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Abstract

We consider a fractional generalization of Hamiltonian and gradient systems.

We use differential forms and exterior derivatives of fractional orders. We

derive fractional generalization of Helmholtz conditions for phase space.

Examples of fractional gradient and Hamiltonian systems are considered. The

stationary states for these systems are derived.

PACS numbers: 45.20.−d, 05.45.−a

1. Introduction

Derivatives and integrals of fractional order [1, 2] have found many applications in recent

studies in physics. The interest in fractional analysis has been growing continually during

the past few years. Fractional analysis has numerous applications: kinetic theories [3, 4, 9],

statistical mechanics [10–12], dynamics in complex media [13–17] and many others [5–8].

The theory of derivatives of non-integer order goes back to Leibniz, Liouville, Grunwald,

Letnikov and Riemann. In the past few decades, many authors have pointed out that fractional-

order models are more appropriate than integer-order models for various real materials.

Fractional derivatives provide an excellent instrument for the description of memory and

hereditary properties of various materials and processes. This is the main advantage of

fractional derivatives in comparison with classical integer-order models in which such effects

are, in fact, neglected. The advantages of fractional derivatives become apparent in modelling

mechanical and electrical properties of real materials, as well as in the description of rheological

properties of rocks, and in many other fields.

In this paper, we use a fractional generalization of exterior calculus that was suggested in

[18, 19]. Fractional generalizations of differential forms and exterior derivatives were defined

in [18]. It allows us to consider the fractional generalization of Hamiltonian and gradient

dynamical systems [20, 21]. The suggested class of fractional gradient and Hamiltonian

systems is wider than the usual class of gradient and Hamiltonian dynamical systems. The
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gradient and Hamiltonian systems can be considered as a special case of fractional gradient

and Hamiltonian systems.

In section 2, a brief review of gradient systems and exterior calculus is considered to fix

notation and provide a convenient reference. In section 3, a brief review of fractional (exterior)

calculus will be given to fix notations and provide a convenient reference. In section 4,

a definition of fractional generalization of gradient systems is suggested. In section 5, we

consider a fractional gradient system that cannot be considered as a gradient system. In

section 6, we prove that a dynamical system that is defined by the well-known Lorenz equations

[23, 24] can be considered as a fractional gradient system. In section 7, a brief review of

Hamiltonian systems is considered to fix notations and provide a convenient reference. In

section 8, we consider the fractional generalization of Hamiltonian systems and Helmholtz

conditions. In section 9, the simple example of fractional Hamiltonian systems is discussed.

Finally, a short conclusion is given in section 10.

2. Gradient systems

In this section, a brief review of gradient systems and exterior calculus [21] is considered to

fix notations and provide a convenient reference.

Gradient systems arise in dynamical systems theory [20–22]. They are described by the

equation dx/dt = −grad V (x), where x ∈ Rn. In Cartesian coordinates, the gradient is given

by grad V = ei∂V /∂xi , where x = eixi . Here and later, we mean the sum on the repeated

indices i and j from 1 to n.

Definition 1. A dynamical system that is described by the equations

dxi

dt
= Fi(x) (i = 1, . . . , n) (1)

is called a gradient system in Rn if the differential 1-form

ω = Fi(x) dxi (2)

is an exact form ω = −dV , where V = V (x) is a continuously differentiable function (0-form).

Here, d is the exterior derivative [21]. Let V = V (x) be a real, continuously differentiable

function on Rn. The exterior derivative of the function V is the 1-form dV = dxi∂V /∂xi

written in a coordinate chart (x1, . . . , xn).

In mathematics [21], the concepts of closed form and exact form are defined for differential

forms by the equation dω = 0 for a given form ω to be a closed form and ω = dh for an exact

form. It is known that to be exact is a sufficient condition to be closed. In abstract terms,

the question of whether this is also a necessary condition is a way of detecting topological

information, by differential conditions.

