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Abstract

We derive the fractional generalization of the Ginzburg–Landau equation from the

variational Euler–Lagrange equation for fractal media. To describe fractal media we use the

fractional integrals considered as approximations of integrals on fractals. Some simple

solutions of the Ginzburg–Landau equation for fractal media are considered and different

forms of the fractional Ginzburg–Landau equation or nonlinear Schrödinger equation with

fractional derivatives are presented. The Agrawal variational principle and its generalization

have been applied.
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equation
1. Introduction

We call the fractional equation an equation that contains fractional derivatives or
integrals. Derivatives and integrals of fractional order have found many applications
see front matter r 2005 Elsevier B.V. All rights reserved.
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in recent studies in physics. The interest in fractional equations has been growing
continually during the last few years because of numerous applications: kinetic
theories of systems with chaotic dynamics [1,2]; pseudochaotic dynamics [3];
dynamics in a complex or porous media [4]; random walks with a memory and flights
[5–7]; and many others.
Fractional integrals and derivatives can be used to describe processes with

different levels of complexity. The new type of problems has rapidly increased
interest in areas in which the fractal features of a process or the medium impose a
necessity of applying tools that are non-traditional in ‘‘regular’’ smooth physical
equations. In many problems the real fractal structure of matter can be disregarded
and the medium can be replaced by some smoothed continuous mathematical
model where fractional integrals appear [8]. The order of the fractional integral
is equal to the fractal mass dimension of the medium and in this way one can take
into account the fractality of the media. It was proved that integrals on a net
of fractals can be approximated by fractional integrals [9] and that fractional
integrals can be considered as integrals over the space with fractional dimension up
to a numerical factor [10]. The last proof used the formulas of dimensional
regularizations [11].
The fractional generalization of the Ginzburg–Landau equation was suggested in

Ref. [12]. This equation can be used to describe the dynamical processes in a medium
with fractal dispersion. Since the fractals can be realized in nature as a fractal process
or fractal media, it is interesting to derive the fractional Ginzburg–Landau (FGL)
equation using a corresponding generalization of the free energy functional.
It is known [13] that the Ginzburg–Landau equation

gDZ � aZ � bZ3
¼ 0

can be derived as the variational Euler–Lagrange equation

dFfZðxÞg

dZðxÞ
¼ 0 (1)

for the free energy functional

FfZðxÞg ¼ F0 þ
1

2

Z
W

gðrZÞ2 þ aZ2 þ
b

2
Z4

� �
dV 3 , (2)

where the integration is over the three-dimensional region W of continuous media.
Here F0 is a free energy of the normal state, i.e., FfZg for Z ¼ 0. In this paper we
consider a fractional generalization of (2) that can appear from two places: fractional
generalization of the integral in Eq. (2) and fractional generalization of the
derivatives in Eq. (2). Different forms of the FGL equation are considered in the
coordinate space and in the dual space after applying the Fourier transform. Finally,
the Agrawal variational principle [14] and its generalization have been applied to
obtain the FGL equation.
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2. Fractional generalization of free energy functional

Let us consider the thermodynamic potential (free energy functional) FfZðxÞg for
the non-equilibrium state of the fractal medium, where ZðxÞ is a scalar field. The free
energy functional has the form

FfZðxÞg ¼ F0 þ

Z
W

FðZðxÞ;rZðxÞÞdV 3 , (3)

where FðZðxÞ;rZðxÞÞ is the free energy density; rZ ¼ qZ=qx. For the Ginzburg–
Landau potential (2) this density is

FðZðxÞ;rZðxÞÞ ¼
1

2
gðrZÞ2 þ aZ2 þ

b

2
Z4

� �
.

The simplest fractional generalization of (2) can be written in the form

FfZðxÞg ¼ F0 þ

Z
W

FðZðxÞ;rZðxÞÞdV D . (4)

Here D is a fractal mass dimension of the fractal medium, and dVD is an element of
the D-dimensional volume:

dV D ¼ C3ðD;xÞdV 3 . (5)

Note that the interpretation of the fractional integration is connected with fractional
dimension [10], which follows from the well-known formulas for dimensional
regularizations [11]: the fractional integral can be considered as an integral in the
fractional dimension space up to the numerical factor GðD=2Þ=ð2pD=2GðDÞÞ.
For the Riesz definition of fractional integral, the function C3ðD;xÞ is

