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RESEARCH PAPER

FRACTIONAL GENERALIZATIONS OF FILTERING

PROBLEMS AND THEIR ASSOCIATED

FRACTIONAL ZAKAI EQUATIONS

Sabir Umarov 1, Frederick Daum 2, Kenric Nelson 3

Abstract

In this paper we discuss fractional generalizations of the filtering prob-
lem. The ”fractional” nature comes from time-changed state or observation
processes, basic ingredients of the filtering problem. The mathematical fea-
ture of the fractional filtering problem emerges as the Riemann-Liouville
or Caputo-Djrbashian fractional derivative in the associated Zakai equa-
tion. We discuss fractional generalizations of the nonlinear filtering problem
whose state and observation processes are driven by time-changed Brown-
ian motion or/and Lévy process.

MSC 2010 : Primary 60H10; Secondary 35S10, 60G51, 60H05
Key Words and Phrases: time-change, stochastic differential equation,

filtering problem, Zakai equation, fractional order differential equation,
pseudo-differential operator, Lévy process, stable subordinator

1. Introduction

The filtering problem is formulated as follows. Let (Ω,F ,P) be a filtered
probability space with a state space Ω, sigma-algebra F , and probability
measure P. Let Xt : Ω → Rn be an Rn-valued stochastic process defined on
(Ω,F ,P) and called a state process. We assume that Xt is governed by the
stochastic differential equation

dXt = b(t,Xt)dt + g(t, Xt)dBt, (1.1)

c© 2014 Diogenes Co., Sofia
pp. 745–764 , DOI: 10.2478/s13540-014-0197-x
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746 S. Umarov, F. Daum, K. Nelson

with the initial condition Xt=0 = X0, where X0 is a random variable inde-
pendent of Brownian motion Bt, the functions b(t, x) and g(t, x), defined
for t > 0 and x ∈ Rn, satisfy some growth and continuity conditions. The
state process in the filtering problem can not be observed directly. Suppose
Zs, s ≤ t, is Rm-valued stochastic process called observation process and
related to the process Xt in the noisy environment. The observation pro-
cess Zt can be expressed through a stochastic differential equation of the
form

dZt = h(t,Xt)dt + dWt, Z0 = 0, (1.2)
where h(t, x), t > 0, x ∈ Rn, is a function satisfying appropriate growth
and continuity conditions, and Wt is an m-dimensional Brownian motion
independent of Bt and X0. Let Zt and Ft be filtrations generated by the
observation process Zt, and by X0, Bt, and Wt, respectively. We assume
that Xt is Ft-predictable stochastic process. The filtering problem is to
find the best estimation of Xt at time t given Zt, in the mean square sense.
Namely, in the filtering problem one needs to find a stochastic process X∗

t

such that
E[‖Xt −X∗

t ‖2] = inf E[‖Xt − Yt‖2],
where E is the expectation with respect to the probability measure P and
inf is taken over all Ft-predictable stochastic processes Yt ∈ L2(P), given
Zt. It follows from the abstract theory of functional analysis that X∗

t is
the projection of Xt onto the space of stochastic processes L(Zt) = {Y ∈
L2(P) : Yt is Ft− predictable}, given Zt. The process X∗

t can be written in
the form X∗

t = E[Xt|Zt].
Filtering problems arise in many engineering models. One simple exam-

ple is transmitting of modulated signals. These signals are received with
an effect of noisy environment. The received signal has to be filtered in
order to be realizable. Thus in this situation filtering problem is about the
best estimation of the stochastic process (the modulated signal transmit-
ted in the noisy environment) given additional information obtained via
measurement of parameters of the process (of the signal).

The filtering problem is called linear if the functions b(t, x) and g(t, x)
depend on x linearly. The linear filtering problem was studied by Kalman
and Bucy [14] in the 1960th. They reduced the linear filtering problem to
a linear SDE and a deterministic Riccati type differential equation. In the
case of non linear filtering Kushner [16], Lipster and Shiryaev [17], and
Fujisaki, Kallianpur and Kunita [6] (see also [22]) obtained a non linear
infinite dimensional stochastic differential equations for the posterior con-
ditional density of Xt, given Zt. However, (1) it is not easy to solve these
equations, and (2) it is computationally ’expensive’ due to the two stage
calculation procedure (prediction and correction) in the real time. Later
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Zakai [27] obtained a simpler form of the stochastic differential equation
for the posterior unnormalized conditional density Φ(t, x) = p(t, x|Zt) for
Xt in the following form:

Φ(t, x) = P(X0 = x) +
∫ t

0
A∗Φ(s, x)ds +

m∑

k=1

∫ t

0
hk(x)Φ(s, x)dZ(k)

s , (1.3)

where the operator A∗ is the dual of the infinitesimal generator A (see
Section 2) of the Markov process Xt, and hk(x), k = 1, ...,m, are compo-
nents of the random vector-function h(x) in the observation process given
by equation (1.2). Equation (1.3) can be written in the differential form as
follows

dΦ(t, x) = A∗Φ(t, x)dt +
m∑

k=1

hk(x)Φ(t, x)dZ(k)
t , Φ(0, x) = P(X0 = x).

