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Abstract

In this paper we discuss fractional generalizations of the filtering prob-
lem. The ”fractional” nature comes from time-changed state or observation
processes, basic ingredients of the filtering problem. The mathematical fea-
ture of the fractional filtering problem emerges as the Riemann-Liouville
or Caputo-Djrbashian fractional derivative in the associated Zakai equa-
tion. We discuss fractional generalizations of the nonlinear filtering problem
whose state and observation processes are driven by time-changed Brown-
ian motion or/and Lévy process.
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1. Introduction

The filtering problem is formulated as follows. Let (€2, F,P) be a filtered
probability space with a state space €, sigma-algebra F, and probability
measure P. Let X; : Q — R” be an R"-valued stochastic process defined on
(Q,F,P) and called a state process. We assume that X; is governed by the
stochastic differential equation

dXt = b(t,Xt)dt—Fg(t,Xt)dBt, (11)

(© 2014 Diogenes Co., Sofia
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with the initial condition X;—o = Xy, where X is a random variable inde-
pendent of Brownian motion By, the functions b(¢,x) and g(t,x), defined
for t > 0 and z € R"”, satisfy some growth and continuity conditions. The
state process in the filtering problem can not be observed directly. Suppose
Zs, s < t, is R™-valued stochastic process called observation process and
related to the process X; in the noisy environment. The observation pro-
cess Z; can be expressed through a stochastic differential equation of the
form

dZ; = h(t, X,)dt + dW;, Zy =0, (1.2)

where h(t,x),t > 0, x € R", is a function satisfying appropriate growth
and continuity conditions, and W; is an m-dimensional Brownian motion
independent of By and Xj. Let Z; and F; be filtrations generated by the
observation process Zy, and by X, By, and Wy, respectively. We assume
that X; is F;-predictable stochastic process. The filtering problem is to
find the best estimation of X; at time ¢ given Z;, in the mean square sense.
Namely, in the filtering problem one needs to find a stochastic process X/
such that
E[[|X; — X¢|?] = inf B[J|X; — Y[|?),

where E is the expectation with respect to the probability measure P and
inf is taken over all F;-predictable stochastic processes Y; € Lo(P), given
Z;. It follows from the abstract theory of functional analysis that X} is
the projection of X; onto the space of stochastic processes L(Z;) = {Y €
Lo(PP) : Yy is F; — predictable}, given Z;. The process X; can be written in
the form X; = E[Xt\Zt]

Filtering problems arise in many engineering models. One simple exam-
ple is transmitting of modulated signals. These signals are received with
an effect of noisy environment. The received signal has to be filtered in
order to be realizable. Thus in this situation filtering problem is about the
best estimation of the stochastic process (the modulated signal transmit-
ted in the noisy environment) given additional information obtained via
measurement of parameters of the process (of the signal).

The filtering problem is called linear if the functions b(t,z) and g(t, )
depend on z linearly. The linear filtering problem was studied by Kalman
and Bucy [14] in the 1960th. They reduced the linear filtering problem to
a linear SDE and a deterministic Riccati type differential equation. In the
case of non linear filtering Kushner [16], Lipster and Shiryaev [17], and
Fujisaki, Kallianpur and Kunita [6] (see also [22]) obtained a non linear
infinite dimensional stochastic differential equations for the posterior con-
ditional density of Xy, given Z;. However, (1) it is not easy to solve these
equations, and (2) it is computationally ’expensive’ due to the two stage
calculation procedure (prediction and correction) in the real time. Later
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Zakai [27] obtained a simpler form of the stochastic differential equation
for the posterior unnormalized conditional density ®(t,z) = p(t,z|2;) for
X, in the following form:

d(t,z) =P(Xo =2z) + /Ot A*®(s,x)ds + Z/Ot hi(2)® (s, 2)dZP) | (1.3)
k=1

where the operator A* is the dual of the infinitesimal generator A (see
Section 2) of the Markov process X;, and hi(x),k = 1,...,m, are compo-
nents of the random vector-function h(x) in the observation process given
by equation (1.2). Equation (1.3) can be written in the differential form as
follows

m
dD(t,x) = A 0(t,x)dt + Y hy(2)®(t, 2)dZ", (0, 2) = P(Xo = x).
k=1
(1.4)
Equation (1.3) (or (1.4)) is a linear stochastic partial differential equation,
and therefore, the methods of solution of linear equations are applicable,
including some explicit forms for the solution.

