
Research Article

Fractional Gradient Elasticity from Spatial Dispersion Law

Vasily E. Tarasov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

Correspondence should be addressed to Vasily E. Tarasov; tarasov@theory.sinp.msu.ru

Received 4 February 2014; Accepted 10 March 2014; Published 3 April 2014

Academic Editors: V. Kochereshko, A. A. Kordyuk, A. Krimmel, V. Stephanovich, and S. Wang

Copyright © 2014 Vasily E. Tarasov. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nonlocal elasticity models in continuum mechanics can be treated with two di�erent approaches: the gradient elasticity models
(weak nonlocality) and the integral nonlocal models (strong nonlocality). �is paper focuses on the fractional generalization of
gradient elasticity that allows us to describe a weak nonlocality of power-law type.We suggest a latticemodel with spatial dispersion
of power-law type as a microscopic model of fractional gradient elastic continuum. We demonstrate how the continuum limit
transforms the equations for lattice with this spatial dispersion into the continuum equations with fractional Laplacians in Riesz’s
form. A weak nonlocality of power-law type in the nonlocal elasticity theory is derived from the fractional weak spatial dispersion
in the lattice model. �e continuum equations with derivatives of noninteger orders, which are obtained from the lattice model,
can be considered as a fractional generalization of the gradient elasticity.�ese equations of fractional elasticity are solved for some
special cases: subgradient elasticity and supergradient elasticity.

1. Introduction

�e theory of derivatives and integrals of noninteger orders
[1–3] allows us to investigate the behavior of materials and
media that are characterized by nonlocality of power-law
type. Fractional calculus has a wide application in mechanics
and physics (e.g., see [4–14]). Nonlocal elasticity theories
in continuum mechanics can be treated with two di�erent
approaches [15]: the gradient elasticity theory (weak nonlo-
cality) and the integral nonlocal theory (strong nonlocality).
�e fractional calculus allows us to formulate a fractional
generalization of nonlocal elasticity models in two forms: the
fractional gradient elasticity models (weak power-law non-
locality) and the fractional integral nonlocal models (strong
power-law nonlocality). �e idea to include some fractional
integral term in the equations of the elasticity has been
proposed by Lazopoulos in [16]. Fractionalmodels of integral
nonlocal elasticity are considered in di�erent papers; see,
for example, [16–22]. �e microscopic models of fractional
integral elasticity are also described. For this reason, the
fractional integral elasticity models are not discussed here.

�is paper focuses on the fractional generalization of
gradient elasticity which describes a weak nonlocality of
power type.We suggest a latticemodel with spatial dispersion
of power-law type as a microscopic model of fractional

gradient elastic continuum. Complex lattice dynamics has
been the subject of continuing interest in the theory of
elasticity. As it was shown in [23, 24] (see also [25–27]),
the equations with fractional derivatives can be directly
connected to lattice models with long-range interactions.
In this paper, we consider models of lattices with spatial
dispersion and its continuous limits. We de�ne a map
of lattice models into continuum models. A connection
between the dynamics of lattice system of particles with long-
range interactions and the fractional continuum equations
is proved by using the transform operation [23, 24]. We
make the transformation to the continuous limit and derive
the fractional equation, which describes the dynamics of the
nonlocal elastic materials.We show how the continuous limit
for the lattice with fractional weak spatial dispersion gives the
corresponding continuum equation of the fractional gradient
elasticity. �e continuum equations of fractional elasticity
are solved for some special cases: subgradient elasticity and
supergradient elasticity.

2. Lattice Equations

�e lattice is characterized by space periodicity. In an
unbounded lattice, we can de�ne three noncoplanar vectors
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a1, a1, a1, such that displacement of the lattice by the length
of any of these vectors brings it back to itself. �e vectors
a�, � = 1, 2, 3, are the shortest vectors by which a lattice
can be displaced and be brought back into itself. As a result,
all spatial lattice points can be de�ned by the vector n =(�1, �2, �3), where �� are integer. If we choose the coordinate
origin at one of the sites, then the position vector of an
arbitrary lattice site with n = (�1, �2, �3) is written:

r (n) = 3∑
�=1
��a�. (1)

In a lattice, the sites are numbered in the same way as the
particles, so that the vector n is at the same time “number
vector” of a corresponding particle.

We assume that the equilibrium positions of particles
coincide with the lattice sites r(n). A lattice site coordinate
r(n) di�ers from the coordinate of the corresponding particle,
when particles are displaced relative to their equilibrium
positions. To de�ne the coordinates of a particle, it is
necessary to indicate its displacement with respect to its
equilibrium positions. We denote the displacement of a
particle with vector n from its equilibrium position by the
vector �eld u(n, �).

�e equation of motion of lattice particle is

��2�� (n, �)��2 = −∑
m

	�� (n,m) �� (m, �) + 
� (n, �) , (2)

where� is the mass of particle and 
�(n, �) are components
of the external on-site force. �e italics �, � are the coordinate
indices. We assume the summation over doubly repeated
coordinate indices from 1 to 3. �e coecients 	��(n,m)
describe the interparticle interaction in the lattice. For sim-
plicity, we assume that all particles have the same mass�.

It is easy see one important property of the coecients	��(n,m). Assume the lattice to be displaced as a whole:��(n, �) = �� = �������. �en the internal lattice state
cannot be changed in case of absence of external forces. As
a result, (2) gives

∑
m

	�� (n,m) = ∑
m

	�� (m,n) = 0. (3)

�ese conditions should be satis�ed for any particle in the
lattice, that is, for any vector n. Equation (3) follows from the
conservation of total momentum in the lattice.

For an unbounded homogeneous lattice, due to its homo-
geneity the matrix	��(n,m) has the form	�� (n,m) = 	�� (n −m) , (4)

where elements of	��(n−m) of (2) are satis�ed by condition∑
m

	�� (n −m) = ∑
n

	�� (n −m) = 0. (5)

In a simple lattice, each particle is an inversion center, and we
have 	�� (n −m) = 	�� (m − n) . (6)

Using condition (5), we can represent (2) in the form

��2�� (n, �)��2 = −∑
m

	�� (n, m) (�� (n, �) − �� (m, �))
+
� (n, �) .

