based on random user locations in

different cases are simulated and compared. The random loca-

tion of users follows a Possion point process (PPP). As described

in Section II-A, r0 refers to the horizontal separation between

the user and the 0th BS in the two-layer network model. For the

deployed network, r0 refers to the horizontal separation between

the user and its serving BS. It can be observed in Fig. 6 that

the difference between the probability density function (PDF)

of r0 in a deployed network and that in the two-layer network

model diminishes with an increase of the number of cells in the

deployed network. Except for the case with 7 cells, the PDFs of

r0 in the deployed network shows a close agreement with that

in the two-layer network model. Therefore, the performance

in the two-layer network is considered to be a reasonable

estimation of the deployed network. The estimation accuracy is

Fig. 7. Geometric model with polar coordinates.

also demonstrated in the SINR results in Section IV as shown

in Fig. 10.

In the two-layer network model, the coverage area of each cell

is divided into a cell central area and a cell edge area as shown

in Fig. 4. In order to further simplify the analysis, a circular

cell approximation is applied to the considered central cell as

shown in Fig. 7. The radius of the hexagonal cell is defined

as R. The approximated circular cell has the same coverage

area as the original hexagonal cell. Therefore, the equivalent

radius of the circular cell is defined as Re ≈ 0.91R. In the

system using FFR, the radius of the central area is defined as

Rc . A parameter δ = R c

R e
is defined to determine the size of cell

central and edge area. For the convenience of the analysis in

Section III, the indices of the 18 nearby BS are grouped into three

sets based on the reuse pattern shown in Fig. 4. They include

IA = {13, 14, 15, 16, 17, 18}, IB = {2, 4, 6, 7, 9, 11} and IC =
{1, 3, 5, 8, 10, 12}. Note that the edge users in the 0th cell reuse

the same spectral resources as those in IA in the FFR systems.

The location of a user and interfering BS are defined using

a 2-D polar coordinate system. The origin of the coordinates is

placed at the location of BS0 . The orientation of the polar axis

is shown in Fig. 7. The location of a user in the central cell

is defined by z = (r, θ), where r is the horizontal separation

between the user and the origin and r ∈ [0, Re ]; and θ is the

polar angle of the user and θ ∈ [0, 2π). The location of the ith
BS is defined in a similar way as (Ri ,Θi), where Ri is the

horizontal separation between BSi and the origin, and Θi is the

polar angle of BSi . Since the network deployment and the cell

radius R are given, the values of (Ri ,Θi) are fixed and can be

readily calculated. In order to estimate the signal power from

BSi to the observed user, the horizontal separation between

BSi to the user at z is essential, which is defined as ri(z). For

i = 0, r0(z) = r. The observed user, the serving BS, and the

interfering BSi form a triangle in the case of i �= 0, ri(z) can

be calculated using the rule of cosine as:

ri(z) =
√

r2 + R2
i − 2Rir cos(θ − Θi).

C. DCO-OFDM and Multiple Access

The application of optical-OFDM can be extended to an

OFDMA system to realise multiple access in an optical atto-

cell network. Due to the relatively high spectral efficiency of
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DCO-OFDM, this modulation scheme is used in this study. In

an OFDM frame, the K frequency domain quadrature ampli-

tude modulated data symbols before the inverse discrete Fourier

transform (IDFT) are defined as: X = [X0 X1 X2 · · · XK−1 ].
Since an intensity modulated signal is a real-value signal, Hermi-

tian symmetry is required to make the OFDM symbols contain

only real samples. This requires Xk = X∗
K−k , where [·]∗ is the

complex conjugate operation. In addition, X0 and XK/2 are set

to zero [6]. Consequently, only K̃ = K/2 − 1 symbols carry

information. Also, the intensity modulated signal is unipolar.

In order to avoid negative samples, a dc-bias is required. After

carrying out the K-point IDFT and the addition of a dc-bias, the

time domain OFDM symbol can be calculated as:

x(t) = xDC +

K−1
∑

k=0

xk (t), t = 0, 1, . . . ,K − 1,

xk (t) =
X(k)√

K
exp

(

2πjkt

K

)

,

where xDC is the dc-bias; xk (t) represents the signal component

which accounts for the modulated symbol on subcarrier k at time

slot t; and j is the imaginary unit. After the addition of dc-bias,

the remaining negative samples are set to zero. According to

the results of the simulated channel impulse responses noted in

Section II-A, no significant signal is received when the delay

exceeds 50 ns. If a sampling frequency of 40 MHz is used, the

length of the cyclic-prefix (CP) is only two OFDM symbols.

Since the required CP length is short, the effect of adding a CP

is omitted in this study. In a multiple access version of DCO-

OFDM, the K̃ transmission channels (subcarriers) are shared

by a number of users. In the FFR schemes, these subcarriers

are divided into multiple sub-bands. Then the subcarriers in

each sub-band are distributed to users who are permitted to use

that sub-band for data transmission. Assuming perfect sampling

and synchronization, the intensity modulated sample received

at time slot t on subcarrier k can be expressed as:

yk (t) = x0,k (t)G0Rpd +
∑

i∈И

xi,k (t)GiRpd + zk (t), (2)

where xi,k (t) is the transmitted signal sample from BSi on

subcarrier k at time slot t. In the case of i = 0, x0,k (t) is the

transmitted signal sample for the desired user; Rpd denotes the

responsivity of the PD and zk (t) represents the user receiver

noise on subcarrier k. The second term of yk accounts for the

received interference signal, where И is the set of all the inter-

fering BS. The receiver noise is modelled as an additive white

Gaussian noise with noise power spectral density of N0 . There-

fore, zk is drawn from a Gaussian distribution with zero mean

and variance of σ2
k = N0W/K, where W is the total IM band-

width. Clipping noise and non-linearities are crucial when there

is a requirement to minimise the output power of the transmit-

ter. However, it is assumed that the high output power of the

BS is sufficient for the indoor lighting function in this study.