Though both processes in stochastic differential equations (1.1) and
(1.2) are driven by Gaussian processes (here independent Brownian mo-
tions), the solution X; of the filtering problem may not be a Gaussian
process. Daum [3, 4, 5] developed algorithms for the solution X; of non-
linear filtering problem in the class of distributions from the exponential
family. In paper [3] he reduced a solution of the Zakai equation to a so-
lution of the Fokker-Planck equation and a deterministic matrix Riccati
equation, generalizing the classical result of Kalman and Bucy. In recent
works [4, 5] particle flow algorithms were suggested which provide several
orders of magnitude improvement in the processing of particle filters by
computing Bayes’ rule as a flow of the logarithm of the conditional density
from the prior to the posterior, and he derived the corresponding particle
flow.

All the works mentioned above relate to filtering problems driven by
Gaussian processes and with the solution in the exponential class. However,
many processes naturally arising in the modern science (in particular, in
biology, genetics, finance) and engineering do not obey Gaussian driving
processes. Filtering problems with the state and/or observation processes
driven by Lévy processes were discussed in recent publications [2, 19, 20].

In this paper we discuss fractional generalizations of the filtering prob-
lem to the case when the state and observation processes are driven by
time-changed Brownian motion or Lévy processes. Fractional model of the
filtering problem significantly extends the scope of the filtering problems
both theoretically and their engineering and other applications. As a time
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change process T3 we consider the inverse of the Lévy stable subordinator
with the stability index § € (0,1), or their mixtures. The associated Za-
kai equation then is given by the following partial stochastic differential
equation driven by a semimartingale (see for details in Section 3):

m
" k
dD(t, ) = A*®(t,2)dT; + > hi()®(t,2)dZy), 8(0,2) = p(z), (1.5)
k=1
where A* is the adjoint operator of the infinitesimal generator of the Mar-
kovian process X; and p(z) is the density function of Xy. Let g.(7), 7 > 0,
be the density function of T;. If one introduces a stochastic process

Ult,z) = / O (7, 2)P(T} € dr), (1.6)
Ry
then stochastic differential equation (1.5) implies
DPU(t,x) = A'U(t,z)dt + > hi(2)BRU (¢, z)dt, (1.7)
k=1
U(0,z) = p(z), (1.8)

where Df is the fractional differentiation operator of order  in the sense of

Caputo, defined as DP = J1-82  ith the fractional integration operator

dt>
B 1 ' B—1
JPf(t) = %/ (t—7)"""f(r)dr, t >0,
L(B) Jo
and By, k = 1,...,m, are linear transformations in the class of stochas-

tic processes; see details in Section 3. By definition, U(t,x) is obtained
from ®(¢,2) by conditioning on values of the time-change process T}, and
hence stochastic equation (1.7), (1.8) is a form of the stochastic differential
equation (1.5) "averaged” (with the weight g:(7)) over all the values of T;.
Equation (1.7) generalises the fractional Fokker-Planck-Kolmogorov equa-
tion. In the absence of the observation process Z; this equation represents
the fractional Fokker-Planck-Kolmogorov equation, see [7, 8|. Therefore, it
is natural to call equation (1.7), (1.8) and its associated (unconditioned)
stochastic differential equation (1.5) a fractional Zakai type equations. Ob-
viously, the usual Zakai equation is recovered if § — 1.

In the mathematical literature stochastic differential equations driven
by a fractional Brownian motion are also called fractional. However, the
nature of stochastic differential equations (1.5) and (1.7), that is fractional
Zakai type stochastic differential equations, totally different from the nature
of those fractional stochastic differential equations driven by a fractional
Brownian motion.
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2. Generalized filtering problems

2.1. Generalization of the filtering problem with a Lévy processes. Many
processes in the modern science and engineering do not obey the Gaussian
law for the state process in equation (1.1) and for the observation process
in equation (3.4). Let L;, ¢ > 0, be an n-dimensional Lévy process. Lévy
processes can be characterized by the Lévy-Ité6 decomposition theorem,
which states that

Lt:b0t+GBt+/

it wN (t, dw) + / wN (t, dw), (2.1)