(7)

�is equation of motion has the invariance with respect to
its displacement of lattice as a whole in case of absence of
external forces even if condition (5) is not satis�ed. It should
be noted that the noninvariant terms lead to the divergences
in the continuous limit [13].

Equation of motion (7) is equation for three-dimensional
displacement vectors. In this paper, we will use the simplest
model to describe the lattice, where all particles are displaced
in one direction; we assume that the displacement of particle
from its equilibrium position is determined by a scalar rather
than a vector. �is model allows us to describe the main
properties of the lattice using simple equations.

�e equations of motion for one-dimensional lattice
system of interacting particles have the form

��2�� (�)��2 = � +∞∑
�=−∞
� ̸= �

		 (�,�) (�� (�) − �� (�)) + 
 (�) , (8)
where we use the summation condition over repeated
indexes. Here ��(�) = �(�, �) are displacements from the
equilibrium, � is the coupling constant for interparticle
interactions in the lattice, and the term 
(�) characterizes an
interaction of the particles with the external on-site force.

3. Transform Operations for Lattice Equations

Let us de�ne the operation that transforms the lattice equa-
tions for ��(�) into the continuum equation for a scalar �eld�(�, �). In order to obtain continuum equation from the
lattice equations, we assume that ��(�) are Fourier coecients
of some function �̂(�, �). We de�ne the �eld �̂(�, �) on[−�0/2, �0/2] by the equation

�̂ (�, �) = +∞∑
�=−∞
�� (�) �−��
� = FΔ {�� (�)} ,

�� (�) = 1�0 ∫+�0/2−�0/2 �� �̂ (�, �) ���
� = F−1Δ {�̂ (�, �)} ,
(9)

where �� = �� and � = 2�/�0 is the interparticle distance.
For simplicity, we assume that all particles have the same
interparticle distance �. Equations (9) can be used to obtain
the Fourier transform in the limit � → 0 (�0 → ∞). �en
change the sum to an integral, and (9) become

�̃ (�, �) = ∫+∞
−∞
�� �−��
� (�, �) = F {� (�, �)} ,

� (�, �) = 12� ∫+∞−∞ �� ���
�̃ (�, �) = F−1 {�̃ (�, �)} .
(10)
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We replace the discrete function

�� (�) = 2��0 � (��, �) (11)

by continuous �eld �(�, �) considering �� = �� = 2��/�0 →�. We assume that �̃(�, �) = L�̂(�, �), where L denotes
the passage to the limit � → 0 (�0 → ∞). Here �̃(�, �)
is a Fourier transform of the �eld �(�, �) and �̂(�, �) is a
Fourier series transform of ��(�), where we use ��(�) =(2�/�0)�(��, �). �e function �̃(�, �) can be derived from�̂(�, �) in the limit � → 0.

As a result, we de�ne the map from a lattice model into

a continuum model by the transform operation "̂, which is

the combination [23, 24] "̂ = F
−1
LFΔ of the following

operations:

(1) the Fourier series transform:

FΔ : �� (�) #→ FΔ {�� (�)} = �̂ (�, �) , (12)

(2) the passage to the limit � → 0:
L : �̂ (�, �) #→L {�̂ (�, �)} = �̃ (�, �) , (13)

(3) the inverse Fourier transform:

F
−1 : �̃ (�, �) #→ F

−1 {�̃ (�, �)} = � (�, �) . (14)

�e similar transformations can be performed for di�er-
ential equations to map the lattice equation into an equation

for the elastic continuum. �erefore, the operation "̂ =
F
−1
LFΔ allows us to realize transformation of lattice

models of interacting particles into continuum models [23,
24].

Let us consider the Fourier series transform of the
interaction term.

Proposition 1. Let 		(�,�) be such that conditions		 (�,�) = 		 (� − �) = 		 (� − �) ,
∞∑
�=1

$$$$		 (�)$$$$2 < ∞ (15)

hold. �en the Fourier series transformFΔ maps the term

+∞∑
�=−∞
� ̸= �

		 (�,�) (�� (�) − �� (�)) , (16)

where �� = ��(�) is a position of the �th particle, into the term
FΔ( +∞∑

�=−∞
� ̸= �

		 (�,�) (�� (�) − �� (�)))
= (	̂	 (0) − 	̂	 (��)) �̂ (�, �) ,

(17)

where	̂	 (��) = FΔ {		 (�)} , �̂ (�, �) = FΔ {�� (�)} . (18)

Proof. To derive the Fourier series transform of the interac-
tion term (16), we multiply (16) by exp(−����) and sum over� from −∞ to +∞. �en

+∞∑
�=−∞

+∞∑
�=−∞
� ̸= �

�−����		 (� − �) (�� − ��)
= +∞∑
�=−∞

+∞∑
�=−∞
� ̸= �

�−����		 (� − �) ��
− +∞∑
�=−∞

+∞∑
�=−∞
� ̸= �

�−����		 (� − �) ��.
(19)

Using conditions (15), we introduce the notations

	̂	 (��) = +∞∑
�=−∞
� ̸= 0

�−����		 (�) , (20)

�̂ (�, �) = +∞∑
�=−∞
�−������ (�) . (21)

Using 		(−�) = 		(�), the function (20) can be represented
by

	̂	 (��) = +∞∑
�=1
		 (�) (�−���� + �����) = 2+∞∑

�=1
		 (�) cos (��) .

(22)

From (22), we can see that 	̂	(��) is a periodic function
	̂	 (�� + 2��) = 	̂	 (��) , (23)

where � is an integer. Using (21) and (20), the �rst term on
the right-hand side of (19) gives

+∞∑
�=−∞

+∞∑
�=−∞
� ̸= �

�−����		 (� − �) ��
= +∞∑
�=−∞
�−������ +∞∑

��=−∞
�� ̸= 0

		 (�)
= �̂ (�, �) 	̂	 (0) .