(1.4)
Equation (1.3) (or (1.4)) is a linear stochastic partial differential equation,
and therefore, the methods of solution of linear equations are applicable,
including some explicit forms for the solution.

Though both processes in stochastic differential equations (1.1) and
(1.2) are driven by Gaussian processes (here independent Brownian mo-
tions), the solution Xt of the filtering problem may not be a Gaussian
process. Daum [3, 4, 5] developed algorithms for the solution Xt of non-
linear filtering problem in the class of distributions from the exponential
family. In paper [3] he reduced a solution of the Zakai equation to a so-
lution of the Fokker-Planck equation and a deterministic matrix Riccati
equation, generalizing the classical result of Kalman and Bucy. In recent
works [4, 5] particle flow algorithms were suggested which provide several
orders of magnitude improvement in the processing of particle filters by
computing Bayes’ rule as a flow of the logarithm of the conditional density
from the prior to the posterior, and he derived the corresponding particle
flow.

All the works mentioned above relate to filtering problems driven by
Gaussian processes and with the solution in the exponential class. However,
many processes naturally arising in the modern science (in particular, in
biology, genetics, finance) and engineering do not obey Gaussian driving
processes. Filtering problems with the state and/or observation processes
driven by Lévy processes were discussed in recent publications [2, 19, 20].

In this paper we discuss fractional generalizations of the filtering prob-
lem to the case when the state and observation processes are driven by
time-changed Brownian motion or Lévy processes. Fractional model of the
filtering problem significantly extends the scope of the filtering problems
both theoretically and their engineering and other applications. As a time
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change process Tt we consider the inverse of the Lévy stable subordinator
with the stability index β ∈ (0, 1), or their mixtures. The associated Za-
kai equation then is given by the following partial stochastic differential
equation driven by a semimartingale (see for details in Section 3):

dΦ(t, x) = A∗Φ(t, x)dTt +
m∑

k=1

hk(x)Φ(t, x)dZ(k)
Tt

, Φ(0, x) = p(x), (1.5)

where A∗ is the adjoint operator of the infinitesimal generator of the Mar-
kovian process Xt and p(x) is the density function of X0. Let gt(τ), τ ≥ 0,
be the density function of Tt. If one introduces a stochastic process

U(t, x) =
∫

R+

Φ(τ, x)P(Tt ∈ dτ), (1.6)

then stochastic differential equation (1.5) implies

Dβ
∗U(t, x) = A∗U(t, x)dt +

m∑

k=1

hk(x)BkU(t, x)dt, (1.7)

U(0, x) = p(x), (1.8)

where Dβ
∗ is the fractional differentiation operator of order β in the sense of

Caputo, defined as Dβ
∗ = J1−β d

dt , with the fractional integration operator

Jβf(t) =
1

Γ(β)

∫ t

0
(t− τ)β−1f(τ)dτ, t > 0,

and Bk, k = 1, . . . ,m, are linear transformations in the class of stochas-
tic processes; see details in Section 3. By definition, U(t, x) is obtained
from Φ(t, x) by conditioning on values of the time-change process Tt, and
hence stochastic equation (1.7), (1.8) is a form of the stochastic differential
equation (1.5) ”averaged” (with the weight gt(τ)) over all the values of Tt.
Equation (1.7) generalises the fractional Fokker-Planck-Kolmogorov equa-
tion. In the absence of the observation process Zt this equation represents
the fractional Fokker-Planck-Kolmogorov equation, see [7, 8]. Therefore, it
is natural to call equation (1.7), (1.8) and its associated (unconditioned)
stochastic differential equation (1.5) a fractional Zakai type equations. Ob-
viously, the usual Zakai equation is recovered if β → 1.

In the mathematical literature stochastic differential equations driven
by a fractional Brownian motion are also called fractional. However, the
nature of stochastic differential equations (1.5) and (1.7), that is fractional
Zakai type stochastic differential equations, totally different from the nature
of those fractional stochastic differential equations driven by a fractional
Brownian motion.
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2. Generalized filtering problems

2.1. Generalization of the filtering problem with a Lévy processes. Many
processes in the modern science and engineering do not obey the Gaussian
law for the state process in equation (1.1) and for the observation process
in equation (3.4). Let Lt, t ≥ 0, be an n-dimensional Lévy process. Lévy
processes can be characterized by the Lévy-Itô decomposition theorem,
which states that

Lt = b0t + σBt +
∫

|w|<1
wÑ(t, dw) +

∫

|w|≥1
wN(t, dw), (2.1)

where b0 ∈ Rn, σ is an n × m-matrix such that σσT = Σ, Bt is an m-
dimensional Brownian motion, and Nt and Ñt are a compound Poisson
random measure and a compensated Poisson martingale-valued measure,
respectively [25]. It is well known [25] that Lévy processes have a càdlàg
modification and are semimartingales. Any Lévy process is uniquely defined
by a triple (b, Σ, ν), where b ∈ Rn, Σ is a nonnegative definite matrix, and
a measure ν defined on Rn \ {0} such that

∫
min(1, |x|2)dν < ∞. Lévy

processes can also be characterized by the Lévy-Khintchine formula in terms
of its characteristic function Φt(ξ) = E(eiξLt) = etΨ(ξ), with

Ψ(ξ) = i(b, ξ)− 1
2
(Σξ, ξ) +

∫

Rn\{0}
(ei(w,ξ) − 1− i(w, ξ)χ(|w|≤1)(w))ν(dw).