C3ðD;xÞ ¼
23�DGð3=2Þ
GðD=2Þ

jxjD�3 . (6)

The initial point of the fractional integral is set to zero and the numerical factor in
Eq. (6) gives the usual integral in the limit D! ð3� 0Þ. Note that the numerical
factor g�13 ðDÞ ¼ Gð1=2Þ=2Dp3=2GðD=2Þ used in Ref. [15] leads to g�13 ð3� 0Þ ¼
Gð1=2Þ=23p3=2Gð3=2Þ in the limit D! ð3� 0Þ.
For the Riemann–Liouville fractional integral, the function C3ðD;xÞ is

C3ðD;xÞ ¼
jx1x2x3j

D=3�1

G3ðD=3Þ
. (7)

In Cartesian’s coordinates xk,

x ¼
X3
k¼1

xkek; dV3 ¼ dx1 dx2 dx3 .

The simplest fractional generalization of (2) for fractal media is

FfZðxÞg ¼ F0 þ
1

2

Z
W

gðrZÞ2 þ aZ2 þ
b

2
Z4

� �
dV D . (8)
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Eq. (8) can be considered as terms of the expansion of a functional in series over
small values ZðxÞ and the integer derivatives rZ ¼ qZ=qx.
For homogeneous media without external fields the parameter Z does not depend

on coordinates and Eq. (8) gives

FfZg ¼ F 0 þ
aVD

2
Z2 þ

bV D

4
Z4 , (9)

where VD is a D-dimensional volume of fractal medium in the region W. The
equilibrium value of Z corresponds to the minimum condition for (9):

dFfZg=dZ ¼ 0 .

If a=b40, then the free energy potential has the single minimum Z ¼ 0. If a=bo0,
then there are two minima Z ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
�a=b

p
. The phase transition is realized when a=b

passes through zero.
3. Ginzburg–Landau equation for fractal media

In the general case, the equilibrium value of ZðxÞ is defined by the condition of the
minimum of FfZðxÞg, which has the form of variational Euler–Lagrange (1). Using
functional (4) with the free energy density FðZðxÞ;rZðxÞÞ, we get the Euler–
Lagrange equation

C3ðD;xÞ
qF
qZ
�
X3
k¼1

rk C3ðD;xÞ
qF
qrkZ

� �
¼ 0 , (10)

where C3ðD;xÞ is defined by Eq. (6) or (7), and rk ¼ q=qxk, k ¼ 1; 2; 3: Using (8), we
get the equation

gC�13 ðD; xÞrkðC3ðD; xÞrkZÞ � aZ � bZ3
¼ 0 (11)

that can be considered as the Ginzburg–Landau equation for fractal media in the
case F ¼FðZðxÞ;rZðxÞÞ.
Eq. (11) can be rewritten in an equivalent form

gDZ þ EkðD;xÞrkZ � aZ � bZ3
¼ 0 , (12)

where

EkðD;xÞ ¼ C�13 ðD;xÞrkC3ðD; xÞ .

In the one-dimensional case, when 0oDp1, we have

Z00xx þ
D� 1

gjxj
Z0x � ða=gÞZ � ðb=gÞZ3 ¼ 0 , (13)

where x ¼ x1 and Z0x ¼ dZ=dx1. The simplest solutions of this equation are
considered in Section 7. Note that this equation has an analog in the form of an
equation for a nonlinear oscillator with friction. Therefore, the Ginzburg–Landau
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equation for fractal media describes dissipative nonlinear oscillations in coordinate
space.
In the general case, the free energy density can also depend on fractional

derivatives of Z. In this case we can use the fractional generalization of the Agrawal
variational equation [14]. This case will be considered in Section 6.
4. Ginzburg–Landau equation with fractional derivatives

Let us recall the appearance of the Ginzburg–Landau equation with fractional
derivatives suggested in Ref. [12]. Consider wave propagation in some media and
present the wave vector k in the form

k ¼ k0 þ j ¼ k0 þ jk þ j? , (14)

where k0 is the unperturbed wave vector and subscripts ðk;?Þ are taken respectively
to the direction of k0. Considering a symmetric dispersion law o ¼ oðkÞ for wave
propagation with k5k0, we have

oðkÞ ¼ oðjk0 þ jjÞ � oðk0Þ þ cðjk0 þ jj � k0Þ � oðk0Þ þ ckk þ
c

2k0
k2? , (15)

where c ¼ qo=qk0. Expression (15) in dual space (‘‘momentum representation’’)
corresponds to the following equation in coordinate space,