Let us consider the 1-form (2). The formula for the exterior derivative d of differential

form (2) is

dω =
1

2

(

∂Fi

∂xj

−
∂Fj

∂xi

)

dxj ∧ dxi,

where ∧ is the wedge product. Therefore, the condition for ω to be closed is

∂Fi

∂xj

−
∂Fj

∂xi

= 0.
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In this case, if V (x) is a potential function then dV = dxi∂V /∂xi . The implication from

‘exact’ to ‘closed’ is then a consequence of the symmetry of the second derivatives:

∂2V

∂xi∂xj

=
∂2V

∂xj∂xi

. (3)

If the function V = V (x) is a smooth function, then the second derivative commutes, and

equation (3) holds.

The fundamental topological result here is the Poincare lemma. It states that for a

contractible open subset X of Rn, any smooth p-form β defined on X that is closed, is also

exact, for any integer p > 0 (this has content only when p is at most n). This is not true for an

open annulus in the plane, for some 1-forms ω that fail to extend smoothly to the whole disc,

so that some topological condition is necessary. A space X is contractible if the identity map

on X is homotopic to a constant map. Every contractible space is simply connected. A space

is simply connected if it is path connected and every loop is homotopic to a constant map.

Proposition 1. If a smooth vector field F = eiFi(x) of system (1) satisfies the relations

∂Fi

∂xj

−
∂Fj

∂xi

= 0 (4)

on a contractible open subset X of Rn, then the dynamical system (1) is the gradient system

such that

dxi

dt
= −

∂V (x)

∂xi

. (5)

This proposition is a corollary of the Poincaré lemma. The Poincaré lemma states that

for a contractible open subset X of Rn, any smooth 1-form (2) defined on X that is closed, is

also exact.

The equations of motion for the gradient system on a contractible open subset X of Rn can

be represented in the form (5). Therefore, the gradient systems can be defined by the potential

function V = V (x).

If the exact differential 1-form ω is equal to zero (dV = 0), then we get the equation

V (x) − C = 0, (6)

which defines the stationary states of the gradient dynamical system (5). Here, C is a constant.

3. Fractional differential forms

If the partial derivatives in the definition of the exterior derivative d = dxi∂/∂xi are allowed

to assume fractional order, a fractional exterior derivative can be defined [18] by the equation

dα = (dxi)
αDα

xi
. (7)

Here, we use the fractional derivative Dα
x in the Riemann–Liouville form [1] that is defined by

the equation

Dα
xf (x) =

1

Ŵ(m − α)

∂m

∂xm

∫ x

0

f (y) dy

(x − y)α−m+1
, (8)

where m is the first whole number greater than or equal to α. The initial point of the fractional

derivative [1] is set to zero. The derivative of powers k of x is

Dα
xxk =

Ŵ(k + 1)

Ŵ(k + 1 − α)
xk−α, (9)
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where k � 1 and α � 0. The derivative of a constant C need not be zero

Dα
xC =

x−α

Ŵ(1 − α)
C. (10)

For example, the fractional exterior derivative of order α of xk
1 , with the initial point taken

to be zero and n = 2, is given by

dαxk
1 = (dx1)

αDα
x1

xk
1 + (dx2)

αDα
x2

xk
1 . (11)

Using equation (9), we get the following relation for the fractional exterior derivative of xk
1 :

dαxk
1 = (dx1)

α Ŵ(k + 1)xk−α
1

Ŵ(k + 1 − α)
+ (dx2)

α xk
1x−α

2

Ŵ(1 − α)
.

4. Fractional gradient systems

A fractional generalization of exterior calculus was suggested in [18, 19]. A fractional exterior

derivative and the fractional differential forms were defined [18]. It allows us to consider the

fractional generalization of gradient systems.

Let us consider a dynamical system that is defined by the equation dx/dt = F, on a subset

X of Rn. In Cartesian coordinates, we can use the following equation:

dxi

dt
= Fi(x), (12)

where i = 1, . . . , n, x = eixi and F = eiFi(x). The fractional analogue of definition 1 has

the form

Definition 2. A dynamical system (12) is called a fractional gradient system if the fractional

differential 1-form

ωα = Fi(x)(dxi)
α (13)

is an exact fractional form ωα = −dαV , where V = V (x) is a continuously differentiable

function.