(2.2)
The function Ψ is called the Lévy symbol of Lt. For any Lévy process, its
Lévy symbol is continuous, hermitian, conditionally positive definite and
Ψ(0) = 0. The infinitesimal generator of the Lévy process with characteris-
tics (b, Σ, ν) is a pseudo-differential operator A = A(Dx) with the symbol
Ψ(ξ) defined in (2.2).

A natural generalization of the filtering problem (1.1)-(1.2) is to replace
Brownian motions Bt in (1.1) and Wt in (1.2) with Lévy processes Lt and
Mt, respectively. Namely, consider a state process Xt governed by the Lévy
process Lt :

Xt = X0 +
∫ t

0
b(Xs−)ds +

∫ t

0
σ(Xs−)dBs

+
∫ t

0

∫

|w|<1
H(Xs−, w)Ñ(ds, dw) +

∫ t

0

∫

|w|≥1
K(Xs−, w)N(ds, dw),

(2.3)

where X0 is a random variable independent of Bt and N(t, ·); the continuous
mappings b : Rn → Rn, σ : Rn → Rn×m, H : Rn × Rn → Rn and K :
Rn × Rn → Rn satisfy the Lipschitz and linear growth conditions. The
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infinitesimal generator A of the process Xt is a pseudo-differential operator
with the symbol

Ψ(x, ξ) = i(b(x), ξ)− 1
2
(Σ(x)ξ, ξ)

+
∫

Rn\{0}
(ei(G(x,w),ξ) − 1− i(G(x,w), ξ)χ(|w|<1)(w))ν(dw), (2.4)

where G(x,w) = H(x,w) if |w| < 1, and G(x,w) = K(x,w) if |w| ≥ 1 [1].
By definition, a pseudo-differential operator A with the symbol Ψ(x, ξ) is

Aϕ(x) =
1

(2π)2

∫

Rn

Ψ(x, ξ)ϕ̂(ξ)e−i(x,ξ)dξ, (2.5)

where ϕ̂ is the Fourier transform of φ in the domain of A (see details in
[1, 9]). Let the observation process is given by

Zt =
∫ t

0
µ(s,Xs−)ds +

∫ t

0
ν(s,Xs−)dWs

+
∫ t

0

∫

|w|<1
g(Xs−, w)M̃(ds, dw) +

∫ t

0

∫

|w|≥1
f(Xs−, w)M(ds, dw),

(2.6)

where Brownian motion Wt is independent of Bt in equation (2.3), the
measures Mt and M̃t are a compound Poisson random measure and a com-
pensated Poisson martingale-valued measure, and mappings µ(t, x), ν(t, x),
g(t, x, w), and f(t, x, w) satisfy the Lipschitz and linear growth conditions.
Let Zt be the sigma-algebra generated by the process Zs, 0 ≤ s ≤ t. Now
the generalized filtering problem is formulated as follows: find the best es-
timation of Xt given Zt.

Particular cases of this problem is discussed in Chapter 4 of [2] and in
papers [19, 20]. Namely, consider the following two cases:

(1) the state process is driven by Lévy process and the observation
process is driven by Brownian motion; and vise versa,

(2) the state process is driven by Brownian motion and the observation
process is driven by Lévy process.

In the first case the filtering model is formulated as follows: The state
process is given by stochastic differential equation (2.3) driven by a Lévy
process, and the observation process is given by

Zt =
∫ t

0
h(Xs)ds + Wt, (2.7)

where Xt and Zt are respectively an Rn-valued and Rm-valued stochastic
processes. Then (see [19]) the unnormalized conditional distribution of
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f(Xt) given Zt, that is φt(f) = E[f(Xt)|Zt] under some conditions, satisfies
the Zakai type stochastic partial differential equation

φt(f) = φ0(f) +
∫ t

0
φs(Af)ds +

m∑

k=1

∫ t

0
φs(fhk)dZ(k)

s , (2.8)

where A is the infinitesimal generator of the process Xt defined in (2.5),
and hk(x) and Z(k) are components of vectors h(x) = (h1(x), ..., hm(x))
and Zt = (Z(1)

t , ..., Z
(m)
t ), respectively.