�i
qZ

qt
¼ ic

qZ

qx1
þ

c

2k0
DZ , (16)

with respect to the field Z ¼ Zðx; tÞ, where x1 is along k0. Here we use the operator
correspondence between the dual space and the usual space-time:

n � oðkÞ !i
q
qt

; kk !� i
q
qx1

; ðj?Þ
2
 !� D ¼ �

q2

qx2
�

q2

qx3
. (17)

A generalization to the nonlinear case can be carried out as in (15) through a
nonlinear dispersion law dependence on the wave amplitude:

o ¼ oðk; jZj2Þ � oðk; 0Þ þ bjZj2 ¼ oðjk0 þ jj; 0Þ þ bjZj2 (18)

with some constant b ¼ qoðk; jZj2Þ=qjZj2 at jZj2 ¼ 0. In analogy with (16), the
nonlinear equation takes the form

�i
qZ

qt
¼ ic

qZ

qx
þ

c

2k0
DZ � oðk0ÞZ � bjZj2Z . (19)

This equation is also known as the nonlinear Schrödinger (NLS) equation in which
any of the coefficients may be complex. Indeed, for a traveling wave Z ¼ Zðx1 �

ct;x2;x3Þ we have

�ic
qZ

qx
¼

c

2k0
DZ � o0Z � bjZj2Z (20)

with x ¼ x1 � ct, o0 ¼ oðk0Þ.
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Wave propagation in media with fractal properties can be easily generalized by
rewriting the dispersion law (15). Namely, one can replace (15) and (18) by the
following equation in dual space:

oðk; jZj2Þ ¼ oðk0; 0Þ þ ckk þ caðj
2
?Þ

a=2
þ bjZj2 (21)

with a fractional value of 1oao2 and a new constant ca.
Using the connection between fractional derivative and its Fourier transform [15]

ð�DÞa=2 !ðj2?Þ
a=2 , (22)

we obtain the equation

�i
qZ

qt
¼ ic

qZ

qx
�

c

2k0
ð�DÞa=2Z � o0Z � bjZj2Z , (23)

which corresponds to (21) in time-coordinate space. For traveling waves as in (20),
we get the equation

ic
qZ

qx
¼

c

2k0
ð�DÞa=2Z þ o0Z þ bjZj2Z (24)

that can be called nonstationary FGL equation or fractional nonlinear Schrödinger
equation (FNLS). Let us comment on the physical structure of (24). The first term on
the right-hand side is related to the wave propagation in a medium with fractal
properties. The fractional derivative may also appear as a result of ray chaos [16,17]
or due to superdiffusive wave propagation (see also the discussion in Refs. [1,16]
and corresponding references therein). Other terms on the right-hand side of
Eqs. (23) and (24) correspond to wave interaction due to the nonlinear properties
of the media. Thus, Eq. (24) can describe fractal processes of self-focusing and
related issues.
We may consider a one-dimensional simplification of (24), i.e.,

c
qZ

qx
¼ gDa

xZ þ aZ þ bjZj2Z (25)

with some generalized constants g; b; c, and the Riesz fractional derivative

ðDa
yf ÞðyÞ ¼

�1

2 cosðpa=2Þ
1

Gð1� aÞ
d

dy

Z y

�1

f ðzÞdz

ðy� zÞa
þ
�1

Gð1� aÞ
d

dy

Z þ1
y

f ðzÞdz

ðz� yÞa

� �
.

(26)

As a particular case, we can reduce Eq. (25) to a stationary solution Z ¼ ZðxÞ. In
this case, Eq. (25) takes the form of the stationary FGL:

gDa
xZ þ cD1

xZ þ aZ þ bjZj2Z ¼ 0 (27)

or for real Z:

gDa
xZ þ cD1

xZ þ aZ þ bZ3
¼ 0 . (28)
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Eq. (28) differs from the fractional Burgers equation [18,19] in the structure of the
nonlinear term. Nevertheless, an analysis similar to that in Refs. [18,19] may be
performed to obtain some estimates on the solution.
It is well known that the nonlinear term in equations of the type (20) leads to a

steepening of the solution and its singularity. The steepening process may be stopped
by a diffusional or dispersional term, i.e. by a higher derivative term. A similar
phenomenon may appear for the fractional nonlinear equations (25), (27). It has
been shown in Ref. [19] that for the fractional Burgers equation there exists a critical
value ac such that the solution is regular for all x if a4ac.
5. Ginzburg–Landau equations with fractional derivatives in dual space