Using the definition of the fractional exterior derivative, equation (13) can be represented

as

ωα = −dαV = −(dxi)
αDα

xi
V.

Therefore, we have Fi(x) = −Dα
xi
V .

Note that equation (13) is a fractional generalization of equation (2). If α = 1, then

equation (13) leads us to equation (2). Obviously, a fractional 1-form ωα can be closed when

the 1-form ω = ω1 is not closed. The fractional generalization of the Poincaré lemma is

considered in [19]. Therefore, we have the following proposition.

Proposition 2. If a smooth vector field F = eiFi(x) on a contractible open subset X of Rn

satisfies the relations

Dα
xj

Fi − Dα
xi
Fj = 0, (14)

then the dynamical system (12) is a fractional gradient system such that

dxi

dt
= −Dα

xi
V (x), (15)

where V (x) is a continuous differentiable function and Dα
xi
V = −Fi .
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Proof. This proposition is a corollary of the fractional generalization of Poincaré lemma

[19]. The Poincare lemma is shown [18, 19] to be true for the exterior fractional derivative.

Relations (14) are the fractional generalization of relations (4). Note that the fractional

derivative of a constant need not be zero (10). Therefore, we see that constants C in the

equation V (x) = C cannot define a stationary state of the gradient system (15). It is easy to

see that

Dα
xi
V (x) = Dα

xi
C =

x−α
i

Ŵ(1 − α)
C �= 0.

In order to define stationary states of fractional gradient systems, we consider the solutions of

the system of the equations Dα
xi
V (x) = 0. �

Proposition 3. The stationary states of gradient system (15) are defined by the equation

V (x) −

∣

∣

∣

∣

∣

n
∏

i=1

xi

∣

∣

∣

∣

∣

α−m m−1
∑

k1=0

· · ·

m−1
∑

kn=0

Ck1,...,kn

(

n
∏

i=1

(xi)
ki

)

= 0. (16)

The Ck1,...,kn
are constants and m is the first whole number greater than or equal to α.

Proof. In order to define the stationary states of a fractional gradient system, we consider the

solution of the equation

Dα
xi
V (x) = 0. (17)

This equation can be solved by using equation (8). Let m be the first whole number greater

than or equal to α; then we have the solution [1, 2] of equation (17) in the form

V (x) = |xi |
α

m−1
∑

k=0

ak(x1, . . . , xi−1, xi+1, . . . , xn)(xi)
k, (18)

where ak are functions of the other coordinates. Using equation (18) for i = 1, . . . , n, we get

the solution of the system of equation (17) in the form (16).

If we consider n = 2 such that x = x1 and y = x2, we have the equations of motion for

the fractional gradient system

dx

dt
= −Dα

xV (x, y),
dy

dt
= −Dα

yV (x, y). (19)

The stationary states of this system are defined by the equation

V (x, y) − |xy|α−1

m−1
∑

k=0

m−1
∑

l=0

Cklx
ky l = 0.

The Ckl are constants and m is the first whole number greater than or equal to α. �

5. Examples of fractional gradient system

In this section, we consider a fractional gradient systems that cannot be considered as a gradient

system. We prove that the class of fractional gradient systems is wider than the usual class

of gradient dynamical systems. The gradient systems can be considered as a special case of

fractional gradient systems.

Example 1. Let us consider the dynamical system that is defined by the equations

dx

dt
= Fx,

dy

dt
= Fy, (20)
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where the right-hand sides have the form

Fx = acx1−k + bx−k, Fy = (ax + b)y−k, (21)

where a �= 0. This system cannot be considered as a gradient dynamical system. Using

∂Fx

∂y
−

∂Fy

∂x
= ay−k �= 0,

we get that ω = Fx dx + Fy dy is not closed form

dω = −ay−kdx ∧ dy.

Note that relation (14) in the form

Dα
yFx − Dα

xFy = 0

is satisfied for the system (21), if α = k and the constant c is defined by

c =
Ŵ(1 − α)

Ŵ(2 − α)
.

Therefore, this system can be considered as a fractional gradient system with the linear

potential function

V (x, y) = Ŵ(1 − α)(ax + b),

where α = k.