(24)

Here we use (15) and		(� + � − �) = 		(�) and
	̂	 (0) = +∞∑

�=−∞
� ̸= 0

		 (�) = 2∞∑
�=1
		 (�) . (25)
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Using		(�, � +�) = 		(�), the second term on the right-
hand side of (19) has the form

+∞∑
�=−∞

+∞∑
�=−∞
� ̸= �

�−����		 (� − �) ��
= +∞∑
�=−∞

�� +∞∑
�=−∞
� ̸=�

�−����		 (� − �)
= +∞∑
�=−∞

���−���� +∞∑
��=−∞
�� ̸= �

�−�����		 (�)
= �̂ (�, �) 	̂	 (��) .

(26)

Equations (24) and (26) give the expression

(	̂	 (0) − 	̂	 (��)) �̂ (�, �) , (27)

where 	̂	(��) is de�ned by (20).

Let us give the statement that describes the Fourier
transform of the lattice equations.

Proposition 2. �e Fourier series transform FΔ maps the
lattice equations of motion

��2�� (�)��2
= � +∞∑
�=−∞
� ̸= �

		 (� − �) (�� (�) − �� (�)) + 
 (�) , (28)

where 		(� − �) satis�es conditions (15), into the continuum
equation

��2�̂ (�, �)��2 = � (	̂	 (0) − 	̂	 (��)) �̂ (�, �) +FΔ {
 (�)} ,
(29)

where �̂(�, �) = FΔ{��(�)}, 	̂	(��) = FΔ{		(�)}, and FΔ is
an operator notation for the Fourier series transform.

Proof. To derive the equation for the �eld �̂(�, �), we multiply
(28) by exp(−����) and sum over � from −∞ to +∞. �en

+∞∑
�=−∞
�−���� �2��2 �� (�)
= � +∞∑
�=−∞

+∞∑
�=−∞
� ̸= �

�−����		 (� − �) (�� − ��)
+ +∞∑
�=−∞
�−����
 (�) .

(30)

Using (21), the le�-hand side of (30) has the form

+∞∑
�=−∞
�−���� �2�� (�)��2 = �2��2 +∞∑�=−∞�−������ (�) = �

2�̂ (�, �)��2 .
(31)

�e second term of the right-hand side of (30) is

+∞∑
�=−∞
�−����
 (�) = FΔ {
 (�)} . (32)

�e Fourier series transform FΔ maps the interaction term
(16) into expression (17). As a result, we obtain (30) in the
form (29), where FΔ{
(�)} is an operator notation for the
Fourier series transform of 
(�).
4. Fractional Weak Spatial Dispersion

4.1. Weak Spatial Dispersion. Spatial dispersion is the depen-

dence of 	̂	(|k|) on the wave vector k that leads to nonlocal
properties of the continuum. �e spatial dispersion gives
nonlocal connection between the stress tensor *�� and the
strain tensor -��. �e tensor *�� at any point r of the
continuum is not uniquely de�ned by the values of -�� at
this point. It also depends on the values of -�� at neighboring
points r, located near the point r.

A nonlocal constitutive relation between the stress *��
and the strain -�� can be understood on the basis of analysis
of a lattice model. �e particles of the lattice oscillate about
their equilibrium positions and interact with each other. �e
equations of oscillations of the lattice particles with the local
(nearest-neighbor) interaction give the partial di�erential
equation of integer orders in the continuum limit [23, 24].
Note that the lattice with nonlocal (long-range) interactions
in the continuous limit can give fractional partial di�erential
equations for nonlocal continuum [23, 24].

Qualitatively describing the process we can say that the
�elds of the elastic wave move particles from their equilib-
rium positions at a given point r, which causes an additional
shi� of the particles in neighboring and more distant points
r in some neighborhood. �erefore, the properties of the
medium, and hence the stress tensor �eld *��, depend on the
values of strain tensor �eld -�� not only in a selected point but
also in its neighborhood.

�e size of the area in which the kernel 	̂	(|k|) is
signi�cant is determined by the characteristic length of
interaction 40. �e size 40 of the area is usually of the order
of the lattice constant. Wavelength 5 of elastic wave is several
orders larger than the size of this region, so the values of the
�eld of elasticity wave do not change for a region of size40. In
other words, the wavelength 5 usually holds �40 ∼ 40/5 ≪ 1.
In such lattice, the spatial dispersion is weak. To describe the
lattice dynamics, it is enough to know the dependence of the

function 	̂	(|k|) only for small values � = |k| and we can
replace this function by the Taylors polynomial series. For an
isotropic linear medium, we use

	̂	 (�) = 	̂	 (0) + �1� + �2�2 + ⋅ ⋅ ⋅ . (33)
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Here we neglect a frequency dispersion, and so 	̂	(0), �1, �2
do not depend on the frequency 9.
4.2. Fractional Taylor Series Approach. �e weak spatial
dispersion in the media with power-law type of nonlocality
cannot be described by the usual Taylor approximation.
�e fractional Taylor series is very useful for approximating
noninteger power-law functions [28]. For example, the usual
Taylor series for the nonlinear power-law function

	̂	 (�) = �0 + �	�	 (34)

has in�nitely many terms for noninteger ;.
If we use the fractional Taylor’s formula (see Appendix A)

we get a �nite number of terms. For example, Taylor’s series
in the Odibat-Shawagfeh form that contains the Caputo

fractional derivative ��>	� has two terms for (34). Using

�
0>	��� = Γ (@ + 1)Γ (@ − ; + 1)��−	, (� > 0, ; > 0, @ > 0) (35)

for the case @ = ;, we get
�
0>	��	 = Γ (; + 1) , ( �0>	�)��	 = 0. (36)

As a result, we have

( �0>	�	̂	) (0) = Γ (; + 1) ,
(( �0>	�)�	̂	) (0) = 0, (� ≥ 2) (37)

and the fractional Taylor’s series approximation of function
(34) is exact.

4.3. Weak Spatial Dispersion of Power-Law Types. We con-
sider properties of the latticewithweak spatial dispersion that

is described by the function 	̂	(|k|) of a noninteger power-
law type. In the continuous limit this model gives a model of
continuum with power-law nonlocality.