In order to derive the FGL equations from a variational principle, we can use two
methods. One of them was suggested in Ref. [10] and will be considered here. The
second one is a generalization of the Agrawal variational [14] for the fractal media,
and will be considered in Section 6.
Let us introduce the derivatives with a fractional power of coordinates x

b
k:

q

qx
b
k

¼
jxkj

1�b

b
q
qxk

. (29)

These derivatives transform into fractional derivatives in dual space (‘‘momentum
representation’’). The Fourier transform of the coordinates jxkj

1�b leads us to the
Reisz fractional derivative

jxkj
1�b !�D1�b

yk
,

where we use definition (26). The Fourier transform of Eq. (29) is

q

qx
b
k

¼
jxkj

1�b

b
q
qxk

 !�
1

b
D1�b

yk
yk . (30)

Consider free energy functional F ¼FðZ; qZ=qx
b
kÞ for the one-dimensional case.

Then the FGL equation for fractal media is of the form

gC�11 ðb;xÞ
q
qxb C1ðb;xÞ

q
qxb Z

� �
� aZ � bZ3

¼ 0 , (31)

where C1ðb;xÞ ¼ jxjb�1=GðbÞ, or in an equivalent form

g

b2
jxj2�2b

q2

qx2
Z � aZ � bZ3

¼ 0 . (32)

After Fourier transform of this equation, we obtain the FGL equation in
dual space:

g

b2
D2�2b

y ðy2 ~ZÞ þ a ~Z þ b ~Z
3
¼ 0 . (33)
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Here ~ZðyÞ is a Fourier transform of ZðxÞ, i.e., ZðxÞ ! ~ZðyÞ. For the field
CðyÞ ¼ y2 ~ZðyÞ, we can rewrite Eq. (33) in the form

gDa
xCðxÞ þ aðxÞCðxÞ þ bðxÞC3ðxÞ ¼ 0 ,

where a ¼ 2� 2b, 0oao2 and aðxÞ ¼ ab2=jxj2, bðxÞ ¼ bb2=jxj6.
As a result, the FGL equation for fractal media has fractional derivatives in dual

space. The FGL equation with fractional derivatives in coordinate space is
considered in the next section.
6. Ginzburg–Landau equations with fractional derivatives from the fractional Agrawal

principle

Let us, first, extend the fractional Agrawal variational principle [14] for the case of
fractal media.
The simplest generalization of the free energy functional with fractional integrals

and derivatives can be written in the form

FfZðxÞg ¼ F0 þ

Z
W

FðZðxÞ;DaZðxÞÞdV D . (34)

Here D is a fractal mass dimension of fractal medium, and dVD is an element of D-
dimensional volume such that dVD ¼ C3ðD;xÞdV 3. The function C3ðD;xÞ is defined
by relations (6) and (7). Da is a fractional derivative that is defined by Eq. (26). The
potential density is

F ¼
1

2
gðDaZÞ2 þ aZ2 þ

b

2
Z4

� �
. (35)

The condition of the minimum of free energy potential (34), (35) gives the
Euler–Lagrange equation in the form

C3ðD;xÞ
qF
qZ
þ
X3
k¼1

Da
xk

C3ðD;xÞ
qF

qDa
xk

Z

 !
¼ 0 . (36)

In general, Da3a and Eq. (36) gives

gC�13 ðD; xÞ
X3
k¼1

Da
xk

C3ðD; xÞDa
xk

Z
� �

þ aZ þ bZ3
¼ 0 . (37)

It can be considered as a fractional generalization of the Ginzburg–Landau equation
for fractal media. Consider some cases of this equation.
1. In the one-dimensional case Z ¼ ZðxÞ, the coordinate fractional derivative is

Da
x, i.e.,

F ¼FðZ;Da
xZÞ .
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The FGL potential density has the form