[w]>1

where by € R”, ¢ is an n x m-matrix such that oo’ = ¥, B, is an m-
dimensional Brownian motion, and N; and Nt are a compound Poisson
random measure and a compensated Poisson martingale-valued measure,
respectively [25]. It is well known [25] that Lévy processes have a cadlag
modification and are semimartingales. Any Lévy process is uniquely defined
by a triple (b, %, v), where b € R", ¥ is a nonnegative definite matrix, and
a measure v defined on R™ \ {0} such that [min(1,|z[*)dv < co. Lévy
processes can also be characterized by the Lévy-Khintchine formula in terms
of its characteristic function ®;(¢) = E(e*lt) = et¥(©) | with

WO =i~ 56O + [ (e 1 i iy (w)v ().
(2.2)

The function V¥ is called the Lévy symbol of L. For any Lévy process, its
Lévy symbol is continuous, hermitian, conditionally positive definite and
U(0) = 0. The infinitesimal generator of the Lévy process with characteris-
tics (b, X, v) is a pseudo-differential operator A = A(D,) with the symbol
U(¢) defined in (2.2).

A natural generalization of the filtering problem (1.1)-(1.2) is to replace
Brownian motions By in (1.1) and W; in (1.2) with Lévy processes L; and
M, respectively. Namely, consider a state process X; governed by the Lévy
process Ly :

t t
Xt=X0+/ b(XS_)der/ o(X,_)dBs
0 0

t t
+/ H(XS_,w)N(ds,dw)—i—/ K(Xs—,w)N(ds,dw),
0 Jijwl<1 0 Jw[>1
(2.3)

where X is a random variable independent of B; and N (¢, -); the continuous
mappings b : R* — R" ¢ : R" - R"™™ H : R*" x R" — R™ and K :
R™ x R® — R™ satisfy the Lipschitz and linear growth conditions. The
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infinitesimal generator A of the process X; is a pseudo-differential operator
with the symbol
1

W, €) = i(b).©) ~ H(E@EO
ei(G(wi)af) —1—3 T.w W) (dw .
+ /R"\{Og» 1 (G( ) )7 g)X(\le)( )) (d ), (2 4)

where G(z,w) = H(z,w) if |w| < 1, and G(z,w) = K(z,w) if |w| > 1 [1].
By definition, a pseudo-differential operator A with the symbol ¥(z,¢) is

Ap(o) = s [ W@ (@) (2.5

where ¢ is the Fourier transform of ¢ in the domain of A (see details in
[1, 9]). Let the observation process is given by

t t
Zt:/ ,u(s,Xs_)ds—F/ v(s, Xs_)dWs
0

0
+ /Ot /w<1 9(Xs—, w)M(ds, dw) + /Ot /|w|21 J(Xs—,w)M(ds, dw),
(2.6)

where Brownian motion W; is independent of B; in equation (2.3), the
measures M; and Mt are a compound Poisson random measure and a com-
pensated Poisson martingale-valued measure, and mappings u(t, z), v(t, z),
g(t,z,w), and f(t,z,w) satisfy the Lipschitz and linear growth conditions.
Let Z; be the sigma-algebra generated by the process Zs, 0 < s < t. Now
the generalized filtering problem is formulated as follows: find the best es-
timation of X; given Z;.

Particular cases of this problem is discussed in Chapter 4 of [2] and in
papers [19, 20]. Namely, consider the following two cases:

(1) the state process is driven by Lévy process and the observation
process is driven by Brownian motion; and vise versa,

(2) the state process is driven by Brownian motion and the observation
process is driven by Lévy process.

In the first case the filtering model is formulated as follows: The state
process is given by stochastic differential equation (2.3) driven by a Lévy
process, and the observation process is given by

t
Z - / h(X,)ds + W, (2.7)
0

where X; and Z; are respectively an R™-valued and R"-valued stochastic
processes. Then (see [19]) the unnormalized conditional distribution of
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f(Xy) given Z;, that is ¢¢(f) = E[f(X}:)| 2] under some conditions, satisfies
the Zakai type stochastic partial differential equation

il f) = do(f) + / ou(Af)ds +3 / bu(fh)dZ®,  (25)

where A is the infinitesimal generator of the process X; defined in (2 5),
and hy(z) and Z*) are components of vectors h(z) = (hy(x), ..., hy(x))
and Z; = (Zt(l), . Zt(m)), respectively.