In other words, there is enough margin for the minimisation of

both effects by increasing the clipping threshold [25] and ap-

Fig. 8. (a) sFFR. (b) SFR with δ2 > 2
3 . (c) SFR with δ2 < 2

3 .

plying pre-distortion techniques [26]. Thus, clipping noise and

non-linearities are not considered in this study.

D. FFR Schemes

In a FFR system, the serving BS needs to know whether the

user is in the cell centre or is in the cell edge. This can be sim-

ply realised by determining the average signal strength of the

downlink pilot signal. If the pilot signal power is higher than

a threshold, this particular user is categorized as a cell centre

user. Otherwise, the user is categorized as a cell edge user. It

is assumed there is no movement of users within the period

between two adjacent pilot signal transmissions. In the follow-

ing frequency plan, subcarriers in each sub-band are equally

distributed to the corresponding users for simplicity and user

fairness.

1) Strict FFR: The considered sFFR divides the whole fre-

quency band to three protected sub-bands and an individual

common sub-band as shown in Fig. 8(a). The number of sub-

carriers of each sub-band is set to be proportional to the area

of the central or edge regions, which offers good fairness and

optimal performance [15]. The common sub-band is reused by

the centre users in each cell. As shown in Fig. 8(a), one of the

three protected sub-bands is assigned to the edge users of each

cell. This assignment also ensures that the same protected sub-

band is not reused in adjacent cells. Therefore, the number of

subcarriers assigned to the cell centre users Kc and the number

of subcarriers assigned to the cell edge users Ke are given as:

Kc =
⌈

K̃δ2
⌉

,

Ke =
⌊

(K̃ − Kc)/3
⌋

,

respectively.

2) Soft Frequency Reuse: In SFR, the protected sub-bands

for cell edge users are also reused in adjacent cells. In order to

guarantee the performance of the cell edge users, the transmis-

sion power for the cell edge user is increased with a gain of β.
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In addition, the different groups of subcarriers are assigned to

edge users in adjacent cells. Similar to the sFFR scheme, for

fairness, the number of subcarriers assigned to different user

groups is proportional to the corresponding area. Therefore, the

following frequency plan is used:

Kc =
⌈

K̃δ2
⌉

,

Ke = min
(⌈

K̃/3
⌉

, K̃ − Kc

)

,

which is shown in Fig. 8(b) and (c). Note that the maximum

available bandwidth for cell edge users is K̃/3 to ensure the

orthogonality of the protected sub-bands.

III. ASSESSMENT OF SINR AND SPECTRAL EFFICIENCY

Electrical SINR is an important metric to measure the quality

of a wireless connection. Similar to the definition of SNR in an

IM/DD optical wireless communication system, SINR is defined

as the ratio of the received desired signal electrical power to the

summation of noise and interference electrical power. Based on

the SINR level, the spectral efficiency can be estimated in order

to evaluate the wireless capacity of the system.

A. Full Frequency Reuse

1) Signal-to-Interference-Plus-Noise Ratio: The most

straightforward frequency plan is FR, which reuses the whole

frequency band in each cell. Here ∆ is used to represent the

reuse factor. In this case the reuse factor equals one (∆ = 1).

In this study, the FR system is used as the benchmark system.

According to (2), the SINR of the user at location z on

subcarrier k can be written as:

γFR ,k (z) =
Pelec,0,kG2

0(z)R2
pd

∑

i∈И Pelec,i,kG2
i (z)R2

pd + σ2
k

, (3)

where Pelec,i,k denotes the electrical signal power transmitted

by BSi on subcarrier k, which is calculated as:

Pelec,i,k = E
[

x2
i,k (t)

]

,

where E[·] represents the expectation operation. Since ∆ = 1,

the set И = ИA ∪ ИB ∪ ИC . To simplify the analysis, an equal

electrical power allocation is used. Assuming a total electrical

transmission power of Pelec,AC , Pelec,i,k = Pelec,AC/(K − 2).
Then, the subscript k can be dropped and (3) can be modified

as a function of z as:

γFR(z) =

(

r2 + h2
)−m−3

∑

i∈И (r2
i (z) + h2)

−m−3
+ Ω

, (4)

Ω =
4π2(K − 2)N0Wκ2

KP 2
opt(m + 1)2A2

pdR2
pdh2m+2

. (5)

The derivation of (4) and (5) is shown in Appendix A. Based

on (4), the probability P [γFR < T ] can be calculated, where T
is the threshold value.

2) SINR Statistics: In this study, a semi-analytical method

is used to calculate the SINR statistics of the optical attocell

systems. Assuming a polar angle of θ, the function of the SINR

on a subcarrier is monotonically decreasing with respect to r in

the region of interest. Therefore, the conditional PDF of SINR

can be calculated by using the PDF transformation rule as:

fγ (γ̂, f(r)|θ) =
f(r)

∣

∣

∂
∂r γ(z)

∣

∣

∣

∣

∣

∣

∣

r=γ−1 (γ̂ |θ)

,

where f(r) is the PDF of r; f(r) is determined by the loca-

tions of the considered users (cell edge/centre users); γ−1(γ̂|θ)
is the inverse function of the SINR function with respect to r for

a given θ, in which γ(rmax , θ) ≤ γ̂ ≤ γ(rmin , θ). Here, rmax

(rmin ) is the maximum (minimum) of r in its feasible region.