In the second case of the filtering model the state process is given by

Xt = X0 +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBs, (2.9)

and the observation process is

Zt =
∫ t

0
h(Xs)ds + Wt +

∫ t

0

∫

Rm

wNλ(dt, dw), (2.10)

where Nλ is an integer valued random measure with predictable compen-
sator λ(t,Xt, ω)dtdν, with a Lévy measure ν. Let Φ(t, x) be a filtering den-
sity, that is for arbitrary infinitely differentiable function f with a compact
support the relation

φt(f) =
∫

Rn

f(x)Φ(t, x)dx

holds. Then (see [20]) the corresponding Zakai type equation has the form

Φ(t, x) = p0(x) +
∫ t

0
A∗Φ(s, x)ds

+
∫ t

0
h(s, x)Φ(s, x)dBs +

∫ t

0

∫

Rn

(λ(s, x, w)− 1)Φ(s, x)Ñ(ds, dw),

(2.11)

where A∗ is the dual of the infinitesimal generator A of Xt and Ñ(ds, dw) =
N(ds, dw)−dsdν. We note that in this case due to absence of jump compo-
nents of the state process Xt its infinitesimal generator A is not a pseudo-
differential operator. The operator A is a second order elliptic differential
operator

Aϕ(x) =
1
2

n∑

i,k=1

aik(x)
∂2ϕ(x)
∂xi∂xk

+
n∑

k=1

bk(x)
∂ϕ(x)
∂xk

, (2.12)

with the coefficients aik(x), which are the entries of the matrix-function
a(x) = {aik(x)}n

i,k=1 obtained by multiplying σ(x) by its transpose σ(x)t.
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It is not hard to verify that both cases recover the classical Zakai equa-
tion (1.3) if the jump component of the Lévy process is absent, that is if
ν ≡ 0.

2.2. Generalization of the filtering problem with time-changed Lévy
processes. We note that the driving stochastic processes in the filtering
model (2.3) and (2.6) are semimartingales with independent increments.
If T is a Lévy subordinator then LT is still a Lévy process. Therefore,
replacement of Lévy processes Lt and Mt in (2.3) and (2.6) with their
time-changed ones LT1 and MT2 , where T1 and T2 are Lévy subordinators,
does not expand the scope of the filtering models given by equations (2.3)
and (2.6). If T is an inverse to a Lévy subordinator then the time-changed
process LT is no longer a Lévy process. However, it is a semimartingale
[17]. Therefore, stochastic integrals driven by time-changed processes LT ,
where T is the inverse to a stable Lévy subordinator, are well defined.

Consider the following model of the filtering problem driving processes
of which are time-changed Lévy processes. The state process in this context
is given by

Xt = X0 +
∫ t

0
b(Xs−)dTs +

∫ t

0
σ(Xs−)dBTs

+
∫ t

0

∫

|w|<1
H(Xs−, w)Ñ(dTs, dw) +

∫ t

0

∫

|w|≥1
K(Xs−, w)N(dTs, dw),

(2.13)

and the observation process is

Zt =
∫ t

0
µ(s,Xs−)dEs +

∫ t

0
ν(s,Xs−)dWEs

+
∫ t

0

∫

|w|<1
g(Xs−, w)M̃(dEs, dw) +

∫ t

0

∫

|w|≥1
f(Xs−, w)M(dEs, dw),

(2.14)

where Tt and Et are inverse processes to stable Lévy subordinators. Notice,
that if Tt = t and Et = t then the filtering model (2.13), (2.14) represents
the model (2.3), (2.6) for filtering problem driven by Lévy processes. There-
fore, replacement of Lévy processes Lt and Mt in the filtering model (2.3),
(2.6) with LT and ME , respectively, where T and E are inverse Lévy sub-
ordinators does expand essentially the scope of the model (2.3), (2.6).

In Section 3 we will solve the time-changed filtering problem under
certain constraints. We will need some preliminary facts on Lévy subor-
dinators and their inverses. Let Tt be the first hitting time process for a
Lévy stable subordinator Dt with stability index β ∈ (0, 1). The process
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Tt is also called an inverse to Dt. The relation between Tt and Dt can be
expressed as Tt = min{τ : Dτ ≥ t}. The process Dt, t ≥ 0, is a strictly
increasing self-similar Lévy process with D0 = 0, that is Dct = c

1
β Dt in

the sense of finite dimensional distributions, and its Laplace transform is
E(e−sDt) = e−tsβ

. The density fD1
(τ) of D1 is infinitely differentiable on

(0,∞), with the following asymptotics at zero and infinity [18, 26]:

fD1
(τ) ∼ (β

τ )
2−β

2(1−β)

√
2πβ(1− β)

e
−(1−β)( τ

β
)
− β

1−β

, τ → 0; (2.15)

fD1
(τ) ∼ β

Γ(1− β)τ1+β
, τ →∞. (2.16)

Since Dt is strictly increasing, its inverse process Tt is continuous and non-
decreasing, but not a Lévy process. Likewise for any Lévy process Lt the
time-changed process LTt is also not a Lévy process (see details in [7, 8]).

Let gt(τ) be the density function of Tt for each fixed t > 0. If fD1
(t) is

the density function of D1, then

gt(τ) = − ∂

∂τ
JfD1

(
t

τ1/β
) = − ∂

∂τ

∫ t

τ1/β

0
fD1

(u)du =
t

βτ
1+ 1

β

fD1
(

t

τ
1
β

).