�e Fourier series transform FΔ of the interaction term
(16) is de�ned by (17), where

	̂	 (|k|) = +∞∑
�=−∞
� ̸= 0

�−���		 (�) = 2∞∑
�=1
		 (�) cos (� |k|) , (38)

and �̂(�, �) = FΔ{��(�)}. If the function 	̂	(|k|) is given, then		(�) can be de�ned by

		 (�) = 1� ∫�0 	̂	 (|k|) cos (� |k|) � |k| . (39)

�e weak spatial dispersion will be called ;1-type, if the
function (38) satis�es condition

lim
|k|→ 0

	̂	 (|k|) − 	̂	 (0)|k|	1 = �	1 , (40)

where ;1 > 0 and 0 < |�	1 | < ∞. �e weak spatial dispersion
(and the interparticle interaction in the lattice) will be called

; = (;1, ;2)-type, if the function 	̂	(|k|) satis�es conditions
(40) and

lim
|k|→ 0

	̂	 (|k|) − 	̂	 (0) − �	1 |k|	1|k|	2 = �	2 , (41)

where ;2 > ;1 > 0 and 0 < |�	2 | < ∞.
Similarly we de�ne the weak spatial dispersion and the

interaction in the lattice of the ; = (;1, . . . , ;�)-type. For
the weak spatial dispersion of the ; = (;1, . . . , ;�)-type, the
function 	̂	(|k|) can be represented in the form

	̂	 (|k|) = 	̂	 (0) + �∑
�=1
�	� |k|	� + 4(�)	 (|k|) , (42)

where 0 < ;1 < ;2 < ⋅ ⋅ ⋅ < ;� and
lim
|k|→ 0

4(�)	 (|k|)|k|	� = 0. (43)

As a result, we can use the following approximation for weak
spatial dispersion:

	̂	 (|k|) ≈ 	̂	 (0) + �∑
�=1
�	� |k|	� . (44)

If ;� = D for all D ∈ N, we can use the usual Taylor’s
formula. In this case, we have the usual case of the weak
spatial dispersion. In general, we should use a fractional
generalization of Taylor’s series (see Appendix A). If the
orders of the fractional Taylor series approximation will be
correlated with the type of weak spatial dispersion, then

the fractional Taylor series approximation of 	̂	(|k|) will be
exact. In the general case 0 < ;�+1 − ;� < 1, we can use the
fractional Taylor’s formula in the Dzherbashyan-Nersesian
form (see Appendix A). For the special cases ;� = D;1, where;1 < 1 and/or ;� = ; + D, we could use the other kind of the
fractional Taylor’s formulas.

5. Fractional Gradient Elasticity
Equation for Continuum

In the continuous limit the equation for lattice with the
interaction of the ;-type gives the equation for continuum
of the fractional gradient model.

Proposition 3. In the continuous limit the lattice equation of
motion

��2�� (�)��2 = � +∞∑
�=−∞
� ̸= �

		 (� − �) (�� (�) − �� (�)) + 
 (�)
(45)

with the weak spatial dispersion of the ;-type gives the
fractional continuum equation of the form

�2� (�, �)��2 = − �∑
�=1
F	� ((−Δ)	�/2�) (�, �) + 1HI (�) , (46)
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where (−Δ)	�/2 is the fractional Laplacian of order ;� in Riesz’s
form (see Appendix B), the variables � and � = � are
dimensionless, I(�) = 
(�)/(J�), H = �/(J�), and

F	� = ��	��	�� , (D = 1, . . . , K) (47)

are �nite parameters.

Proof. �e Fourier series transform FΔ of (45) gives (29).
A�er division by the cross-sectional area of the medium J
and the interparticle distance �, the limit � → 0 for (29)
gives

�2��2 �̂ (�, �) = �∑�=1��
	�� K̂	� ,Δ (�) �̂ (�, �) + 1HFΔ {I (�)} ,

(48)

where H = �/(J�) is the mass density, � is the interparticle
distance, I(�) = 
(�)/(J�), and

K̂	�,Δ (�) = −�	� |�|	� − 4(�)	 (��) �−	� . (49)

Here we use (44), andF	� (D = 1, . . . , K) are �nite parameters

that are de�ned by (47). Note that 4(�)	 satis�es the condition

lim
�→0

4(�)	 (��)�	� = 0. (50)

�e expression for T̂	�,Δ(�) can be considered as a Fourier

transform of the interaction term (see Proposition 1). Note
that ��	� → ∞ for the limit � → 0, if F	� are �nite
parameters.

In the limit � → 0, (48) gives
�2�̃ (�, �)��2 = �∑

�=1
F	�T̂	� (�) �̃ (�, �) + 1HF {I (�)} , (51)

where

K̂	� (�) =LK̂	�,Δ (�) = −�	� |�|	� , �̃ (�, �) =L�̂ (�, �) .
(52)

�e inverse Fourier transform of (51) has the form�2� (�, �)��2 = �∑
�=1
F	�T	� (�) � (�, �) + 1HI (�) , (53)

where

T	� (�) = F−1 {K̂	� (�)} = −�	�(−Δ)	�/2. (54)

Here, we use the connection between the Riesz fractional
Laplacian (−Δ)	/2 and its Fourier transform (see Appendix B
and [1–3]):

F [(−Δ)	/2� (r)] (k) = |k|	�̂ (k) (55)

in the form |�|	� ←→ (−Δ)	�/2. (56)

Substitution of (54) into (53) gives the continuum equation
(46).

Equations (46) and (47) give the close relation between
the discrete microstructure of lattice with weak spatial dis-
persion of power-law type and the fractional gradient models
of weak nonlocal continuum.

Let us consider the special case ;� = D for integer D ∈ N.
If the function 	̂	(�) has the form	̂	 (�) ≈ 	̂	 (0) + �2�2, (57)

then we get the well-known equation

�2� (�, �)��2 = F2Δ� (�, �) + 1HI (�) . (58)

Here

F2 = ��2�2�J = RH , (59)

where R = 	�/J is Young’s modulus, 	 = ��2 is the spring
sti�ness, and H = �/(J�) is the mass density.