A closed form solution to γ−1(γ̂|θ) is unavailable. Numerical

methods are used to compute the function. Then the cumula-

tive density function (CDF) of SINR can then be calculated as

follows:

P [γ < T ] =

∫ 2π

0

∫ T

−∞
fγ (γ̂, f(r)|θ)dγ̂fθ (θ)dθ. (6)

Since the spatial location of the users in each cell follows a PPP,

the PDF of θ should follow: fθ (θ) = 1
2π . This semi-analytical

approach is presented in [27] in detail.

In the case of the FR scheme, the statistics in the whole cell

is calculated. Therefore, the PDF f(r) is given as:

f(r) = fr (r) =
2r

R2
e

, r ∈ [0, Re ].

In the case of FFR systems, statistics in part of the cell is

required. In the calculation of P [γ < T |r < Rc ] and P [γ <
T |r ≥ Rc ], the PDF f(r) should be calculated as:

fr |r<R c
(r) =

fr (r)

P [r < Rc ]
, r ∈ [0, Rc ],

fr |r≥R c
(r) =

fr (r)

P [r ≥ Rc ]
, r ∈ [Rc , Re ],

where P [r < Rc ] (P [r ≥ Rc ]) is the probability that the user is

in the cell central (edge) area. It is shown in [28] that:

P [r < Rc ] = δ2 ,

P [r ≥ Rc ] = 1 − δ2 .

3) Spectral Efficiency: In this study, the Shannon-Hartley

formula is used to estimate the wireless capacity of the system.

In a DCO-OFDM system, the spectral efficiency of a user at z
can be calculated as a function of γ(z) and ∆:

ρ (γ(z),∆) =
K − 2

2K∆
log2 (1 + γ(z)) .

The average spectral efficiency for the users in the whole cell

can be calculated as:

ρ̄ = Ez [ρ(γ(z),∆)],

=

∫ 2π

0

∫ R e

0

ρ(γ(r, θ),∆)fr (r)drfθ (θ)dθ. (7)
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In addition, the average spectral efficiency for the users in the

cell centre area can be calculated as:

ρ̄c = Ez [ρ(γ(z),∆)|r < Rc ],

=

∫ 2π

0

∫ R c

0

ρ(γ(r, θ),∆)fr |r<R c
(r)drfθ (θ)dθ. (8)

Similarly, in the case of users in the cell edge area,

ρ̄e = Ez [ρ(γ(z),∆)|r ≥ Rc ],

=

∫ 2π

0

∫ R e

R c

ρ(γ(r, θ),∆)fr |r≥R c
(r)drfθ (θ)dθ. (9)

In the case of FR scheme, we have ∆ = 1. By using (7), the

corresponding average spectral efficiency can be calculated as:

ρ̄FR = Ez [ρ(γFR(z), 1)]. (10)

For comparison purpose, the cell edge user spectral efficiency

in the case of FR scheme can be calculated as:

ρ̄e
FR = Ez [ρ(γFR (z), 1)|r ≥ Rc ]. (11)

B. Strict Fractional Frequency Reuse

1) SINR and Its Statistics: In a sFFR system, the SINR at z
on a subcarrier in the common sub-band can be written as:

γc(z) =

(

r2 + h2
)−m−3

∑

i∈И (r2
i (z) + h2)

−m−3
+ 1+2δ 2

3 Ω
. (12)

According to the frequency plan defined in II-D1, the SINR

at z on a subcarrier in protected sub-bands γe(z) can also be

calculated using (12) except for substituting ИA for И. The

factor 1+2δ 2

3 of Ω is due to the change of the number of used

subcarriers in sFFR compared to the case of the FR system.

Since a fixed amount of available electrical power and an equal

power distribution on each subcarrier are assumed, varying the

number of used subcarriers causes change in the available power

on each subcarrier.

When determining the distribution of SINR for a sFFR sys-

tem, both cases of a user in the cell central area and a user in the

cell edge area need to be considered. The overall CDF of the

SINR can be calculated as follows:

P [γsFFR < T ] = P [r < Rc ]P [γc < T |r < Rc ]

+ P [r ≥ Rc ]P [γe < T |r ≥ Rc ], (13)

where P [γc < T |r < Rc ] and P [γe < T |r ≥ Rc ] are the CDF

of the SINR with the conditions that the user is in the cell centre

using common sub-band and is in the cell edge using protected

sub-band, respectively. They can be calculated using the same

method as that described in Section III-A2.

2) Spectral Efficiency: Since the average spectral efficiency

varies in different sub-bands, the overall average spectral effi-

ciency should be the average over the whole frequency band.

When there are users in both the cell central area and the cell

edge area, the overall average spectral efficiency can be calcu-

lated as [28]:

ρ̄sFFR ,nor = ζc ρ̄c + ζe ρ̄e ,

where ρ̄c (ρ̄e) is the average spectral efficiency for the users

taking the common (protected) sub-band for transmission; ζc

and ζe are the averaging weights for ρ̄c and ρ̄e , respectively.

The averaging weight ζ of an average spectral efficiency ρ̄ is

calculated as:

ζ =
∆Kρ̄

K̃
, (14)

where Kρ̄ refers to the number of subcarriers that achieve an

average spectral efficiency of ρ̄. All ζ for FFR can be simply

derived according to the FFR schemes described in Section II-

D. Since all of the averaging weights ζ follow the same rule

as (14), and the derivations of each ζ is long but very sim-

ple, it would be unnecessary to list all of the derivations of

all of the ζs. Only the final results are listed. In the case of

sFFR here, ζc and ζe can be found as ζc ∼= δ2 and ζe ∼= 1 − δ2 ,

respectively [28].

The cell centre users use the common sub-band with ∆ = 1,

while the cell edge users use the protected sub-band with ∆ = 3.