(2.17)
Since fD1

(u) ∈ C∞(0,∞), it follows from representation (2.17) that gt(τ) =
ϕ(t, τ) ∈ C∞(R2

+), where R2
+ = (0,∞)× (0,∞). Further properties of gt(τ)

are represented in the following two lemmas.

Lemma 2.1. Let gt(τ) be the function given in (2.17). Then:

(a) limt→+0 gt(τ) = δ0(τ) in the sense of the topology of the space of
tempered distributions D′(R);

(b) limτ→+0 gt(τ) = t−β

Γ(1−β) , t > 0;

(c) limτ→∞ gt(τ) = 0, t > 0;

(d) Lt→s[gt(τ)](s) = sβ−1e−τsβ
, s > 0, τ ≥ 0,

where Lt→s denotes the Laplace transform with respect to the variable t.

Lemma 2.2. Function gt(τ) defined in (2.17) for each t > 0 satisfies
the following equation

Dβ
∗,tgt(τ) = − ∂

∂τ
gt(τ)− t−β

Γ(1− β)
δ0(τ), (2.18)

in the sense of tempered distributions.

We refer the reader to papers [7, 8] for proofs of these two lemmas.
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3. Fractional filtering problem. Main results

First, for simplicity we consider the filtering problem with the state
process given in the differential form

dXt = b(Xt)dTt + σ(Xt)dBTt , Xt=0 = X0, (3.1)

and driven by a time-changed Brownian motion with drift, where Tt is the
inverse of the Lévy stable subordinator with the stability index β ∈ (0, 1).
The natural observation process associated with the state process (3.1) with
invented time-change has the form

dVt = h(Xt)dTt + dWTt , V0 = 0. (3.2)

In the theorem below we assume that the input data of this filtering
model satisfy the following conditions:

(C1) the vector-functions b(x) and h(x) and n×m-matrix-function σ(x)
are infinite differentiable and bounded;

(C2) the time-change process Tt and Brownian motions Bt and Wt are
independent processes;

(C3) the initial random vector X0 is independent of processes Bt, Wt, and
Tt and has an infinite differentiable density function p0(x) decaying
at infinity faster than any power of |x|.

We note that the conditions on infinite differentiability and bounded-
ness of b(x), h(x), and σ(x) in (C1), as well as of the density function p0(x)
in (C3) and its decay condition at infinity can be weakened.

The filtering problem (3.1), (3.2) is closely related to the filtering prob-
lem whose state process is given by the following (non time-changed ) Îto
stochastic differential equation

dYt = b(Yt)dt + σ(Yt)dBt, Yt=0 = X0, t > 0, (3.3)

and the corresponding observation process is given by

dZt = h(Yt)dt + dWt, Z0 = 0. (3.4)

Introduce the process

ρ(t) = exp{−
m∑

k=1

∫ t

0
hk(Ys)dWs − 1

2

∫ t

0
|h(Ys)|2ds}

and the probability measure dP0 = ρ(t)dP. Further, let

Λt =
dP
dP0

∣∣
Zt

, (3.5)

and Ê be an expectation under the reference measure P0. Then, as is known,
the optimal filtering solution of the filtering problem (3.3), (3.4) is given
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by the following Kallianpur-Striebel’s formula [13, 19, 22])

E[f(Yt)|Zt] =
Ê[f(Yt)Λt|Zt]
Ê[Λt|Zt]

.

It is also known (see, e.g. [19], Lemma 4.1) that under the reference measure
P0, the process Zt is a standard Brownian motion independent of Yt, and
Λt satisfies the equation

Λt = 1 +
m∑

k=1

∫ t

0
Λshk(Ys)dZk

s .

Moreover, under conditions (C1)-(C3) the unnormalized filtering measure
pt(f) = Ê[f(Yt)Λt|Zt] satisfies the following stochastic differential equation
called the Zakai equation [22, 27]

pt(f) = p0(f) +
∫ t

0
ps(Af)ds +

m∑

k=1

∫ t

0
ps(hkf)dZk

s , (3.6)

where A is a second order elliptic differential operator given by equation
(2.12).

Further, introducing the filtering density U(t, x) through

pt(f) =
∫

Rn

f(x)U(t, x)dx, (3.7)

one can show that U(t, x) solves the (adjoint) Zakai equation

dU(t, x) = A∗U(t, x)dt +
m∑

k=1

hk(x)U(t, x)dZk(t), (3.8)

with the initial condition U(0, x) = p0(x). Here A∗ is the dual operator of
A defined in (2.12).

Theorem 3.1. Let Tt be a time change process and let

φt(f) = Ê[f(Xt)ΛTt |Vt],
where V is the filtration generated by Vt. Suppose conditions (C1)-C(3) are
verified. Then φt(f) satisfies the following Zakai type equation correspond-
ing to filtering problem (3.1), (3.2):

φt(f) = p0(f) +
∫ t

0
φs(Af)dTs +

m∑

k=1

∫ t

0
φs(hkf)dZk

Ts
(3.9)

P r o o f. Let conditions (C1)-(C3) be verified. Then, in particular,
the conditions for the existence of an unnormalized filtering distribution
pt(f) = Ê[f(Yt)Λt|Zt] which solves the Zakai equation (3.6), is also verified.
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Here Yt is a solution to stochastic differential equation (3.3). According to
Theorem 3.3 in [7] the time-changed process Xt = YTt solves stochastic
differential equation (3.1).