If we can use the spatial dispersion law in the form

	̂	 (�) ≈ 	̂	 (0) + �2�2 + �4�4, (60)

then we have the equation of the gradient elasticity as

�2� (�, �)��2 = F2Δ� (�, �) − F4Δ2� (�, �) + 1HI (�) , (61)

where ;� = D,
F4 = ��4�4�J = �4R�2�2H , �� = (��	̂	 (�)��� )�=0. (62)

�e scale parameter �2 of the gradient elasticity is connected
with the coupling constants of the lattice by the equation

�2 = $$$$�4$$$$ �2$$$$�2$$$$ . (63)

�e second-gradient term is preceded by the sign that is
de�ned by sgn(�4/�2).

Similarly, we can consider more general model of lattice
with fractional weak spatial dispersion of ; = (;1, . . . , ;�)-
type

	̂	 (k) = 	̂	 (0) + �∑
�=1
�	� |k|	� . (64)

�en the continuum equation for fractional gradient model
has the form

�2� (r, �)��2 = − �∑
�=1
� ((−Δ)	�/2�) (r, �) + 1HI (r) , (65)

where we use new notation for the constants, � = F	� . Note
that r and U = |r| are dimensionless.
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6. Solution of Fractional Gradient
Elasticity Equation

6.1. Plane Wave Solution. Let us consider the plane waves�(r, �) = �−����(r). �en (65) gives

�∑
�=1
� ((−Δ)	�/2�) (r) − 92� (r) = 1HI (r) . (66)

We apply the Fourier method to solve fractional equation
(66), which is based on the relation

F [(−Δ)	/2� (r)] (k) = |k|	�̂ (k) . (67)

Applying the Fourier transform F to both sides of (66) and
using (67), we have

(F�) (k) = 1H( �∑�=1�|k|	� − 92)
−1 (FI) (k) . (68)

�e fractional analog of the Green function (see Section
5.5.1. in [3]) is given by

F�	 (r) = F−1 [[(
�∑
�=1
�|k|	� − 92)−1]] (r)

= ∫
R
�
( �∑
�=1
�|k|	� − 92)−1�+�(k,r)��k,

(69)

where ; = (;1, . . . , ;�).
�e following relation

∫
R
�
��(k,r)I (|k|) ��k
= (2�)�/2|r|(�−2)/2 ∫∞0 I (5) 5�/2 �̂/2−1 (5 |r|) �5

(70)

holds (see Lemma 25.1 of [1, 2]) for any suitable functionI such that the integral in the right-hand side of (70) is
convergent. Here

]̂
is the Bessel function of the �rst kind.

As a result, the Fourier transform of a radial function is also
a radial function.

Using relation (70), the Green function (69) can be
represented (see �eorem 5.22 in [3]) in the form of the
integral with respect to one parameter:

F�	 (r) = |r|(2−�)/2(2�)�/2
×∫∞
0
( �∑
�=1
�5	� − 92)−15�/2 (̂�−2)/2 (5 |r|) �5,

(71)

where � = 1, 2, 3 and; = (;1, . . . , ;�) and (̂�−2)/2 is the Bessel
function of the �rst kind.

For the 3-dimensional case, we use

1̂/2 (_) = √ 2�_ sin (_) . (72)

�en we have

F3	 (r) = 12�2 |r| ∫∞0 ( �∑�=1�5	� − 92)
−15 sin (5 |r|) �5.

(73)

For the 1-dimensional case, we use

−̂1/2 (_) = √ 2�_ cos (_) . (74)

�en we have (see �eorem 5.24 in [3] pages 345-346) the
function

F1	 (r) = 1� ∫∞0 ( �∑�=1�	�5	� − 92)
−1

cos (5 |r|) �5. (75)

If ;� > 1 and � ̸= 0, then (66) (see, e.g., Section
5.5.1. pages 341–344 in [3]) has a particular solution �(|r|).
Such particular solution is represented in the form of the
convolution of the functions F�	(|r|) and I(|r|) as follows:

� (r) = 1H ∫R� F�	 (r − r) I (r) ��r, (76)

where the Green function F�	(r) is given by (71).
In 3-dimensional case, the function I(|r|) does not

depend on the angles. �erefore, we can use the spherical

coordinates and then reduce the integration �3r in (76) to�U = �|r| by integrating with respect to the angles

� (U) = 4�H ∫R F3	 ($$$$$r − r$$$$$) I (U) (U)2 �U, (77)

where U = |r| and U = |r|.
6.2. Static Solution. Let us consider the statics (��(r, �)/�� =0, i.e., �(r, �) = �(r)) in the suggested fractional gradient
elasticity model. We can consider the fractional partial

di�erential equation (66) with92 = 0 and 1 ̸= 0, whenK ≥ 1,
and also the case where ;1 < 3, ;� > 1,K ≥ 1, 1 ̸= 0, � ̸= 0,;� > ⋅ ⋅ ⋅ > ;1 > 0, which is given by

�∑
�=1
� ((−Δ)	�/2�) (r) = 1HI (r) . (78)

Equation (78) has the following particular solution (see
�eorem 5.23 in [3]) that is represented in the form of the
convolution of the functions as

� (r) = 1H ∫R� F�	 (r − r) I (r) ��r (79)
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with the Green function

F�	 (r) = |r|(2−�)/2(2�)�/2 ∫∞0 (
�∑
�=1
�5	�)−15�/2 (̂�−2)/2 (5 |r|) �5,

(80)

where � = 1, 2, 3 and ; = (;1, . . . , ;�).
�ese particular solutions allow us to describe static �elds

in the elastic continuum with the weak spatial dispersion of; = (;1, . . . , ;�)-type.
7. Fractional Weak Spatial

Dispersion of (;,@) -Type

7.1. Fractional Gradient Elasticity Equation for Dispersion of(;,@)-Type. If we have the dispersion law in the form

	̂	 (|k|) ≈ �	|k|	 + ��|k|� + 	̂	 (0) , (81)

where ; > 1, @ < 3, and 0 < @ < ;, then we have the
fractional gradient elasticity equation

	 ((−Δ)	/2�) (r) + � ((−Δ)�/2�) (r) = 1HI (r) , (82)

where

	 = ��	�	� , � = ������ . (83)

If ; = 4 and @ = 2, we have the well-known equation of the
gradient elasticity [15]:

2Δ� (r) − 4Δ2� (r) + 1HI (r) = 0, (84)

where

2 = RH = ��2�2� , 4 = ±�2RH = ��4�4� . (85)

�e second-gradient term is preceded by the sign that is
de�ned by sgn(��4), where ��2 > 0.