Therefore, in conjunction with (8) and (9), ρ̄c and ρ̄e in sFFR

case can be calculated as:

ρ̄c = Ez [ρ(γc(z), 1)|r < Rc ],

ρ̄e = Ez [ρ(γe(z), 3)|r ≥ Rc ]. (15)

An optical attocell network is a small-cell cellular network

in which each BS serves several users and these users are fewer

than those in a normal RF cell. Consequently, the problem of

an uneven load in different cells is more critical in an optical

attocell network. In some extreme cases, there may be no user

in a cell when the user density is very low. The use of the FFR

technique makes this issue even worse. Since the cell coverage

area is divided into centre and edge areas, which are smaller

compared with the total cell coverage area, the chance that no

active user is present in a specified region (a cell centre or a cell

edge area) will be much higher. Consequently, in the case of no

user present in a specified area, the corresponding assigned sub-

band remains idle, which is a waste of transmission resources.

Therefore, the case of no user present in the cell central or edge

area needs to be considered. Since the common sub-band is

restricted to the cell edge users, for the case that there is no user

in the central area, the common sub-band is wasted and ζc = 0.

Therefore, the corresponding average spectral efficiency is only

ζe ρ̄e . For the same reason, when there is no user present in the

cell edge area, the average spectral efficiency is only ζc ρ̄c . Thus,

the final average spectral efficiency achieved by a sFFR system

can be calculated as:

ρ̄sFFR = Pcζ
c ρ̄c + Peζ

e ρ̄e

+ (1 − Pc − Pe) (ρ̄sFFR ,nor) , (16)

where Pc (Pe) denotes the probability that all of the observed

users fall into the cell centre (edge) area. It is assumed that the

user spatial distribution follows a PPP with a user density of λ.

By limiting the users in a specified area of A, the mean number

of users within this area is Aλ. According to the probability
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mass function of the Possion distribution, the probability that

no user in this area is given as:

P0 = e−Aλ.

The area of a cell can be found as Acell = πR2
e according to

the geometry shown in Fig. 7. Then, the cell central area and

the cell edge area are Acellδ
2 and Acell

(

1 − δ2
)

, respectively.

Therefore, Pc and Pe can be calculated as:

Pc = e−A c e l l(1−δ 2 )λ,

Pe = e−A c e l l δ
2
λ.

Since the cell edge users only use the protected sub-band for

transmission, the cell edge spectral efficiency for sFFR can be

calculated using (15).

C. Soft Frequency Reuse

1) SINR and Its Statistics: In a SFR system, due to the more

complex SFR scheme, there are five conditions in the SFR sys-

tem SINR calculation. In order to efficiently present these SINR

expressions, a function is defined as follows:

χ(p0 , p1 , p2 , p3 , z)

=
p0

(

r2 + h2
)−m−3

Υ(p1 ,p2 , p3 , z) +
(

β
(

1 − max
(

δ2 , 2
3

))

+ δ2
)

Ω
,

where p0 , p1 , p2 , p2 are the power control factors which equals

β or 1 or 0, and

Υ(p1 , p2 , p2 , z) = p1

∑

i∈ИA

(

r2
i (z) + h2

)−m−3

+ p2

∑

i∈ИB

(

r2
i (z) + h2

)−m−3
+ p3

∑

i∈ИC

(

r2
i (z) + h2

)−m−3
.

According to the five cases shown in Fig. 8(b) and (c),

the corresponding SINR in each cases can be calculated

as follows: γe
1(z) = χ(β, β, 1, 1, z), γe

2(z) = χ(β, β, 0, 0, z),
γc

1(z) = χ(1, 1, 1, 1, z), γc
2(z) = χ(1, 1, β, 1, z) and γc

3(z) =
χ(1, 1, 1, β, z). According to the frequency plan described in

Section II-D2 and (14), the corresponding averaging weights

for average spectral efficiency with each γ are calculated as:

ζe
1 = ζc

2 = ζc
3
∼= 2

3
− max

(

δ2 ,
2

3

)

+
1

2
min

(

δ2 ,
2

3

)

,

ζe
2
∼= 1 − 3

2
min

(

δ2 ,
2

3

)

and ζc
1
∼= 3max

(

δ2 ,
2

3

)

− 2.

Similar to the case of sFFR, Ω is multiplied by a scaling factor

to compensate for the change in transmission power on each

subcarrier.

The SINR CDF of a SFR system can be calculated by:

P [γSFR < T ] = P [r < Rc ]P [γSFR < T |r < Rc ]

+ P [r ≥ Rc ]P [γSFR < T |r ≥ Rc ]. (17)

According to the resource plan described in Section II-D2, it

is noted that a user in a SFR system receives the signal on

multiple subcarriers with different SINR. To simplify the cal-

culation, the SINR experienced by a user in a SFR system is

defined as follows: the user randomly selects one of the avail-

able subcarriers for transmission, and the SINR experienced on

the selected subcarrier is γ̃. In (17), the cell edge user SINR

distribution P [γSFR < T |r ≥ Rc ] can be calculated as:

P [γSFR < T |r ≥ Rc ] = P [γ̃ = γe
1 ]P [γe

1 < T |r ≥ Rc ]

+ P [γ̃ = γe
2 ]P [γe

2 < T |r ≥ Rc ],

where P [γ̃ = γ] refers to the probability that the subcarrier

with a SINR of γ is selected. P [γ̃ = γe
1 ] and P [γ̃ = γe

2 ] can be

calculated as:

P [γ̃ = γe
1 ] =

ζe
1

ζe
1 + ζe

2/3
=

3

2
min

(

δ2 ,
2

3

)

,

P [γ̃ = γe
2 ] = 1 − P [γ̃ = γe

1 ] = 1 − 3

2
min

(

δ2 ,
2

3

)

.