The connection Xt = YTt between the state processes Xt and Yt im-
plies the connection Vt = ZTt between the observation processes Vt and Zt.
Indeed, letting Tt = τ, or the same Dτ = t, one obtains from the relation
dVt = h(YTt)dTt + dWTt and (3.4) that Zτ = VDτ , or the same Vt = ZTt .
It follows that the filtration Vt coincides with the filtration Z ◦ Tt ≡ ZTt

generated by the time changed observation process ZTt . Hence, the unnor-
malized filtering distribution φt(f) = Ê[f(Xt)ΛTt |Z ◦ T t] corresponding to
the filtering problem (3.1), (3.2) is the time-changed process φt(f) = pTt(f).
Therefore, due to equation (3.2) the process φt(f) satisfies

φt(f) = pTt(f) = p0(f) +
∫ Tt

0
ps(Af)ds +

m∑

k=1

∫ Tt

0
ps(hkf)dZ(k)

s . (3.10)

Further, using the change of variable formula (see [11], Proposition 10.21)
∫ Tt

0
HsdSs =

∫ t

0
HTs−dSTs ,

for stochastic integrals driven by a semimartingale St, we obtain (there are
no jumps in this particular case)
∫ Tt

0
ps(Af)ds =

∫ t

0
Ê[Af(YTs)ΛTs |ZTs ]dZ

(k)
Ts

=
∫ t

0
Ê[Af(Xs)ΛTs |ZTs ]dZ

(k)
Ts

=
∫ t

0
φs(Af)dZ(k)

Ts
. (3.11)

and
m∑

k=1

∫ Tt

0
ps(hkf)dZ(k)

s =
m∑

k=1

∫ t

0
Ê[hk(YTs)f(YTs)ΛTs |ZTs ]dZ

(k)
Ts

=
m∑

k=1

∫ t

0
Ê[hk(Xs)f(Xs)ΛTs |ZTs ]dZ

(k)
Ts

=
m∑

k=1

∫ t

0
φs(hkf)dZ(k)

Ts
. (3.12)

Equations (3.10), (3.11), and (3.12) imply the desired equation (3.9). 2

Remark 3.1. The process ZTt is a semimartingale, therefore SDE
(3.9) is meaningful (see, e.g. [21]).
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Further, we introduce a filtering density and derive the adjoint Zakai
equation generalizing the equation (3.8). Let Φ(t, x) be defined as a gener-
alized function

φt(f) =
∫

Rn

f(x)Φ(t, x)dx, (3.13)

for arbitrary infinite differentiable function f with compact support. The
function Φ(t, x) is called a filtering density associated with the filtering mea-
sure φt(f).

Theorem 3.2. Let the conditions (C1)-(C3) be verified. Then the
filtering density Φ(t, x) associated with the filtering measure φt(f) in equa-
tion (3.9) satisfies the following Zakai type equation

Φ(t, x)− Φ(0, x) =
∫ t

0
A∗Φ(s, x)dTs +

m∑

k=1

∫ t

0
hk(x)Φ(s, x)dZ(k)

Ts
. (3.14)

The proof of this theorem immediately follows from equation (3.10)
substituting φt(f) in (3.13).

Further, we notice that in accordance with the definitions of pt(f) and
φt(f) the stochastic process pτ (f) is a process obtained from φt(f) condi-
tioning on the values τ ≥ 0 of the process Tt :

pτ (f) = Ê[f(Yτ )Λτ |Zτ ] =
[
Ê[f(YTt)ΛTt |Z ◦ T t]

∣∣∣Tt = τ
]

= [φt(f)|Tt = τ ].

Introduce the stochastic processes Πt(f) and Πt,Z(f) defined by

Πt(f)=Apt(f)=
∫ ∞

0
gt(τ)pτ (f)dτ, Πt,Z(f)=Ct(f)=

∫ ∞

0
gt(τ)pτ (f)dZτ ,

(3.15)
where gt(τ) is the density function of the process Tt and pt(f) is the un-
normalized filtering distribution of the Zakai equation (3.6) corresponding
to the filtering model (3.3)-(3.4). The theorem below shows a relationship
between these processes important in applications.