Equation (82) is the fractional partial di�erential equation
(78) with � = 3, and such equation has the particular solution
[3] of the �rm

� (r) = 1H ∫R3 F3	,� (r − r) I (r) �3r, (86)

where the Green type function is given by

F3	,� (r) = |r|−1/2(2�)3/2 ∫∞0 (	5	 + �|5|�)−153/2 1̂/2 (5 |r|) �5.
(87)

Here 1̂/2 is the Bessel function of the �rst kind.

7.2. Point Load Problem for Fractional Gradient Elasticity. Let
us consider point load problem for an in�nite elastic contin-
uum (see pages 25-26 in [29]) and determine a deformation
of an in�nite gradient continuum, when a force is applied
to a small region in it. We consider this �omson’s problem
for nonlocal elastic continuum with fractional weak spatial
dispersion of the form (81). If we consider the deformation at
distances |r|, which are larger than the size of the region, then
we can assume that the force is applied at a point. In this case,
we have

I (r) = I0 c (r) = I0 c (�) c (d) c (_) . (88)

�en the displacement �eld �(r) of fractional gradient elas-
ticity has a simple form of the particular solution (79) that is
proportional to the Greens function

� (r) = I0H F�	 (r) , (89)

where F�	(_) is given by (80). �erefore, the displacement
�eld (86) for the force that is applied at a point (88) has the
form

� (r) = 12�2 I0H |r| ∫∞0 5 sin (5 |r|)	5	 + �5� �5. (90)

From a mathematical point of view, there are two special
cases: (1) fractional weak spatial dispersion of (;, @)-type
with ; = 2 and 0 < @ < 2; (2) fractional weak spatial
dispersion of (;, @)-type with ; ̸= 2, ; > @, and 0 < @ < 3.

From the point of view of the nonlocal elasticity theory, it
is useful to distinguish the two following particular cases:

(i) subgradient elasticity (; = 2 and 0 < @ < 2),
(ii) supergradient elasticity (; > 2 and @ = 2).
Note that for the �rst case the order of the fractional

Laplacian is less than the order of the �rst term related
to the usual Hooke’s law. In the second case the order of
the fractional Laplacian is greater than the order of the
�rst term related to the Hooke law. �e names of the sub-
and supergradient elasticity caused by the analogy with the
names of anomalous di�usion [6–8] such as subdi�usion and
superdi�usion.

7.3. Subgradient Elasticity Model. �e subgradient elasticity
is characterized by the fractional weak spatial dispersion of(;, @)-type with ; = 2 and 0 < @ < 2. Fractional model of
nonlocal continuum with this spatial dispersion is described
by (82) with ; = 2 and 0 < @ < 2, given by

2Δ� (r) − � ((−Δ)�/2�) (r) + 1H I (r) = 0, (0 < @ < 2) .
(91)

�e order of the fractional Laplacian (−Δ)�/2 is less than the
order of the �rst term related to the usual Hooke’s law. As a
simple example, consider the square of the Laplacian; that is,@ = 1.
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�e particular solution of (91) for the force that is applied
at a point (88) is the displacement �eld

� (r) = 12�2 I0H |r| ∫∞0 5 sin (5 |r|)252 + �5� �5. (92)

Using equation (1) of Section 2.3 in the book in [30, 31],
we obtain the following asymptotic behavior for �(|r|) with0 < @ < 2, when |r| → ∞:

� (|r|) = I02�2H |r| ∫∞0 5 sin (5 |r|)252 + �5� �5
≈ e0 (@)|r|3−� +

∞∑
�=1

e� (@)|r|(2−�)(�+1)+1 ,
(93)

where

e0 (@) = I02�2H� Γ (2 − @) sin(�2 @) ,
e� (@) = − I0�22�2H�+1� ∫

∞

0
_(2−�)(�+1)−1 sin (_) �_. (94)

As a result, the displacement �eld for the force that is
applied at a point in the continuumwith this type of fractional
weak spatial dispersion is given by

� (r) ≈ e0 (@)|r|3−� , (0 < @ < 2) (95)

on the long distance |r| ≫ 1.
7.4. Supergradient Elasticity Model. �e supergradient elas-
ticity is characterized by the fractional weak spatial disper-
sion of (;, @)-type with ; > 2 and @ = 2. For the nonlocal
continuumwith theweak spatial dispersion of the (;, @)-type,
where ; > @ > 0, 0 < @ < 3 and ; ̸= 2, the displacement �eld
for the fractional gradient model which is described by (82)
includes two parameters (;, @). As an example of the nonlocal
continuum with this type of spatial dispersion, we highlight
the case of supergradient elasticity, where @ = 2 and ; > 2.
In this case (82) has the form

2Δ� (r) − 	 ((−Δ)	/2�) (r) + 1HI (r) = 0, (; > 2) . (96)

�e order of the fractional Laplacian (−Δ)	/2 is greater than
the order of the �rst term related to the Hooke law. If ; = 4,
(96) becomes (84). �erefore, the case 3 < ; < 5 can
be considered as close as possible (; ≈ 4) to the usual
gradient elasticity (84).

For the displacement �eld that is described by (82), where; > @ > 0, 0 < @ < 2 and ; ̸= 2 and the force I(r) is applied
at a point (88), we have the following asymptotic behavior:

� (|r|) ≈ I0Γ (2 − @) sin (�@/2)2�2H� ⋅ 1|r|3−� , (|r| #→ ∞) .
(97)

We note that this asymptotic behavior |r| → ∞ does not
depend on the parameter ;. �e �eld on the long distances

is determined only by term with (−Δ)�/2 (; > @) that can be
interpreted as a fractional nonlocal “deformation” of Hooke’s
law.