Example 2. Let us consider the dynamical system that is defined by equation (20) with

Fx = an(n − 1)xn−2 + ck(k − 1)xk−2y l, (22)

Fy = bm(m − 1)ym−2 + cl(l − 1)xky l−2, (23)

where k �= 1 and l �= 1. It is easy to derive that

∂Fx

∂y
−

∂Fy

∂x
= cklxk−2y l−2[(k − 1)y − (l − 1)x] �= 0,

and the differential form ω = Fx dx + Fy dy is not closed dω �= 0. Therefore, this system is

not a gradient dynamical system. Using conditions (14) in the form

D2
yFx − D2

xFy =
∂2Fx

∂y2
−

∂2Fy

∂x2
= 0,

we get dαω = 0 for α = 2. As a result, we have that this system can be considered as a

fractional gradient system with the potential function

V (x, y) = axn + bym + cxky l .

In the general case, the fractional gradient system cannot be considered as a gradient

system. The gradient systems can be considered as a special case of fractional gradient

systems such that α = 1.
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6. Lorenz system as a fractional gradient system

In this section, we prove that dynamical systems that are defined by the well-known Lorenz

equations [23, 24] are the fractional gradient system.

The well-known Lorenz equations [23, 24] are defined by

dx

dt
= Fx,

dy

dt
= Fy,

dz

dt
= Fz,

where the right-hand sides Fx, Fy and Fz have the forms

Fx = σ(y − x), Fy = (r − z)x − y, Fz = xy − bz.

The parameters σ , r and b can be equal to the following values:

σ = 10, b = 8/3, r = 470/19 ≃ 24.74.

The dynamical system which is defined by the Lorenz equations cannot be considered as a

gradient dynamical system. It is easy to see that

∂Fx

∂y
−

∂Fy

∂x
= z + σ − r,

∂Fx

∂z
−

∂Fz

∂x
= −y,

∂Fy

∂z
−

∂Fz

∂y
= −2x.

Therefore, ω = Fx dx + Fy dy + Fz dz is not a closed 1-form and we have

dω = −(z + σ − r) dx ∧ dy + y dx ∧ dz + 2x dy ∧ dz.

For the Lorenz equations, conditions (14) can be satisfied in the form

D2
yFx − D2

xFy = 0, D2
zFx − D2

xFz = 0, D2
zFy − D2

yFz = 0.

As a result, we get that the Lorenz system can be considered as a fractional gradient dynamical

system with the potential function

V (x, y, z) =
1

6
σx3 −

1

2
σyx2 +

1

2
(z − r)xy2 +

1

6
y3 −

1

2
xyz2 +

b

6
z3. (24)

The potential (24) uniquely defines the Lorenz system. Using equation (16), we can get that

the stationary states of the Lorenz system are defined by the equation

V (x, y, z) + C00 + Cxx + Cyy + Czz + Cxyxy + Cxzxz + Cyzyz = 0, (25)

where C00, Cx, Cy, CzCxy, Cxz and Cyz are the constants and α = m = 2. The plot of

stationary states of the Lorenz system with the constants C00 = 1, Cx = Cy = Cz = Cxy =

Cxz = Cyz = 0 and parameters σ = 10, b = 3 and r = 25 is shown in figures 1 and 2.

Note that the Rossler system [25], which is defined by the equations

dx

dt
= −(y + z),

dx

dt
= x + 0.2y,

dz

dt
= 0.2 + (x − c)z,

can be considered as a fractional gradient system with the potential function

V (x, y, z) = 1
2
(y + z)x2 − 1

2
xy2 − 1

30
y3 − 1

10
z2 − 1

6
(x − c)z3. (26)

This potential uniquely defines the Rossler system. The stationary states of the Rossler system

are defined by equation (25), where the potential function is defined by (26). The plot of

stationary states of the Rossler system for the constants C00 = 1, Cx = Cy = Cz = Cxy =

Cxz = Cyz = 0 and parameter c = 1 is shown in figures 3 and 4.