In the second case of the filtering model the state process is given by

t t
X, = Xo + / b(Xs)ds + / o(X,)dBs, (2.9)
0 0

and the observation process is

¢ t
Zy = / hMXs)ds + Wi + / / wNy\(dt, dw), (2.10)
0 0 g

where N) is an integer valued random measure with predictable compen-
sator A\(t, Xy, w)dtdy, with a Lévy measure v. Let ®(t, x) be a filtering den-
sity, that is for arbitrary infinitely differentiable function f with a compact
support the relation

ou(f) = | fl2)®(t,z)dx
P

holds. Then (see [20]) the corresponding Zakai type equation has the form

B(t,) = pole) + /A*( r)ds

—|—/Oth(s )0 (s, 2)dB, +/ / (5, 2,w) — 1)(s, 2) N (ds, dw),
(2.11)

where A* is the dual of the infinitesimal generator A of X; and N (ds, dw) =
N(ds, dw) — dsdv. We note that in this case due to absence of jump compo-
nents of the state process X; its infinitesimal generator A is not a pseudo-
differential operator. The operator A is a second order elliptic differential
operator

"~ 2 T ~ X
Ap@) = 2 3 au@) A LS @22 (o)
k=1

0x;0x ox
ik=1 Ok K

with the coefficients a;;(z), which are the entries of the matrix-function

a(z) = {aix(x)}}}—; obtained by multiplying o(z) by its transpose o (x)".
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It is not hard to verify that both cases recover the classical Zakai equa-
tion (1.3) if the jump component of the Lévy process is absent, that is if
v=0.

2.2. Generalization of the filtering problem with time-changed Lévy
processes. We note that the driving stochastic processes in the filtering
model (2.3) and (2.6) are semimartingales with independent increments.
If T is a Lévy subordinator then Lp is still a Lévy process. Therefore,
replacement of Lévy processes L; and M; in (2.3) and (2.6) with their
time-changed ones Ly, and Mp,, where T7 and 75 are Lévy subordinators,
does not expand the scope of the filtering models given by equations (2.3)
and (2.6). If T' is an inverse to a Lévy subordinator then the time-changed
process L7 is no longer a Lévy process. However, it is a semimartingale
[17]. Therefore, stochastic integrals driven by time-changed processes Ly,
where T is the inverse to a stable Lévy subordinator, are well defined.

Consider the following model of the filtering problem driving processes
of which are time-changed Lévy processes. The state process in this context
is given by

t t
X, = Xo+ / b(X,_)dT, + / o(X,_)dBr,
0 0

t B t
+/ H(Xs,w)N(dTS,dw)+/ K(X—,w)N(dTs, dw),
0 Jw|<1 0 Jw>1
(2.13)

and the observation process is
t t
Zy = / (s, Xs—)dE;s —l—/ v(s, Xs—)dWpg,
0 0

+/Ot/m'dg(Xs_,w)M(dEs,dw)—l—/ot/m'Zl f(Xs—,w)M(dE;, dw),
(2.14)

where T; and FE; are inverse processes to stable Lévy subordinators. Notice,
that if T, = ¢t and E; = t then the filtering model (2.13), (2.14) represents
the model (2.3), (2.6) for filtering problem driven by Lévy processes. There-
fore, replacement of Lévy processes L; and M, in the filtering model (2.3),
(2.6) with Ly and Mg, respectively, where T and E are inverse Lévy sub-
ordinators does expand essentially the scope of the model (2.3), (2.6).

In Section 3 we will solve the time-changed filtering problem under
certain constraints. We will need some preliminary facts on Lévy subor-
dinators and their inverses. Let T; be the first hitting time process for a
Lévy stable subordinator D; with stability index € (0,1). The process
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T; is also called an inverse to D;. The relation between 1; and D; can be
expressed as Ty = min{r : D, > t}. The process Dy, t > 0, is a strictly
increasing self-similar Lévy process with Dy = 0, that is Dy = C%Dt in
the sense of finite dimensional distributions, and its Laplace transform is
E(e=*Pt) = ¢~t" The density fp, (1) of Dy is infinitely differentiable on
(0, 00), with the following asymptotics at zero and infinity [18, 26]:
Bztipy _ 8
I C e [ (2.15)
2mB(1 — )
B
2.0 B = gyt
Since Dy is strictly increasing, its inverse process T} is continuous and non-
decreasing, but not a Lévy process. Likewise for any Lévy process L; the
time-changed process L, is also not a Lévy process (see details in [7, 8]).
Let g¢(7) be the density function of T; for each fixed ¢ > 0. If fp (¢) is
the density function of Dy, then