Theorem 3.3. Let Tt be the inverse to a stable Lévy subordinator Dt

of a stability index β ∈ (0, 1). Then the following stochastic relation holds:

Πt(f)− p0(f) = Jβ
t

(
Πt(Af) +

m∑

k=1

Πt,Z(k)(hkf)
)
, (3.16)

where the processes Πt(f) and Πt,Z(f) are defined in equation (3.15), and

Jβ
t is the fractional integration operator of order β.
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P r o o f. To prove the theorem we need an additional property of
gt(τ), τ ∈ (0,∞), the density function of the time-change process Tt for
each t ∈ (0,∞), defined in equation (2.17). Applying the fractional inte-
gration operator Jβ to equation (2.18), we have

gt(τ)− lim
t→0+

gt(τ) = − ∂

∂τ
Jβ

t gt(τ)− δ0(τ)
Γ(1− β)

Jβ
t t−β,

in the sense of distributions. Due to part (a) of Lemma 2.1 we have
limt→0+ gt(τ) = δ0(τ). This fact together with the equation Jβt−β = Γ(1−
β) implies

gt(τ) = − ∂

∂τ
Jβ

t gt(τ). (3.17)

Now conditioning equation (3.10) on the process Tt = τ and integrating
over the interval (0,∞) with respect to the measure P(Tt ∈ dτ) = gt(τ)dτ,
one obtains

Πt(f)− p0(f) =
∫ ∞

0
gt(τ)

[ ∫ τ

0
ps(Af)ds

]
dτ

+
m∑

k=1

∫ ∞

0
gt(τ)

[ ∫ τ

0
ps(hkf)dZ(k)

s

]
dτ. (3.18)

Due to relation (3.17) the first term on the right side of (3.18) can be
written in the form∫ ∞

0
gt(τ)

[ ∫ τ

0
ps(Af)ds

]
dτ = −

∫ ∞

0

∂

∂τ
Jβ

t gt(τ)
[ ∫ τ

0
ps(Af)ds

]
dτ

= −
∫ ∞

0

[ ∫ τ

0
ps(Af)ds

]
d
[
Jβ

t gt(τ)
]
. (3.19)

The integration by parts in (3.19) implies
∫ ∞

0
gt(τ)

[ ∫ τ

0
ps(Af)ds

]
dτ = Jβ

t

∫ ∞

0
gt(τ)pτ (Af)dτ = Jβ

t Πt(Af), (3.20)

since Jβ
t gt(τ) → 0 as τ → ∞, and

∫∞
0 ps(Af)ds is bounded due to condi-

tions (C1)-(C3). Similarly, for each k = 1, . . . ,m, one has

∫ ∞

0
gt(τ)

[ ∫ τ

0
ps(hkf)dZ(k)

s

]
dτ = Jβ

t

∫ ∞

0
gt(τ)pτ (hkf)dZ(k)

τ

= Jβ
t Πt,Z(k)(hkf). (3.21)

Now equation (3.16) follows from equalities (3.18), (3.20), and (3.21). 2
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Let B maps the class of stochastic processes Πt(f) to the class of pro-
cesses Πt,Z(f), that is Πt,Z(f) = BΠt(f). One can verify easily that the
operator B can be expressed with the help of operators A and C in equa-
tion (3.15). Namely,

B = CA−1. (3.22)
Using L2(P)-norm and calculus of stochastic processes one can show that
A is a one-to-one bounded linear operator and C is a bounded linear oper-
ator. Therefore, it follows that operator B is well defined bounded linear
operator. We note that equation (3.16) can be written in the form

Πt(f)− p0(f) = Jβ
t

(
Πt(Af) +

m∑

k=1

BkΠt(hkf)
)
, (3.23)

where
BkΠt(f) = Πt,Z(k)(f). (3.24)

The differential form of (3.23) involves a fractional derivative in the Riemann-
Liouville sense

dΠt(f) = D1−β
t Πt(Af)dt +

m∑

k=1

D1−β
t BkΠt(hkf)dt, Πt=0(f) = p0(f).

(3.25)
Here the fractional derivative of order β, 0 < β < 1 in the Riemann-
Liouville sense is Dβ

t = d
dtJ

1−β. It follows from equation (3.25) that the
unnormalized density U(t, x) associated with the process Πt(f) satisfies
the equation

Dβ
∗U(t, x) = A∗U(t, x) +

m∑

k=1

hk(x)BkU(t, x), U(0, x) = f(x), (3.26)

where Dβ
∗ is the fractional derivative in the sense of Caputo, which by

definition is Dβ
∗ = J1−βd/dt.

Remark 3.2. The time-changed processes BT and WT are not Mar-
kovian and has no independent increments. Therefore, the model (3.1),
(3.2) can be applied to a class of correlated filtering processes. We note also
that the classical Zakai equation is recovered when β → 1. The stochastic
equation (3.26) generalizes the fractional order Fokker-Planck-Kolmogorov
type equations [7, 8] to the case when the associate stochastic differential
equation is connected with an observation process Zt. In the absense of the
observation process Zt equation (3.26) coincides with the fractional Fokker-
Planck-Kolmogorov equation, see [7, 8]. Therefore, the associated stochastic
partial differential equations (3.9) or (3.14) can be called fractional Zakai
type equations.
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Now we generalize the results of Theorems 3.1, 3.2, and 3.3 to two dif-
ferent cases of filtering problems whose either state or observation processes
are driven by a time-changed Lévy process. Without time-changed driving
processes these two cases were discussed in Section 2. Let Lt be the Lévy
process given by equation (2.1). The first case is the fractional filtering
problem the state process of which is given by stochastic differential equa-
tion (2.13) and the observation process of which is given by equation (3.2).
Suppose that the input data of this filtering model satisfy the conditions:

(C1)
′

the vector-functions b(x), h(x), H(x,w), K(x,w) and the matrix-
function σ(x) are infinite differentiable and bounded;

(C2)
′

the time-change process Tt, Brownian motions Bt and Wt, and Pois-
son random measures Ñ(t, ·) and N(t, ·) are independent processes;

(C3)
′

the initial random vector X0 is independent of processes Bt, Wt,

Ñ(t, ·), N(t, ·), Tt and has an infinite differentiable density function
p0(x) decaying at infinity faster that any power of |x|.