Let us note the interesting qualitative property of surfaces (25) which is difficult to see

from the figures. The surfaces of the stationary states of the Lorenz and Rossler systems

separate the three-dimensional Euclidean space into some number of areas. We have eight

areas for the Lorenz system and four areas for the Rossler system. This separation has the

interesting property for some values of parameters. All regions are connected with each other.

Beginning movement from one of the areas, it is possible to appear in any other area, not

crossing a surface. Any two points from different areas can be connected by a curve which

does not cross a surface. It is difficult to see this property from figures 1–4.
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Figure 1. Stationary states of the Lorenz system.
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Figure 2. Stationary states of the Lorenz system.
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Figure 3. Stationary states of the Rossler system.
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Figure 4. Stationary states of the Rossler system.
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7. Hamiltonian systems

In this section, a brief review of Hamiltonian systems is considered to fix notations and provide

a convenient reference.

Let us consider the canonical coordinates (q1, . . . , qn, p1, . . . , pn) in the phase space

R2n. We consider a dynamical system that is defined by the equations

dqi

dt
= Gi(q, p),

dpi

dt
= F i(q, p). (27)

The definition of Hamiltonian systems can be realized in the following form [27, 28].

Definition 3. A dynamical system (27) on the phase space R2n is called a Hamiltonian system

if the differential 1-form

β = Gi dpi − F i dqi (28)

is a closed form dβ = 0, where d is the exterior derivative. A dynamical system is called a

non-Hamiltonian system if the differential 1-form β is nonclosed dβ �= 0.

The exterior derivative for the phase space is defined as

d = dqi

∂

∂qi

+ dpi

∂

∂pi

. (29)

Here and later, we mean the sum on the repeated indices i and j from 1 to n.

Proposition 4. If the right-hand sides of equations (27) satisfy the Helmholtz conditions

[26–28] for the phase space, which have the following forms:

∂Gi

∂pj

−
∂Gj

∂pi

= 0, (30)

∂Gj

∂qi

+
∂F i

∂pj

= 0, (31)

∂F i

∂qj

−
∂F j

∂qi

= 0, (32)

then the dynamical system (27) is a Hamiltonian system.

Proof. In the canonical coordinates (q, p), the vector fields that define the system have the

components (Gi, F i), which are used in equation (27). Let us consider the 1-form that is

defined by the equation

β = Gi dpi − F i dqi .

The exterior derivative for this form can be written by the relation

dβ = d(Gi dpi) − d(F i dqi).

It now follows that

dβ =
∂Gi

∂qj

dqj ∧ dpi +
∂Gi

∂pj

dpj ∧ dpi −
∂F i

∂qj

dqj ∧ dqi −
∂F i

∂pj

dpj ∧ dqi .

Here, ∧ is the wedge product. This equation can be rewritten in an equivalent form as

dβ =

(

∂Gj

∂qi

+
∂F i

∂pj

)

dqi∧ dpj +
1

2

(

∂Gj

∂pi

−
∂Gi

∂pj

)

dpi∧ dpj +
1

2

(

∂F i

∂qj

−
∂F j

∂qi

)

dqi∧ dqj .
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Here, we use the skew symmetry of dqi ∧ dqj and dpi ∧ dpj with respect to the indices i and

j . It is obvious that conditions (30)–(32) lead to the equation dβ = 0. �

Some of Hamiltonian systems can be defined by the unique function.

Proposition 5. A dynamical system (27) on the phase space R2n is a Hamiltonian system

that is defined by the Hamiltonian H = H(q, p) if the differential 1-form

β = Gi dpi − F i dqi

is an exact form β = dH , where d is the exterior derivative and H = H(q, p) is a continuous

differentiable unique function on the phase space.

Proof. Suppose that the differential 1-form β, which is defined by equation (28), has the

form

β = dH =
∂H

∂pi

dpi +
∂H

∂qi

dqi .

In this case, vector fields (Gi, F i) can be represented in the form

Gi(q, p) =
∂H

∂pi

, F i(q, p) = −
∂H

∂qi

.

If H = H(q, p) is a continuous differentiable function, then conditions (30)–(32) are satisfied.