) ¢ o [ t t
()= =00, i) =~ |7 o, ()= PR
(2.17)
Since fp (u) € C°°(0,00), it follows from representation (2.17) that g(7) =
(1)

o(t,7) € C*(R%), where R2 = (0,00) x (0, 00). Further properties of g;(r
are represented in the following two lemmas.

fp, (1) ~

T — 00. (2.16)

LEMMA 2.1. Let g¢(7) be the function given in (2.17). Then:

(a) limy—10g:(7) = do(7) in the sense of the topology of the space of
tempered distributions D'(R);

Y -8

(b) limr 40 9:(7) = (g5, ¢ > 0;

(¢) im; o0 g¢(7) =0, t > 0;

(d) Looslgr(N)])(s) = 1™ s> 0, 7> 0,
where L;_,s denotes the Laplace transform with respect to the variable t.

LEMMA 2.2. Function g;(7) defined in (2.17) for each t > 0 satisfies
the following equation 5
-

0
Db - -
*,tgt(T) 87_.915(7-) P(l — 6)
in the sense of tempered distributions.

0o(7), (2.18)

We refer the reader to papers [7, 8] for proofs of these two lemmas.
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3. Fractional filtering problem. Main results

First, for simplicity we consider the filtering problem with the state
process given in the differential form

dX; = b(Xt)th + O‘(Xt)dBTt, Xi—o0 = Xo, (31)

and driven by a time-changed Brownian motion with drift, where T is the
inverse of the Lévy stable subordinator with the stability index 5 € (0,1).
The natural observation process associated with the state process (3.1) with
invented time-change has the form

dVy = h(Xy)dT; + dWr,, Vh = 0. (3.2)
In the theorem below we assume that the input data of this filtering
model satisfy the following conditions:

(C1) the vector-functions b(z) and h(x) and n x m-matrix-function o(z)
are infinite differentiable and bounded;

(C2) the time-change process T; and Brownian motions B; and W, are
independent processes;

(C3) the initial random vector X is independent of processes B, Wy, and
T; and has an infinite differentiable density function py(z) decaying
at infinity faster than any power of |z|.

We note that the conditions on infinite differentiability and bounded-
ness of b(x), h(z), and o(x) in (C1), as well as of the density function py(x)
in (C3) and its decay condition at infinity can be weakened.

The filtering problem (3.1), (3.2) is closely related to the filtering prob-
lem whose state process is given by the following (non time-changed ) Ito
stochastic differential equation

dY; = b(Yy)dt + o(Yy)dBy, Yi—o = Xo, t >0, (3.3)
and the corresponding observation process is given by
dzZ; = h(YZ)dt + dW;, Zy = 0. (34)

Introduce the process
m t 1 t
o) =exp(= 3 [ mvaw, - 5 [ Inv)as)
k=170 2 Jo

and the probability measure dPy = p(t)dP. Further, let

dp

At = dTP()’Zt,

(3.5)

and E be an expectation under the reference measure Pg. Then, as is known,
the optimal filtering solution of the filtering problem (3.3), (3.4) is given
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by the following Kallianpur-Striebel’s formula [13, 19, 22])
E[f(Y)AZ1]
E[A¢|Z4]

It is also known (see, e.g. [19], Lemma 4.1) that under the reference measure
Py, the process Z; is a standard Brownian motion independent of Y;, and
A; satisfies the equation

m t
A = 1+2/ Ashi(Ys)dZE.
k=170

E[f(Yo)|2:] =

Moreover, under conditions (C1)-(C3) the unnormalized filtering measure

pi(f) = E[f(Y:)A¢| 2] satisfies the following stochastic differential equation
called the Zakai equation [22, 27]

t m t
= s s k, .
(f) = polf) + /0 po(Af)d +; /0 po(hi f)dZ! (3.6)

where A is a second order elliptic differential operator given by equation

(2.12).
Further, introducing the filtering density U (¢, x) through
pe(f) = A f(@)U(t, z)dz, (3.7)
one can show that U (¢, x) solves the (adjoint) Zakai equation
dU (t,z) = A*U(t, x)dt + Z hi(z)U(t, x)dZy(t), (3.8)
k=1

with the initial condition U(0,x) = po(x). Here A* is the dual operator of
A defined in (2.12).