F ¼
1

2
g Da

xZ

 �2

þ
a

2
Z2 þ

b

4
Z4 . (38)

Using the formulas for fractional integration by partsZ 1
�1

f ðxÞ
dbgðxÞ

dxb dx ¼

Z 1
�1

gðxÞ
dbf ðxÞ

dð�xÞb
dx ,

Z 1
�1

f ðxÞDa
xgðxÞdx ¼

Z 1
�1

gðxÞDa
xf ðxÞdx , (39)

we obtain the Euler–Lagrange equation

Da
x C1ðD;xÞ

qF
qDa

x

� �
þ C1ðD; xÞ

qF
qZ
¼ 0 , (40)

where the function C1ðD; xÞ is defined as

C1ðD;xÞ ¼
jxjD�1

GðDÞ
. (41)

Using for F (38), we arrive at

C�11 ðD; xÞDa
xðC1ðD;xÞDa

xZÞ þ aZ þ bZ3
¼ 0 . (42)

For the case D ¼ 1, we have C1 ¼ 1 and (41) transforms into

D2a
x Z þ aZ þ bZ3

¼ 0 , (43)

where Da
x is the Riesz derivative.

2. The free energy functional density F can be a function of Z ¼ ZðxÞ, and two
different fractional derivatives Da

xZ, and Db
xZ, aab, i.e.,

F ¼FðZ;Da
xZ;Db

xZÞ .

The FGL potential density has the form

F ¼
1

2
g1ðD

a
xZÞ2 þ

1

2
g2ðD

b
xZÞ2 þ

a

2
Z2 þ

b

4
Z4 . (44)

For example, a ¼ 1, 0obo1. Using again (39), we obtain the following
Euler–Lagrange equation,

Da
x C1ðD;xÞ

qF
qDa

xZ

� �
þDb

x C1ðD;xÞ
qF

qDb
xZ

 !
þ C1ðD; xÞ

qF
qZ
¼ 0 , (45)

where C1ðD;xÞ is given in (41). For the FGL density (44), we get the FGL equation
for fractal media

g1C
�1
1 ðD;xÞDa

xðC1ðD; xÞDa
xZÞ þ g2C

�1
1 ðD;xÞDb

xðC1ðD;xÞDb
xZÞ

þ aZ þ bZ3
¼ 0 . ð46Þ
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Particularly, when D ¼ 1 and C1 ¼ 1, we have

g1D
2a
x Z þ g2D

2b
x Z þ aZ þ bZ3

¼ 0; 0pa;bp1 .

3. In the general case, the free energy density functional is a function of Z ¼ ZðxÞ,
and derivatives Dak

xk
Z of fractional orders ak different for coordinates xk, i.e.,

F ¼FðZ;Da1
x1

Z;Da2
x2

Z;Da3
x3

ZÞ . (47)

For this case, the FGL equation for fractal media is

gC�13 ðD; xÞ
X3
k¼1

Dak
xk
ðC3ðD; xÞDak

xk
ZÞ þ aZ þ bZ3

¼ 0 . (48)

The sum of orders ak can be equal to the fractal mass dimension D of the medium

a1 þ a2 þ a3 ¼ D ,

but in the general case it can be that a1 þ a2 þ a3aD.
7. Simplest solutions

Let us consider a simple example of the Ginzburg–Landau equation (11) for
fractal media in the one-dimensional case. Then

qZ

qx2
¼ 0;

qZ

qx3
¼ 0 ,

and Z ¼ Zðx1Þ. Eq. (11) for one-dimensional case and 0oDo1 transforms into

gC�11 ðD; xÞ
q
qx

C1ðD;xÞ
q
qx

Z

� �
� aZ � bZ3

¼ 0 , (49)

where x ¼ x1, and C1ðD;xÞ is defined by (41). This equation can be rewritten in an
equivalent form

Z00xx þ
D� 1

gjxj
Z0x � ða=gÞZ � ðb=gÞZ3 ¼ 0 , (50)

where Z0x ¼ dZðxÞ=dx. Note that Eq. (50) has an analog of the equation for a
nonlinear oscillator with friction

€xðtÞ ¼ axðtÞ þ bx3ðtÞ � gðtÞ _xðtÞ ,

where we use

a ¼ a=g; b ¼ b=g; gðtÞ ¼ ðD� 1Þ=gjtj .

Therefore the FGL equation for fractal media (49) describes coordinate nonlinear
oscillations with a ‘‘dissipative’’-like term.
Let us consider the solution of (49) with b ¼ 0. ZðxÞ satisfies the equation

g½c1ðD; xÞZ0x�
0
x � aC1ðD;xÞZ ¼ 0 ,



ARTICLE IN PRESS

Fig. 1. Solution for b ¼ 0, a=g ¼ �1 and D ¼ 9
10
.