We note the existence of a maximum for the function�(|r|) ⋅ |r| in the case 0 < @ < 2 < ;.
�e asymptotic behavior of the displacement �eld �(|r|)

for |r| → 0 is given by

� (|r|) ≈ I0Γ ((3 − ;) /2)2	�2√�H	Γ (;/2) ⋅ 1|r|3−	 , (1 < ; < 2) , (98)

� (|r|) ≈ I0Γ ((3 − ;) /2)2	�2√�H	Γ (;/2) ⋅ |r|	−3, (2 < ; < 3) , (99)

� (|r|) ≈ I02�;H1−3/	� 3/		 sin (3�/;) , (; > 3) , (100)

where we use Euler’s re�ection formula for Gamma function.
�e asymptotic relation (98) is not directly related to the
supergradient case. Note that the above asymptotic behavior
does not depend on the parameter @, and relations (98)-
(99) do not depend on �. �e displacement �eld �(|r|) on
the short distances is determined only by term with (−Δ)	/2
(; > @) that can be considered as a fractional nonlocal
“deformation” of the gradient term.

8. Conclusion

A lattice model with spatial dispersion of power-law type
is suggested. Gradient elasticity is considered as a phe-
nomenological theory representing continuum limit of lattice
dynamics, where the length scales are much larger than
interatomic distances. In the continuum limit we derive
continuum equations with spatial derivatives of noninteger
order ;. �e correspondent continuum equations describe
fractional generalization of gradient elasticity (the supergra-
dient elasticity model) for ; > 2 and a special form of
fractional integral elasticity (the subgradient elasticitymodel)
for 0 < ; < 2. �e suggested lattice model with spatial
dispersion can be considered as a microscopic basis for the
fractional nonlocal elastic continuum. We can note that a
fractional nonlocal continuum model can be obtained from
di�erent microscopic or lattice models [32, 33]. �e main
advantage of the suggested approach is that we can use the
Taylor series in the wave vector space instead of Taylor
expansion in a coordinate space. It allows us to use these
models as a microstructural basis of uni�ed description of
fractional (and integer) gradient models with positive and
negative signs of the strain gradient terms. �e suggested
approach can be generalized for three-dimensional case of
gradient elasticity. �e proposed lattice model can also be
easily generalized for the case of the high-order gradient
elasticity and the correspondent fractional extension by using
the next terms of fractional Taylor series.�e suggested lattice
models with long-range interactions can be important to
describe the nonlocal elasticity of materials at microscale and
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nanoscales [34–36], where the interatomic and intermolecu-
lar interactions are prevalent in determining the properties of
these materials.

Appendices

A. Fractional Taylor Formula

A.1. Riemann-Liouville and Caputo Derivatives. �e le�-
sided Riemann-Liouville derivatives of order ; > 0 are
de�ned by

( RL>	�+I) (�) = 1Γ (� − ;)( ���)�
× ∫

�

I (�) ��(� − �)	−�+1 , (� = [;] + 1) .
(A.1)

We can rewrite this relation in the form

(RL>	�+I) (�) = ( ���)� (m�−	�+ I) (�) , (A.2)

where m	�+ is a le�-sided Riemann-Liouville integral of order; > 0:
(m	�+I) (�) = 1Γ (;) ∫
� I (�

) ��(� − �)1−	 , (� > �) . (A.3)

�e Caputo fractional derivative of order ; is de�ned by

(�>	�+I) (�) = (m�−	�+ ( ���)�I) (�) , (A.4)

where m	�+ is a le�-sided Riemann-Liouville integral (A.3) of
order ; > 0. In (A.16) we use 0 < ; < 1 and � = 1. �e main
distinguishing feature of the Caputo fractional derivative is
that, like the integer order derivative, the Caputo fractional
derivative of a constant is zero.

Note also that the third term in (A.16) involves the
fractional derivative of the fractional derivative, which is not
the same as the 2; fractional derivative. In general,

( �>	�+ �>	�+I) (�) ̸= ( �>2	�+I) (�) . (A.5)

�en the coecients of the fractional Taylor series can be
found in the usual way, by repeated di�erentiation. �is is to
ensure that the fractional derivative of order ; of the function(� − �)	 is a constant. �e repeated fractional derivative of
order ; gives zero. �en the coecients of the fractional
Taylor series can be found in the usual way, by repeated
di�erentiation.

A.2. Fractional Taylor’s Series in the Riemann-Liouville Form.
Let I(�) be a real-value function such that the derivative

( RL>	+��+ I)(�) is integrable. �en the following analog of
Taylor formula holds (see Chapter 1. Section 2.6 [1, 2]):

I (�) = �−1∑
�=0

(RL>	+��+ I) (�+)Γ (; + D + 1) (� − �)	+� + 4� (�) ,
(; > 0) ,

(A.6)

where>	+��+ are le�-sided Riemann-Liouville derivatives and

4� (�) = (m	+��+ RL>	+��+ I) (�) . (A.7)

A.3. Riemann Formal Version of the Generalized Taylor’s
Series. �e Riemann formal version of the generalized Tay-
lor’s series [37–39] is

I (�) = +∞∑
�=−∞

(RL>	+�� I) (�0)Γ (; + � + 1) (� − �0)	+�, (A.8)

where RL>	� for ; > 0 is the Riemann-Liouville fractional

derivative and RL>	� = m−	� for ; < 0 is the Riemann-
Liouville fractional integral of order |;|.
A.4. Fractional Taylor’s Series in the Trujillo-Rivero-Bonilla
Form. �e Trujillo-Rivero-Bonilla form of generalized Tay-
lor’s formula [40] is

I (�) = �∑
�=0

�Γ ((D + 1) ;) (� − �)(�+1)	−1 + 4� (�, �) , (A.9)

where ; ∈ [0; 1] and
� = Γ (;) [(� − �)1−	(RL>	�)�I (�)] (�+) ,

4� (�, �) = ((RL>	�)�+1I) (s)Γ ((� + 1) ; + 1) (� − �)(�+1)	, s ∈ [�; �] .
(A.10)