THEOREM 3.1. Let T; be a time change process and let

¢e(f) = E[f (Xe)An[Ve],
where V is the filtration generated by V;. Suppose conditions (C1)-C(3) are
verified. Then ¢.(f) satisfies the following Zakai type equation correspond-
ing to filtering problem (3.1), (3.2):

olf)=nlf)+ [ oand+ Y [ompizh, o)
k=1

Proof. Let conditions (C1)-(C3) be verified. Then, in particular,
the conditions for the existence of an unnormalized filtering distribution
pe(f) = E[f(Y:)A¢| Z:] which solves the Zakai equation (3.6), is also verified.
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Here Y; is a solution to stochastic differential equation (3.3). According to
Theorem 3.3 in [7] the time-changed process X; = Y7, solves stochastic
differential equation (3.1).

The connection X; = Y5, between the state processes X; and Y; im-
plies the connection V; = Z7, between the observation processes V; and Z;.
Indeed, letting T; = 7, or the same D, = ¢, one obtains from the relation
dVy = h(Yr,)dT; + dWr, and (3.4) that Z, = Vp_, or the same V; = Zr,.
It follows that the filtration V; coincides with the filtration Z o 7; = Z7;
generated by the time changed observation process Z7,. Hence, the unnor-
malized filtering distribution ¢;(f) = E[f(X;)Ar,|Z o T,] corresponding to
the filtering problem (3.1), (3.2) is the time-changed process ¢:(f) = pr,(f)-
Therefore, due to equation (3.2) the process ¢.(f) satisfies

oulf) = pr(f) = polf) + /0 po(Af)ds + Z / pu(hif)dZ). (3.10)

Further, using the change of variable formula (see [11], Proposition 10.21)

Ty t
H,dS, = / Hp, dSt,,
0 0
for stochastic integrals driven by a semimartingale S;, we obtain (there are
no jumps in this particular case)

T; t t
/ po(Af)ds = / B[Af(Yr,)Ar, |27,)dz = / E[Af(X,)Ag, | 2, )dZ)
0 0 0

4 /t Ss(Af)dZE. (3.11)
0

and

m

T
Z/ bs hkf
k=10

t
Elhi(Yr,) f(Vr,) A, | 27, ]dZ3F)

S

1 Tz

[hi(X5) £ (X,) Az | 27, ]dZY)

o\w
=

=
I
—

t
b (i f)dZ,). (3.12)

Il
NE
S

1

.12) imply the desired equation (3.9). O

OJK‘

Equations (3.10), (3.11), and (

REMARK 3.1. The process Z7, is a semimartingale, therefore SDE
(3.9) is meaningful (see, e.g. [21]).
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Further, we introduce a filtering density and derive the adjoint Zakai
equation generalizing the equation (3.8). Let ®(¢,z) be defined as a gener-
alized function

¢t(f) - o f(:(})@(t, .%')dl', (3'13>

for arbitrary infinite differentiable function f with compact support. The
function ®(t, x) is called a filtering density associated with the filtering mea-

sure ¢n(f).

THEOREM 3.2. Let the conditions (C1)-(C3) be verified. Then the
filtering density ®(t, x) associated with the filtering measure ¢;(f) in equa-
tion (3.9) satisfies the following Zakai type equation

@(t,az)—q)((],x):/OtA*<I>(s,$)de+§:/ot hi(2)®(s,2)dZY).  (3.14)
k=1

The proof of this theorem immediately follows from equation (3.10)
substituting ¢:(f) in (3.13).

Further, we notice that in accordance with the definitions of p,(f) and
&¢(f) the stochastic process p;(f) is a process obtained from ¢;(f) condi-
tioning on the values 7 > 0 of the process T; :

pr(f) = E[f(YT)AT‘ZT] N [E[f(YTt)ATt‘Z o Tt]‘Tt = T] = [¢e( /)Ty = 7).

Introduce the stochastic processes II;(f) and II; z(f) defined by

IL(f) = Api(f) = /0 T (Ddr, T 2(H)=Colf)= / " (e (f)dZs,

(3.15)
where g;(7) is the density function of the process T} and p;(f) is the un-
normalized filtering distribution of the Zakai equation (3.6) corresponding
to the filtering model (3.3)-(3.4). The theorem below shows a relationship
between these processes important in applications.