Similarly, the centre user SINR CDF P [γSFR < T |r < Rc ] can

be calculated as:

P [γSFR < T |r < Rc ] = P [γ̃ = γc
1 ]P [γc

1 < T |r < Rc ]

+ P [γ̃ = γc
2 ]P [γc

2 < T |r < Rc ] + P [γ̃

= γc
3 ]P [γc

3 < T |r < Rc ],

where

P [γ̃ = γc
1 ] =

ζc
1

ζc
1 + ζc

2 + ζc
3

= 3 − 2

max
(

δ2 , 2
3

) ,

P [γ̃ = γc
2 ] = P [γ̃ = γc

3 ] =
ζc
2

ζc
1 + ζc

2 + ζc
3

=
1

max
(

δ2 , 2
3

) − 1.

All the conditional CDF of the SINR in each case can be calcu-

lated using the method described in Section III-A2.

2) Spectral Efficiency: When there are users in both the cell

central and the cell edge areas, the overall average spectral

efficiency of a SFR system can be determined as follows:

ρ̄SFR ,nor = ζe
1 ρ̄e

1 + ζe
2 ρ̄e

2 + ζc
1 ρ̄c

1 + ζc
2 ρ̄c

2 + ζc
3 ρ̄c

3 ,

where ρ̄e
1 , ρ̄e

2 , ρ̄c
1 , ρ̄c

2 and ρ̄c
3 denote the achievable average spec-

tral efficiency corresponding to γe
1 , γe

2 , γc
1 , γc

2 and γc
3 , respec-

tively. They can be calculated using (8) and (9) as:

ρ̄e
1 = Ez [ρ(γe

1(z), 1)|r ≥ Rc ],

ρ̄e
2 = Ez [ρ(γe

2(z), 3)|r ≥ Rc ],

ρ̄c
1 = Ez [ρ(γc

1(z), 1)|r < Rc ],

ρ̄c
2 = Ez [ρ(γc

2(z), 1)|r < Rc ],

ρ̄c
3 = Ez [ρ(γc

3(z), 1)|r < Rc ].

Similar to the sFFR case, the problem of no user in a specified

area needs to be considered. Accounting for no user in the cell

edge and also the cell central area, the final average spectral

efficiency of a SFR system can be found:

ρ̄SFR = Pc(ζ
c
1 ρ̄c

1 + ζc
2 ρ̄c

2 + ζc
3 ρ̄c

3) + Pe(ζ
e
1 ρ̄e

1 + ζe
2 ρ̄e

2)

+ (1 − Pc − Pe)ρ̄SFR ,nor . (18)
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TABLE II
SYSTEM PARAMETERS

Parameter Symbol Value

LED half-power semi-angle φ1 / 2 60◦

Vertical separation h 2.15 m

PD area Ap d 1 cm2

Modulation bandwidth W 40 MHz

PD responsivity Rp d 0.1 A/W

DC bias factor κ 3

The cell edge spectral efficiency in a SFR system can be calcu-

lated as:

ρ̄e
SFR =

Kρ̄e
1

Ke
ρ̄e

1 +
3Kρ̄e

2

Ke
ρ̄e

2 =
ζe
1 ρ̄e

1 + ζe
2 ρ̄e

2

1 − δ2
. (19)

IV. RESULTS AND PERFORMANCE ANALYSIS

In this section, the performance of the considered FFR

schemes in an optical attocell network in terms of SINR CDF,

average spectral efficiency and cell edge spectral efficiency

are evaluated. Interference mitigation and improvement in cell

edge and average spectral efficiency are expected by using FFR

schemes.

A. Parameter Configurations

The system parameters of the evaluated systems are listed

in Table II. These values are the default settings in the results

presented in this section if the parameters are not otherwise

specified. A φ1/2 of 60◦ is reasonable for lighting performance.

A vertical separation between a BS and a user h of 2.15 m

is considered due to a user equipment height of 0.85 m and a

ceiling height of 3 m. A PD physical area Apd of 1 cm2 is the

generally acceptable in VLC systems [3], [29]. The 40 MHz

modulation bandwidth agrees with the 20 MHz flat bandwidth

that is provided by a phosphorescent white light LED with

equalisation [30]. A PD responsivity Rpd of 0.1 is suitable when

the receiver only accepts the blue component of light [3]. Since

only the negative samples of the OFDM signal after adding

the dc-bias is clipped, the dc-bias level κ is equivalent to the

bottom clipping level; κ is set to 3, since this value is sufficient

to minimise the clipping noise to a level that causes negligible

distortion in the transmission [31].

A single LED chip with a typical low rated output optical

power cannot provide sufficient optical power to meet the stan-

dard lighting requirements. Therefore, multiple LED chips are

integrated within an LED luminary, which provide much higher

power than a single chip. To simplify the radiation model, each

LED light luminary is treated as a point source. In this study,

the configuration of the BS output power takes the illumination

requirement into account. An average illuminance of at least

500 lx and an illuminance uniformity of at least 0.6 is required

in an room used for writing or reading purposes [32]. In this

study, the required optical output power that fulfils the illumi-

nance requirement is found to be highly related to the cell radius

R. Therefore, the BS output optical power Popt is configured

TABLE III
BS OUTPUT OPTICAL POWER CONFIGURATION

cell BS output average illuminance

radius optical power illuminance uniformity

R [m] Po p t [W] Ēv [lx] U0

2 24 519 0.84

2.25 29 513 0.83

2.5 35 509 0.81

2.75 41 507 0.77

3 48 506 0.73

3.25 56 505 0.69

Fig. 9. Illuminance distribution in a room with 27 cells. The network deploy-
ment is the same as that shown in Fig. 2, except for the difference in cell radius.
The illuminance spatial distribution with R = 2 m is shown in the sub-figure
on the bottom right. The relative intensity of the LED output against wavelength
is shown in the sub-figure on the top left, which is used for the calculation of
illuminance.

based on the value of R. The considered configuration in this

study is listed in Table III. The corresponding illuminance dis-

tribution in a room with 27 cells (the cell deployment is shown

in Fig. 2) in the form of CDF is presented in Fig. 9. The notable

illumination results are summarised in Table III.