Using proposition 4, we get that this system is a Hamiltonian system. The equations of motion

for the Hamiltonian system (27) can be written in the form

dqi

dt
=

∂H

∂pi

,
dpi

dt
= −

∂H

∂qi

, (33)

which is uniquely defined by the Hamiltonian H.

If the exact differential 1-form β is equal to zero (dH = 0), then the equation

H(q, p) − C = 0 (34)

defines the stationary states of the Hamiltonian system (27). Here, C is a constant. �

8. Fractional Hamiltonian systems

Fractional generalization of the differential form (28), which is used in the definition of the

Hamiltonian system, can be defined in the following form:

βα = Gi(dpi)
α − F i(dqi)

α.

Let us consider the canonical coordinates (x1, . . . , xn, xn+1, . . . , x2n) = (q1, . . . , qn,

p1, . . . , pn) in the phase space R2n and a dynamical system that is defined by the equations

dqi

dt
= Gi(q, p),

dpi

dt
= F i(q, p). (35)

The fractional generalization of Hamiltonian systems can be defined by using fractional

generalization of differential forms [18].

Definition 4. A dynamical system (35) on the phase space R2n is called a fractional

Hamiltonian system if the fractional differential 1-form

βα = Gi(dpi)
α − F i(dqi)

α

is a closed fractional form

dαβα = 0, (36)
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where dα is the fractional exterior derivative. A dynamical system is called a fractional

non-Hamiltonian system if the fractional differential 1-form βα is a nonclosed fractional form

dαβα �= 0.

The fractional exterior derivative for the phase space R2n is defined as

dα = (dqi)
αDα

qi
+ (dpi)

αDα
pi

. (37)

For example, the fractional exterior derivative of order α of qk , with the initial point taken to

be zero and n = 2, is given by

dαqk = (dq)αDα
qqk + (dp)αDα

pqk. (38)

Using equations (9) and (10), we have the following relation for the fractional exterior

derivative (37):

dαqk = (dq)α
Ŵ(k + 1)qk−α

Ŵ(k + 1 − α)
+ (dp)α

qkp−α

Ŵ(1 − α)
.

Let us consider a fractional generalization of the Helmholtz conditions.

Proposition 6. If the right-hand sides of equations (35) satisfy the fractional generalization

of the Helmholtz conditions in the following form:

Dα
pj

Gi − Dα
pi

Gj = 0, (39)

Dα
qi
Gj + Dα

pj
F i = 0, (40)

Dα
qj

F i − Dα
qi
F j = 0, (41)

then dynamical system (35) is a fractional Hamiltonian system.

Proof. In the canonical coordinates (q, p), the vector fields that define the system have

the components (Gi, F i), which are used in equation (27). The 1-form βα is defined by the

equation

βα = Gi(dpi)
α − F i(dqi)

α. (42)

The exterior derivative for this form can now be given by the relation

dαβα = dα(Gi(dpi)
α) − dα(F i(dqi)

α).

Using the rule

Dα
x (fg) =

∞
∑

k=0

(α

k

)

(

Dα−k
x f

)∂kg

∂xk

and the relation

∂k

∂xk
((dx)α) = 0 (k � 1),

we get that

dα(Ai(dxi)
α) =

∞
∑

k=0

(dxj )
α ∧

(α

k

)

(

Dα−k
xj

Ai
) ∂k

∂xk
j

(dxi)
α = (dxj )

α ∧ (dxi)
α
(α

0

)

(

Dα
xj

Ai
)

.

Here, we use
(α

k

)

=
(−1)k−1αŴ(k − α)

Ŵ(1 − α)Ŵ(k + 1)
.
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Therefore, we have

dαβα = Dα
qj

Gi(dqj )
α ∧ (dpi)

α + Dα
pj

Gi(dpj )
α ∧ (dpi)

α

− Dα
qj

F i(dqj )
α ∧ (dqi)

α − Dα
pj

F i(dpj )
α ∧ (dqi)

α.