THEOREM 3.3. Let T} be the inverse to a stable Lévy subordinator Dy
of a stability index (3 € (0,1). Then the following stochastic relation holds:

() = po(f) = I (IL(AH) + YU, oo (ef)), (3.16)

k=1
where the processes I1;(f) and Il; z(f) are defined in equation (3.15), and
Jf is the fractional integration operator of order (3.
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Proof To prove the theorem we need an additional property of
gt(7), 7 € (0,00), the density function of the time-change process T; for
each t € (0,00), defined in equation (2.17). Applying the fractional inte-
gration operator J° to equation (2.18), we have

0 00 (T)

9¢(T) — tli%lJrgt(T) = _EJtﬁgt(T) - m%ﬂfﬂa

in the sense of distributions. Due to part (a) of Lemma 2.1 we have
limy o4 g¢(7) = do(7). This fact together with the equation J=# = T'(1 —
() implies
0
au(r) =~ au(7). (3.17)

Now conditioning equation (3.10) on the process T3 = 7 and integrating
over the interval (0, 00) with respect to the measure P(T; € dr) = g:(7)dr,
one obtains

I:(f) — po(f) = /OOO gt(T)[/OTps(Af)dS}dT

+§/000 9:(7) [/(]Tps(hkf)dzék)}df (3.18)

Due to relation (3.17) the first term on the right side of (3.18) can be
written in the form

/OOO (™) [/OTpS(Af)ds} dr = — /OOO ;TJfgt(T) [/OTpS(Af)ds} dr
— [T [ mtanas]dam)]. @
The integration by parts in (3.19) implies
| o] [ panaslar =7 [~ s anar = gman, @20

since Jtﬂgt(T) — 0 as 7 — oo, and [;° ps(Af)ds is bounded due to condi-
tions (C1)-(C3). Similarly, for each k = 1,...,m, one has

o0

| a@[ [ pwpiz®)ar =57 [ g iz
= JPT, g0 (P f). (3.21)

Now equation (3.16) follows from equalities (3.18), (3.20), and (3.21). O
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Let B maps the class of stochastic processes II;(f) to the class of pro-
cesses II; z(f), that is II; z(f) = BII:(f). One can verify easily that the
operator B can be expressed with the help of operators A and C in equa-
tion (3.15). Namely,

B=CA™ . (3.22)
Using L?(P)-norm and calculus of stochastic processes one can show that
A is a one-to-one bounded linear operator and C is a bounded linear oper-

ator. Therefore, it follows that operator B is well defined bounded linear
operator. We note that equation (3.16) can be written in the form

W(f) = po(f) = I (W(AD) + 3 Bill(ef)),  (3.23)
k=1
where
BT (f) = 1L, 709 (f): (3:24)

The differential form of (3.23) involves a fractional derivative in the Riemann-
Liouville sense

m
diL(f) = D "I (Af)dt + Y Dy Byl (hy f)dt, Tio(f) = po(f).
k=1
(3.25)
Here the fractional derivative of order 5, 0 < 8 < 1 in the Riemann-
Liouville sense is Dtﬂ = %J 1=6_ 1t follows from equation (3.25) that the
unnormalized density U(t,z) associated with the process II;(f) satisfies
the equation

DPU(t,z) = A*U(t, ) + Z hi(z)BrU(t,z), U(0,2) = f(x), (3.26)
k=1
where D*ﬂ is the fractional derivative in the sense of Caputo, which by
definition is DY = J'=Ad/dt.

REMARK 3.2. The time-changed processes By and Wr are not Mar-
kovian and has no independent increments. Therefore, the model (3.1),
(3.2) can be applied to a class of correlated filtering processes. We note also
that the classical Zakai equation is recovered when 3 — 1. The stochastic
equation (3.26) generalizes the fractional order Fokker-Planck-Kolmogorov
type equations [7, 8] to the case when the associate stochastic differential
equation is connected with an observation process Z;. In the absense of the
observation process Z; equation (3.26) coincides with the fractional Fokker-
Planck-Kolmogorov equation, see [7, 8]. Therefore, the associated stochastic
partial differential equations (3.9) or (3.14) can be called fractional Zakai
lype equations.
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Now we generalize the results of Theorems 3.1, 3.2, and 3.3 to two dif-
ferent cases of filtering problems whose either state or observation processes
are driven by a time-changed Lévy process. Without time-changed driving
processes these two cases were discussed in Section 2. Let L; be the Lévy
process given by equation (2.1). The first case is the fractional filtering
problem the state process of which is given by stochastic differential equa-
tion (2.13) and the observation process of which is given by equation (3.2).
Suppose that the input data of this filtering model satisfy the conditions:

(C1)" the vector-functions b(x), h(z), H(z,w), K(z,w) and the matrix-
function o(z) are infinite differentiable and bounded;

(C 2)/ the time-change process T3, Brownian motions B; and W, and Pois-
son random measures N (t,-) and N(¢,-) are independent processes;

(03), the initial random vector X is independent of processes By, W4,
N(t,-), N(t,-), T; and has an infinite differentiable density function
po(z) decaying at infinity faster that any power of |z|.

THEOREM 3.4. Let T; be the inverse to a stable Lévy subordinator
Dy and ¢y(f) = E[f(X;)Ar,|Z o T,], where T is the filtration generated by
T; and A is defined by (3.5). Let P be a pseudo-differential operator with
the symbol W(z, &) given by (2.4). Suppose the conditions (C1) — (C3)’
are verified. Then:

(1) ¢u(f) satisfies the following Zakai type equation corresponding to

filtering problem (2.13), (3.2):
t mo ot
o) =m0 [P+ 3 [ oherizhs 20

(2) the filtering density ®(t,x) associated with the filtering measure
¢+(f) in equation (3.27) satisfies the following Zakai type equation

@(t,x)—CI)(O,x)—/OtP*CI)(s—,:r)dTS—I—i/Ot hi(2)®(s5—, 2)dZY; (3.28)
k=1

(3) the unnormalized filtering density U (t,x) associated with the pro-
cess II;(f) defined as in equation (3.15) with p(t,z) satisfying the Zakai
equation (2.8), solves the following Cauchy problem for fractional order
stochastic equation

m
DU(t,x) = P*U(t,x) + Y _ hi(2)BeU(t,x), U0, z) = f(x),  (3.29)
k=1
where D is the fractional derivative of order [ in the sense of Caputo and
the operator By, is defined in (3.24).
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The second case is the filtering problem whose state process is driven
by a time-changed Brownian motion and the observation process is driven
by a time-changed Lévy process. Namely, let the state process be given
by equation (3.1) and the observation process be given by the following
stochastic differential equation

dH, = h(X,)dT; + dW, + / wNA(dTh, dw), Vo =0, (3.30)

m

where the random measure N, has the predictable compensator
A(t, Xy, w)dtv(dw) with a Lévy measure v. Introduce the process

m t
Li=exp{—)_ / hi (Vs )dW
k=170
1 t t
—/ |h(Y;_)]2ds+// In A(s, X, w)Ny(ds, dw)
2 Jo 0 JrRm\{0}
t
—|—// (1= X(s, Xs5—,w))dsv(dw)}. (3.31)
0 JR™\{0}

THEOREM 3.5. Let T; be the inverse to a stable Lévy subordinator
Dy and ¢i(f) = E[f(X;)Lr,|Hy), where H is the filtration generated by
the process H; in equation (3.30) and L; is defined by (3.31). Suppose
conditions (C1),(C2)" and (C3)" are verified. Then:

(1) ¢u(f) satisfies the following Zakai type equation corresponding to
filtering problem (3.1), (3.30):

olf) =mi)+ [ danan+ Y [ o hnazi,
k=1

[ L o s - 7) s, s

where Nrp(ds, dw) = Nrp(ds, dw) — dTsv(dw) and the operator A is defined
in equation (2.12);

(2) the filtering density ®(t,x) associated with the filtering measure
¢¢(f) in equation (3.32) satisfies the following Zakai type equation

t m t
@(t,x)—q)([),m):/ A*@(s—,x)de+Z/ hi(2)®(s—, 2)dZ)
0 k=1 0

+/Ot /Rm . ()\(s,aj,w) - 1)(1)(3—,x)NT(ds,dw);
Mo (3.33)
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(3) the unnormalized filtering density U (t,z) associated with the pro-
cess II;(f) defined as in equation (3.15) with p(t,z) satisfying the Zakai
equation (2.11), solves the following Cauchy problem for fractional order

stochastic equation
m

DPU(t,x) = A*U(t,z) + Y hi(x) BulUyo (t,2), U(0,2) = f(a).
=1

The proofs of Theorems 3.4 and 3.5 are similar to the proof of Theorem
3.1.
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