B. SINR Statistics Results

Fig. 10 shows the results of the SINR statistics based on

the two-layer hexagonal network model. Here the noise level is

N0 = 1 × 10−21 A2 /Hz and cell radius is R = 2.5 m. In the

FFR systems, δ = 0.7 and β = 2. These results include the

calculation using (6), (13) and (17) in the analysis presented in

Section III using the numerical method, and the corresponding

empirical statistics obtained by Monte Carlo simulation. The

agreement between the two results validate the analysis. In ad-

dition, the simulation of the deployed networks are presented

to validate the accuracy of the estimation by using two-layer

network model. As expected, there is an acceptable difference,

less than 2 dB, between the results of two-layer network model

and those of the deployed network with only 12 cells (room

size 10.8 m × 12.5 m) due to the room edge effects. However,

with an increase of the number of cells, the difference between

the curves of the case with deployed network and that for the
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Fig. 10. SINR statistics for different reuse schemes. The network deployment
in the room with 12 and 27 cells are the same as those shown in Fig. 5, except
for the difference in cell radius. System parameters: N0 = 1 × 10−21 A2 /Hz,
R = 2.5 m, δ = 0.7 and β = 2.

two-layer network diminishes. In the case of 58 cells (room

size 26 m × 30 m), the SINR CDF differences decrease to be

in a range between 0.3 to 0.7 dB. Note that another source of

mismatch is the circular cell approximation of the 0th cell in

the two-layer network model. This mismatch is considered rea-

sonable in many cellular system analysis [28]. Therefore, the

performance of the two-layer network model is a reasonable

estimation to the practical optical attocell system.

As shown in Fig. 10, the FR system exhibits the worst SINR

as expected. In contrast, FFR schemes offer an improved SINR.

The sFFR system and the SFR system show improvements of

9.74 and 3.54 dB in terms of minimum SINR (at 10th per-

centile), respectively. In addition, they also show improvements

of 10.3 and 2.07 dB in terms of medium SINR, respectively.

Note that the bends in the FFR curves are the results of combin-

ing different SINR statistics in multiple regions in a cell and in

different sub-bands. These combinations can be observed in the

analysis in Sections III-B1 and III-C1.

C. Spectral Efficiency Results

In this section, average spectral efficiency, calculated using

(10), (16) and (18), is the metric to demonstrate the improve-

ment in the overall system capacity. In addition, average spectral

efficiency in the cell edge area, calculated using (11), (15) and

(19), is the metric to show the improvement in cell edge user

experience.

1) Effect of Cell Radius: Fig. 11 shows the average spec-

tral efficiency and the cell edge spectral efficiency results

with different cell radius R. In these results, δ = 0.7, N0 =
1 × 10−21 A2 /Hz, and λ = 1 user/m2 . Both the analytical cal-

culation and the simulation are presented. The close agreement

validates the related analysis. With a fixed φ1/2 , the increase

of cell radius results in a decrease in the interference between

users in adjacent cells [27]. In other words, a larger cell provides

better overall signal quality. In addition, a smaller cell leads to

a higher value of Pc and Pe , which results in loss in average

Fig. 11. Average spectral efficiency and cell edge spectral efficiency against
cell radius R. System parameters: δ = 0.7, N0 = 1 × 10−21 A2 /Hz and
λ = 1 user/m2 .

Fig. 12. Average spectral efficiency against δ. System parameters: R =
2.5 m, λ = 1 user/m2 and β = 2.

spectral efficiency in FFR systems. Therefore, both the average

spectral efficiency and the cell edge spectral efficiency for any

reuse scheme is an increasing function of R.

The improvement of using sFFR is in the range from 5% to

14% in terms of average spectral efficiency and is in the range

from 19% to 47% in terms of cell edge spectral efficiency. The

improvement of using SFR is in the range from 0% to 5% in

terms of average spectral efficiency and is in the range from 21%

to 57% in terms of cell edge spectral efficiency. Generally, the

sFFR system achieves the highest average spectral efficiency.

The SFR system is more flexible, since it can achieve a good

balance between cell edge user performance and overall system

performance by adjusting parameter β. Both sFFR and SFR

schemes improved the cell edge user experience significantly.

2) Effects of δ and Noise Level: Fig. 12 shows the average

spectral efficiency against δ. In the results, R = 2.5 m, λ =
1 user/m2 and β = 2 in SFR systems. As shown in Section II-

D, the channel assignment is proportional to the corresponding

coverage area for FFR systems. When δ is too small, the majority

of the users are cell edge users who are assigned a reuse factor
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Fig. 13. Average spectral efficiency against user density λ. System parameters:
δ = 0.7, R = 2.5 m, N0 = 1 × 10−21 A2 /Hz and β = 2.

of 3, which considerably decreases the spectral efficiency of

the system. When δ is too large, fewer users can be covered

by the cell edge area. Consequently, average spectral efficiency

decreases significantly due to the increased interference received

by the cell centre users who are close to the edge of the cell

central area (r → Rc). In addition, when δ is close to 0 or 1,

either Pc or Pe is significant, which also causes a decrease in

spectral efficiency.