Theorem 3.4. Let Tt be the inverse to a stable Lévy subordinator
Dt and φt(f) = Ê[f(Xt)ΛTt |Z ◦ T t], where T is the filtration generated by
Tt and Λt is defined by (3.5). Let P be a pseudo-differential operator with

the symbol Ψ(x, ξ) given by (2.4). Suppose the conditions (C1)
′ − (C3)

′

are verified. Then:

(1) φt(f) satisfies the following Zakai type equation corresponding to
filtering problem (2.13), (3.2):

φt(f) = p0(f) +
∫ t

0
φs−(Pf)dTs +

m∑

k=1

∫ t

0
φs−(hkf)dZk

Ts
; (3.27)

(2) the filtering density Φ(t, x) associated with the filtering measure
φt(f) in equation (3.27) satisfies the following Zakai type equation

Φ(t, x)−Φ(0, x) =
∫ t

0
P∗Φ(s−, x)dTs+

m∑

k=1

∫ t

0
hk(x)Φ(s−, x)dZ(k)

Ts
; (3.28)

(3) the unnormalized filtering density U(t, x) associated with the pro-
cess Πt(f) defined as in equation (3.15) with p(t, x) satisfying the Zakai
equation (2.8), solves the following Cauchy problem for fractional order
stochastic equation

Dβ
∗U(t, x) = P∗U(t, x) +

m∑

k=1

hk(x)BkU(t, x), U(0, x) = f(x), (3.29)

where Dβ
∗ is the fractional derivative of order β in the sense of Caputo and

the operator Bk is defined in (3.24).
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The second case is the filtering problem whose state process is driven
by a time-changed Brownian motion and the observation process is driven
by a time-changed Lévy process. Namely, let the state process be given
by equation (3.1) and the observation process be given by the following
stochastic differential equation

dHt = h(Xt)dTt + dWTt +
∫

Rm

wNλ(dTt, dw), V0 = 0, (3.30)

where the random measure Nλ has the predictable compensator
λ(t, Xt, w)dtν(dw) with a Lévy measure ν. Introduce the process

Lt = exp{−
m∑

k=1

∫ t

0
hk(Ys−)dWs

− 1
2

∫ t

0
|h(Ys−)|2ds +

∫ t

0

∫

Rm\{0}
lnλ(s,Xs−, w)Nλ(ds, dw)

+
∫ t

0

∫

Rm\{0}
(1− λ(s,Xs−, w))dsν(dw)}. (3.31)

Theorem 3.5. Let Tt be the inverse to a stable Lévy subordinator
Dt and φt(f) = Ê[f(Xt)LTt |Ht], where H is the filtration generated by
the process Ht in equation (3.30) and Lt is defined by (3.31). Suppose

conditions (C1), (C2)
′
and (C3)

′
are verified. Then:

(1) φt(f) satisfies the following Zakai type equation corresponding to
filtering problem (3.1), (3.30):

φt(f) = p0(f) +
∫ t

0
φs−(Af)dTs +

m∑

k=1

∫ t

0
φs−(hkf)dZk

Ts

+
∫ t

0

∫

Rm\{0}
φs−

(
(λ(s, ·, w)− 1)f

)
N̂T (ds, dw), (3.32)

where N̂T (ds, dw) = NT (ds, dw)− dTsν(dw) and the operator A is defined
in equation (2.12);

(2) the filtering density Φ(t, x) associated with the filtering measure
φt(f) in equation (3.32) satisfies the following Zakai type equation

Φ(t, x)− Φ(0, x) =
∫ t

0
A∗Φ(s−, x)dTs +

m∑

k=1

∫ t

0
hk(x)Φ(s−, x)dZ(k)

Ts

+
∫ t

0

∫

Rm\{0}

(
λ(s, x, w)− 1

)
Φ(s−, x)N̂T (ds, dw);

(3.33)
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(3) the unnormalized filtering density U(t, x) associated with the pro-
cess Πt(f) defined as in equation (3.15) with p(t, x) satisfying the Zakai
equation (2.11), solves the following Cauchy problem for fractional order
stochastic equation

Dβ
∗U(t, x) = A∗U(t, x) +

m∑

k=1

hk(x)BkUZ(k)(t, x), U(0, x) = f(x).

The proofs of Theorems 3.4 and 3.5 are similar to the proof of Theorem
3.1.
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