V.E. Tarasov, G.M. Zaslavsky / Physica A 354 (2005) 249–261 259
where x 2 ð0;1Þ, that can be rewritten as

gxZ00xxðxÞ þ ðD� 1ÞZ0xðxÞ � axZðxÞ ¼ 0 . (51)

The corresponding solution is

ZðxÞ ¼ C1x
1�D=2Jnð

ffiffiffiffiffiffiffiffiffiffiffi
�a=g

p
xÞ þ C2x

1�D=2Y nð
ffiffiffiffiffiffiffiffiffiffiffi
�a=g

p
xÞ ,

where n ¼ j1�D=2j, JnðxÞ, and Y nðxÞ are the Bessel functions of the first and second
kind.
The solution of Eq. (51) with the conditions

Zð1Þ ¼ e; Z0ð1Þ ¼ c

has the form

ZðxÞ ¼ x1�D=2JD=2�1ð
ffiffiffiffiffiffiffiffi
�A
p

xÞðcD
ffiffiffiffiffiffiffiffi
�A
p

Y D=2ð
ffiffiffiffiffiffiffiffi
�A
p

Þ � ðeAÞ
ffiffiffiffiffiffiffiffi
�A
p

Y D=2ð
ffiffiffiffiffiffiffiffi
�A
p

Þ

þ cA Y D=2þ1ð
ffiffiffiffiffiffiffiffi
�A
p

ÞÞ=ðA
ffiffiffiffiffiffiffiffi
�A
p

ðJD=2þ1ð
ffiffiffiffiffiffiffiffi
�A
p

ÞY D=2ð
ffiffiffiffiffiffiffiffi
�A
p

Þ

� Y D=2þ1ð
ffiffiffiffiffiffiffiffi
�A
p

Þ JD=2ð
ffiffiffiffiffiffiffiffi
�A
p

ÞÞÞ þ x1�D=2Y D=2�1ð
ffiffiffiffiffiffiffiffi
�A
p

xÞ

�ð�cD JD=2ð
ffiffiffiffiffiffiffiffi
�A
p

Þ þ
ffiffiffiffiffiffiffiffi
�A
p

c JD=2þ1ð
ffiffiffiffiffiffiffiffi
�A
p

Þ þ eA JD=2ð
ffiffiffiffiffiffiffiffi
�A
p

ÞÞ=

ðAð JD=2þ1ð
ffiffiffiffiffiffiffiffi
�A
p

Þ Y D=2ð
ffiffiffiffiffiffiffiffi
�A
p

Þ � Y D=2þ1ð
ffiffiffiffiffiffiffiffi
�A
p

ÞJD=2ð
ffiffiffiffiffiffiffiffi
�A
p

ÞÞÞ ,

where A ¼ a=g.
The solutions with b ¼ 0, g ¼ 1, and a=g ¼ �1 are demonstrated in Fig. 1 for

D ¼ 9
10
and in Fig. 2 for D ¼ 1

10
. The growth of solution is saturated by the nonlinear

term and the full solution for (50) may appear similar to the vicinity of a stable
limit cycle.
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Fig. 2. Solution for b ¼ 0, a=g ¼ �1 and D ¼ 1
10
.
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8. Conclusion

Derivatives and integrals of fractional order have found many applications in
recent studies in physics. In this paper, we use the fractional integrals to describe
fractal media with noninteger mass dimensions. Fractional integration can also be
used to describe time-dependent processes in fractal media. The fractional
Ginzburg–Landau equation for fractal media is derived from the corresponding
generalization of free energy functional and variational Euler–Lagrange equations.
Generalization of the Agrawal variational equation [14] appears to be very useful for
this goal.
The fractional continuous models have wide applications. Partly, it is because a

relatively small number of parameters can define a complex medium with a rich
structure. In many cases, the real fractal structure of matter can be disregarded and
the medium can be described by some fractional continuous mathematical model.
Smoothing of the microscopic characteristics over the physically infinitesimal
volume transforms the initial fractal medium into a fractional continuous model that
uses the fractional integrals of the same order as the fractal mass dimension of the
media. The fractional integrals can be considered as an approximation of the
integrals on fractals [9]. Note that fractional integrals can be considered as integrals
over the space with fractional dimension up to a numerical factor [10]. Some
applications of the FGL equation were discussed also in Ref. [20].
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