Fig. 12 also shows the cases with different noise levels. Intu-

itively, the higher the noise level, the lower the average spectral

efficiency for systems with any reuse schemes. In addition, the

higher the noise level, the lower improvement that can be ob-

tained from the FFR schemes. For example, when considering

the improvement of the sFFR scheme with optimal δ, the im-

provement in terms of average spectral efficiency is 15% if

there is no receiver noise. However, this improvement decreases

to 8% if the noise level is increased to N0 = 2 × 10−21 A2 /Hz.

Furthermore, it is noted that the noise level may affect the op-

timal configuration of δ. When noise is not considered, the

optimal δ for sFFR is around 0.7 and this is in line with [28]. In

the case of SFR, the optimal δ is around 0.55. However, with the

increase in the noise level, optimal δs for FFR systems increase

to a slightly higher level.

3) Effects of Active User Density and Proportional Fairness

Scheduling (PFS): As shown in Section III-B2, the user den-

sity λ is crucial to the value of Pc and Pe , which may cause

a significant effect on the system spectral efficiency. Fig. 13

shows the effect of user density on the average spectral effi-

ciency of different systems. In the results, δ = 0.7, R = 2.5 m,

N0 = 1 × 10−21 A2 /Hz and β = 2 in SFR systems. Both FFR

systems show a similar trend with respect to the variations in the

λ. Generally, if λ is too small, the average spectral efficiency of

FFR systems decreases significantly. For example, in the case of

λ = 0.1 user/m2 , the FFR system exhibits an average spectral

efficiency lower than 1 bps/Hz, which is much lower than the

benchmark.

In order to solve the issue caused by low user density, PFS

[33] is considered in conjunction with the FFR techniques.

With a given FR scheme, there are L different sub-bands for

transmission. The sub-band l has Kl subcarriers, where l =
1, 2, · · · , L. Kl,n subcarriers in sub-band l are assigned to user

n. Thus
∑N

n=1 Kl,n = Kl . Therefore, the data rate achieved

by user n can be calculated as follows:

Cn =

L
∑

l=1

Kl,nsl,n ,

where sl,n is the achievable data rate by user n on a subcarrier

in sub-band l. With a given system realisation, user locations

are determined. Therefore, all sl,n are fixed for that realisation.

In this study, PFS aims at maximising the following objective

function:

Λ =

N
∑

n=1

ln (Cn ) . (20)

Conventional per subcarrier PFS requires channel frequency

selectivity to converge to a robust solution. However, the as-

sumptions used in this study make the channel gain flat within

each sub-band. This causes problems in the convergence of

the scheduling solution by using the per subcarrier based PFS.

Therefore, an alternative algorithm is used to achieve the same

PFS function. The details of this modified PFS is introduced as

follows. A scheduling plan matrix is defined as:

K =

⎡

⎢

⎢

⎣

K1,1 · · · KL,1

...
. . .

...

K1,N · · · KL,N

⎤

⎥

⎥

⎦

,

which lists the Kl,n for all users in every sub-bands. Based on

a specified K, the corresponding set of user data rates can be

calculated as follows:

C{K} =

⎡

⎢

⎢

⎣

C1(K1,1 · · · KL,1)

...

CN (K1,N · · · KL,N )

⎤

⎥

⎥

⎦

.

The modified PFS algorithm is listed in Algorithm 1. The α in

Algorithm 1 is a forgetting factor for the calculation of average

user data rate C̄. The proof of Algorithm 1 maximising (20) is

shown in Appendix B.

PFS can achieve a good balance between spectral efficiency

and user fairness. More importantly, it can dynamically dis-

tribute spectral resources depending on the current load con-

dition. With this benefit of PFS, the sub-band availability con-

straint can be adjusted as follows: the whole sub-band assigned

to a cell is available to any active user in that cell. In the case of

no user in the cell edge (centre) area of the cell, PFS will assign

the resources preserved for edge (centre) users to centre (edge)

users. Note that although cell edge users achieve low SINR

by using the sub-band prepared for centre users, through ap-

propriate modulation and coding adjustment, transmission with

low spectral efficiency can be established [34], which is better

than the sub-band being unused. This is the reason for the PFS
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approach improving the FFR system performance when user

density is low. Under conditions where users are present in both

areas, PFS avoids assigning subcarriers in sub-bands for cen-

tre user to edge users, because these resources are extremely

inefficient for cell edge users. Consequently, the majority of

the transmission resources are assigned to the cell centre users.

Since PFS has the ability to keep the fairness between centre

and edge user, it will prevent the centre users accessing ‘good’

resources in the protected sub-band. Therefore, PFS also avoids

assigning subcarriers in sub-bands for cell edge users to centre

users. This is the reason why the sub-band availability constraint

can be lessened when PFS is used in FFR systems. Addition-

ally, due to the small number of users in an optical attocell, the

computational complexity of the PFS will be much lower than

the PFS in conventional RF cellular systems.

In Fig. 13, the average spectral efficiency of the FFR systems

with PFS are also demonstrated. It can be observed that PFS

effectively alleviates the spectral efficiency decrease for FFR

systems under the condition of low λ. In addition, it is noted

that the performance of sFFR with PFS and λ = 1 user/m2 is

slightly worse compared with that without PFS. This is because

the data rate difference between centre users and edge users is

significant. Therefore, the PFS trades some spectral efficiency

for better fairness. In the case of SFR with λ = 1 user/m2 , PFS

further increases the average spectral efficiency. This is because

the data rate gap between centre users and edge users is small.

Therefore, the PFS can gain additional spectral efficiency with

a low loss of fairness.