A.5. Fractional Taylor’s Series in the Dzherbashyan-Nersesian
Form. Let ;�(� = 0, 1, . . . , �) be increasing sequence of real
numbers such that0 < ;� − ;�−1 ≤ 1, ;0 = 0, � = 1, 2, . . . , �. (A.11)

We introduce the following notation [41, 42] (see also
Section 2.8 in [1, 2]):>(	�) = m1−(	�−	�−1)0+ >1+	�−10+ . (A.12)

In general, >(	�) ̸= RL>	�0+. Fractional derivative >(	�) di�ers
from the Riemann-Liouville derivative RL>	�0+ by �nite sum
of power functions since (see equation (2.68) in [3])

m	0+m�0+ ̸= m	+�0+ . (A.13)

�e generalized Taylor’s formula [41, 42] is

I (�) = �−1∑
�=0
���	� + 4� (�) , (� > 0) , (A.14)
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where

�� = (>(	�)I) (0)Γ (;� + 1) ,
4� (�) = 1Γ (;� + 1) ∫




0
(� − _)	�−1 (>(	�)I) (_) �_. (A.15)

A.6. Fractional Taylor’s Series in the Odibat-Shawagfeh Form.
�e fractional Taylor series is a generalization of the Taylor
series for fractional derivatives, where; is the fractional order
of di�erentiation, 0 < ; < 1. �e fractional Taylor series with
Caputo derivatives [43] has the form

I (�) = I (�) + (�>	�+I) (�)Γ (; + 1) (� − �)	
+(�>	�+ �>	�+I) (�)Γ (2; + 1) (� − �)2	 + ⋅ ⋅ ⋅ ,

(A.16)

where �>	�+ is the Caputo fractional derivative of order ;.
B. Riesz Fractional Derivatives and Integrals

Fractional integration and fractional di�erentiation in the �-
dimensional Euclidean space R� can be de�ned as fractional
powers of the Laplace operator. For ; > 0 and “suciently
good” functions I(�), � ∈ R

�, the fractional Laplacian in
Riesz’s form (the Riesz fractional derivative) is de�ned in
terms of the Fourier transformF by

((−Δ)	/2I) (�) = F−1 (|�|	 (FI) (�)) . (B.1)

�e Riesz fractional integration is de�ned by

I
	

I (�) = F−1 (|�|−	 (FI) (�)) . (B.2)

�e Riesz fractional integration can be realized in the
form of the Riesz potential de�ned as Fourier’s convolution
of the form

I
	

I (�) = ∫

R
�
		 (� − _) I (_) �_, (; > 0) , (B.3)

where the function 		(�) is the Riesz kernel. If ; > 0 and; ̸= �, � + 2, � + 4, . . ., the function		(�) is de�ned by		 (�) = u−1� (;) |�|	−�. (B.4)

If ; ̸= �, � + 2, � + 4, . . ., then		 (�) = −u−1� (;) |�|	−� ln |�| . (B.5)

�e constant u�(;) has the form
u� (;) =

{{{{{{{{{{{{{{{

2	��/2Γ (;/2)Γ ((� − ;) /2) ,; ̸= � + 2�, � ∈ N,(−1)(�−	)/22	−1��/2Γ (;2 ) Γ (1 + [; − �]2 ) ,; = � + 2�.
(B.6)

Obviously, the Fourier transform of the Riesz fractional
integration is given by

F (I	
I (�)) = |�|−	 (FI) (�) . (B.7)

�is formula is true for functionsI(�) belonging to Lizorkin’s
space. �e Lizorkin space of test functions on R

� is a linear
space of all complex-valued in�nitely di�erentiable functionsI(�) whose derivatives vanish at the origin:Ψ = {I (�) : I (�) ∈ ~ (R�) , (>n


I) (0) = 0, |n| ∈ N} (B.8)

where ~(R�) is the Schwartz test-function space.�e Lizorkin
space is invariant with respect to the Riesz fractional integra-
tion. Moreover, if I(�) belongs to the Lizorkin space, then

I
	

I
�

I (�) = I	+�
 I (�) , (B.9)

where ; > 0 and @ > 0.
For ; > 0, the fractional Laplacian in Riesz’s form can be

de�ned in the form of the hypersingular integral by

((−Δ)	/2I) (�) = 1�� (�, ;) ∫R� 1|_|	+� (Δ��I) (_) �_,
(B.10)

where� > ; and (Δ��I)(_) is a �nite di�erence of order� of
a function I(�) with a vector step _ ∈ R� and centered at the
point � ∈ R�:

(Δ��I) (_) = �∑
�=0
(−1)� �!�! (� − �)!I (� − �_) . (B.11)

�e constant ��(�, ;) is de�ned by

�� (�, ;) = �1+�/2A� (;)2	Γ (1 + ;/2) Γ (�/2 + ;/2) sin (�;/2) , (B.12)

where

J� (;) = �∑
�=0
(−1)�−1 �!D! (� − D)! D	. (B.13)

Note that the hypersingular integral ((−Δ)	/2I)(�) does not
depend on the choice of� > ;.

If I(�) belongs to the space of “suciently good”
functions, then the Fourier transform F of the fractional
Laplacian in Riesz’s form is given by(F(−Δ)	/2I) (�) = |�|	 (FI) (�) . (B.14)

�is equation is valid for the Lizorkin space [1, 2] and the
space e∞(R�) of in�nitely di�erentiable functions on R

�

with compact support.
�e fractional Laplacian in Riesz’s form yields an operator

inverse to the Riesz fractional integration for a special space
of functions. �e formula(−Δ)	/2I	
I (�) = I (�) , (; > 0) (B.15)

holds for “suciently good” functions I(�). In particular,
(B.15) for I(�) belongs to the Lizorkin space. Moreover, this
property is also valid for the Riesz fractional integration in
the frame of ��-spaces: I(�) ∈ ��(R) for1 ⩽ � < �/� (see
�eorem 26.3 in [1, 2]).
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