This equation can be rewritten in an equivalent form

dαβα =
(

Dα
qi
Gj + Dα

pj
F i

)

(dqi)
α ∧ (dpj )

α + 1
2

(

Dα
pi

Gj − Dα
pj

Gi
)

(dpi)
α ∧ (dpj )

α

+ 1
2

(

Dα
qj

F i − Dα
qi
F j

)

(dqi)
α ∧ (dqj )

α.

Here, we use the skew symmetry of ∧. It is obvious that conditions (39)–(41) lead to the

equation dαβα = 0, i.e., βα is a closed fractional form. �

Let us define the Hamiltonian for the fractional Hamiltonian systems.

Proposition 7. A dynamical system (35) on the phase space R2n is a fractional Hamiltonian

system that is defined by the Hamiltonian H = H(q, p) if the fractional differential 1-form

βα = Gi(dpi)
α − F i(dqi)

α

is an exact fractional form

βα = dαH, (43)

where dα is the fractional exterior derivative and H = H(q, p) is a continuous differentiable

function on the phase space.

Proof. Suppose that the fractional differential 1-form βα , which is defined by equation (42),

has the form

βα = dαH = (dpi)
αDα

pi
H + (dqi)

αDα
qi
H.

In this case, vector fields (Gi, F i) can be represented in the form

Gi(q, p) = Dα
pi

H, F i(q, p) = −Dα
qi
H.

Therefore, the equations of motion for fractional Hamiltonian systems can be written in the

form

dqi

dt
= Dα

pi
H,

dpi

dt
= −Dα

qi
H. (44)

The fractional differential 1-form βα for the fractional Hamiltonian system with

Hamiltonian H can be written in the form βα = dαH . If the exact fractional differential

1-form βα is equal to zero (dαH = 0), then we can get the equation that defines the stationary

states of the Hamiltonian system. �

Proposition 8. The stationary states of the fractional Hamiltonian system (44) are defined

by the equation

H(q, p) −

∣

∣

∣

∣

∣

n
∏

i=1

qipi

∣

∣

∣

∣

∣

α−m m−1
∑

k1=0,l1=0

· · ·

m−1
∑

kn=0,ln=0

Ck1,...,kn,l1,...,ln

n
∏

i=1

(qi)
ki (pi)

li = 0, (45)

where Ck1,...,kn,l1,...,ln are constants and m is the first whole number greater than or equal to α.

Proof. This proposition is a corollary of proposition 3. �
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9. Example of fractional Hamiltonian system

Let us consider a dynamical system in the phase space R2 (n = 1) that is defined by the

equation

dq

dt
= Dα

pH,
dp

dt
= −Dα

qH, (46)

where the fractional order 0 < α � 1 and the Hamiltonian H(q, p) has the form

H(q, p) = ap2 + bq2. (47)

If α = 1, then equation (46) describes the linear harmonic oscillator.

If the exact fractional differential 1-form

βα = dαH = (dp)αDα
pH + (dq)αDα

qH

is equal to zero (dαH = 0), then the equation

H(q, p) − C|qp|α−1 = 0

defines the stationary states of the system (46). Here, C is a constant. If α = 1, we get the

usual stationary-state equation (34).

Using equation (47), we get the following equation for stationary states:

|qp|1−α(ap2 + bq2) = C. (48)

If α = 1, then we get the equation ap2 + bq2 = C, which describes the ellipse.

10. Conclusion

Fractional derivatives and integrals [1, 2] have found many applications in recent studies in

physics. The interest in fractional analysis has been growing continually during the past few

years [3–17]. Using the fractional derivatives and fractional differential forms, we consider

the fractional generalization of gradient and Hamiltonian systems. In the general case, the

fractional gradient and Hamiltonian systems cannot be considered as gradient and Hamiltonian

systems. The class of fractional gradient and Hamiltonian systems is wider than the usual class

of gradient and Hamiltonian dynamical systems. The gradient and Hamiltonian systems can

be considered as a special case of fractional gradient and Hamiltonian systems. Therefore, it

is possible to generalize the application of catastrophe and bifurcation theory from gradient to

a wider class of fractional gradient dynamical systems. Note that quantization of the fractional

Hamiltonian systems can be realized by the method suggested in [29–32].
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