V. CONCLUSION

A DCO-OFDM-based optical attocell network with FFR

schemes was considered in this paper. An analytical frame-

work of the FFR application in an optical attocell network was

proposed. Both the sFFR and SFR schemes were considered. A

method of calculating the statistics of the achievable SINR and

the average spectral efficiency in a two-layer network model was

presented. The numerical results show a close agreement with

the results of the Monte Carlo simulations. By comparing with

the networks deployed in a rectangular room, the performance of

the two-layer model was demonstrated to be a good estimation

of the practical optical attocell network. The performance of the

optical attocell network with FFR was evaluated and compared

with a benchmark system with full frequency reuse scheme. The

results showed that FFR schemes can effectively improve the

downlink SINR in an optical attocell network. In addition, FFR

schemes offer significant improvements in the cell edge spectral

efficiency of an optical attocell system. Furthermore, the aver-

age spectral efficiency is slightly improved. Also, the effects

of the key parameters were studied, such as cell radius R, cell

centre/radius ratio δ and active use density λ. It was identified

that the optimal value for δ is 0.7 for sFFR and 0.55 for SFR.

With an increase in the noise level, these optimal values become

greater and the gain from FFR schemes decreases. In addi-

tion, a low user density λ significantly decreases the achievable

average spectral efficiency. However, PFS can be used to effec-

tively alleviate this problem.

Algorithm 1 : Proportional fairness scheduling

1: for l = 1, 2, . . . , L do

2: Kl,1 = Kl,2 = · · · = Kl,N = Kl/N
3: end for

4: C̄ = C{K}
5: for l = 1, 2, . . . , L do

6: S =
[

s l , 1

C̄1
,

s l , 2

C̄2
, . . . ,

s l , N

C̄N

]

and Sn =
s l , n

C̄n
.

7: nmax = arg maxn Sn and nmin = arg minn Sn .

8: if Kl,nm a x
< Kl then

9: if Kl,nm in
= 0 then

10: Exclude Snm in
from S and go back to step 8.

11: end if

12: Kl,nm a x
= Kl,nm a x

+ 1, Kl,nm in
= Kl,nm in

− 1
13: end if

14: end for

15: C̄ = C̄(1 − α) + C{K}α
16: Iterate from step 6 to step 16 until K converge.

APPENDIX

A. SINR Simplification: ∆ = 1

In VLC systems, the limiting factor of the LED transmitter is

its average optical power output. Therefore, it is reasonable to

calculate the maximum acceptable signal electrical power based

on the available optical power output of the LED transmitter. In

[35], it is shown in DCO-OFDM that:

P 2
opt

Pelec,AC + x2
DC

=
κ2

1 + κ2
,

where Popt is the average optical output of the LED trans-

mitter and κ is a parameter reflecting the dc-bias level which is

given as κ = xDC/
√

Pelec,AC . Then we can find that Pelec,AC =
P 2

opt/κ2 and

Pelec,i,k =
P 2

opt

(K − 2)κ2
. (A.1)

Insert (A.1) and (1) in (3), it can be found that:

γFR(z)=

P 2
o p t (m+1)2 A 2

p d R2
p d h2 m + 2 (r 2

0 (z )+h2 )
−m −3

(2π )2 (K−2)κ2

∑

i∈И
P 2

o p t (m+1)2 A 2
p d R2

p d h2 m + 2 (r 2
i (z )+h2 )

−m −3

(2π )2 (K−2)κ2 + σ2
k

,

=

(

r2 + h2
)−m−3

∑

i∈И (r2
i (z) + h2)

−m−3
+ Ω

,

where

Ω =
4π2(K − 2)N0Wκ2

KP 2
opt(m + 1)2A2

pdR2
pdh2m+2

.

B. Proportional Fairness Scheduling

In step 12 of Algorithm 1, Kl,nm a x
and Kl,nm in

are adjusted

while other elements in K remain the same. In this proof, we
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only consider varying one of the L sub-bands l̂. The resource

allocation plan for other sub-bands remains the same. Since
∑

n Kl̂ ,n = Kl̂ , Kl̂ ,nm in
varies if Kl̂ ,nm a x

changes its value.

Their relationship is shown as follows:

Kl̂ ,nm in
= M − Kl̂ ,nm a x

,

M = Kl̂ −
∑

n �=nm in ,nm a x

Kl̂ ,n .

A variable K̂ is defined to replace Kl̂ ,nm a x
. Then Λ can be

considered to be the function of K̂. Thus, we can write Λ as:

Λ
(

K̂
)

= ln
(

Cnm a x

(

K̂
))

+ ln
(

Cnm in

(

K̂
))

+
∑

n �=nm in ,nm a x

ln (Cn )

= ln

⎛

⎝K̂sl̂ ,nm a x
+

∑

l �= l̂

Kl,nm a x
sl,nm a x

⎞

⎠

+ ln

⎛

⎝

(

M − K̂
)

sl̂ ,nm in
+

∑

l �= l̂

Kl,nm in
sl,nm in

⎞

⎠

+
∑

n �=nm in ,nm a x

ln (Cn ) .

Then it can be found that:

dΛ
(

K̂
)

dK̂
=

sl̂ ,nm a x

Cnm a x

(

K̂
) −

sl̂ ,nm in

Cnm in

(

K̂
) .

If we let K̂ = Kl̂ ,nm a x
, according to step 7 of Algorithm 1, we

have that
dΛ(K̂ )

dK̂
≥ 0. This means that Λ(K̂) is an increasing

function at Kl̂ ,nm a x
. Therefore, if we slightly increase K̂, the

probability that Λ(K̂) will increase is high. To guarantee the

convergence of Algorithm 1, the increment of K̂ is minimised

to one, since the number of subcarriers has to be an integer. With

the updating of K in Algorithm 1, the values of elements in S

in step 6 of Algorithm 1 will converge to a same value. When S

converge for all sub-bands, Λ is maximised.
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