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1 Introduction

Theory of convex sets and convex functions play an
important role in different fields of pure and applied
sciences. In recent years, the concept of convexity has
been extended and generalized in various directions using
novel and innovative techniques, see [1,2,3,4,5,6,9,12,
13,14,16,19]. It is known fact that many important
inequalities in the literature are direct consequences of the
applications of convex functions, for details see [2,3,4,5,
8,10,11,12,13,14,15,17,18,19]. Dragomir [2,3] has
introduced a new class of convex functions, which is
called s-Godunova-Levin functions of second kind.
Dragomir also showed that for suitable choices of s the
class of s-Godunova-Levin functions of second kind
reduces to the known classes of convex functions.
Inspired and motivated by the research going on in this
field, we also introduce and investigate a new class of
convex functions, which is called the s-Godunova-Levin
functions of first kind. Some new fractional
Hermite-Hadamard inequalities are obtained for these two
new extensions of Godunova-Levin functions. The
interested readers may explore new and interesting
applications of these classes of convex functions in
various branches of pure and applied sciences using novel
and innovative techniques. This is the main motivation of
this paper. Results obtained in this paper may be extended
for other classes of convex functions including preinvex
functions and coordinated convex functions.

2 Preliminaries

In this section we recall some previously known concepts.
First of all let I = [a,b] C R be the interval and R be the
set of real numbers.

Definition 1([4]). A nonnegative function f :1 — R is said
to be P-function, if

flx+(=1)y) < f()+f(y),Vxyelrel01]. (1)

Definition 2([6]). A function f : 1 — R is said to be
Godunova-Levin function, if
fltx+(1—1)y) < @ + %,Vx,y elte(0,1). (2)

We define a new generalization of Godunova-Levin type of
functions, which is called the s-Godunova-Levin functions
of first kind.

Definition 3. A function f : 1 — R is said to be
s-Godunova-Levin functions of first kind, if s € (0,1], we
have

Flent (1-1)y) < L8 4 FO)

1S 1—15’

Vx,yelt€(0,1). (3)

It is obvious that for s = 1 the definition of s-Godunova-
Levin functions of first kind collapses to the definition of
Godunova-Levin functions.

Our next definition is due to Dragomir [2, 3].
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Definition 4([2,3]). A function f :1 — R is said to be s-
Godunova-Levin functions of second kind, for s € [0, 1], we
have

S SO)
15 (1— )’

It is obvious that for s = 0, s-Godunova-Levin functions
of second kind reduces to the definition of P-functions. If
s = 1, it then reduces to Godunova-Levin functions.

We now introduce the classes of logarithmic s-Godunova-
Levin functions of first and second kinds respectively.

fltx+(1—1)y) < Jx,yelte(0,1).(4)

Definition 5. A function f : I — (0,0) is said to be
logarithmic s-Godunova-Levin function of first kind, if
s € (0,1], we have

1
Flex+(1=1)y) < F)7 f) T Vey €1t € (0,1).

From above inequality, it follows that

In f(tx-+(1-0) < 0 () + 74— In ().

Remark. Note that for s = 1 above definition reduces to the
definition for logarithmic Godunova-Levin functions, see
[14].

Definition 6. A function f : 1 — (0,0) is said to be

logarithmic s-Godunova-Levin function of second kind, if
s €10, 1], we have

Flox+(1=1)y) < f@)F f(3)T

Thus, it follows that

=" Vx,yel,t€(0,1).

lnf(tx+(1ft)y)§tlslnf(x)+ Inf(y).

1
(1—1)s
Remark. Note that for s = 1 above definition reduces to the
definition for logarithmic Godunova-Levin functions, see

[14]. Also for s = 0 it reduces to logarithmic P-functions,
see [14].

Definition 7([7]). Let f € Lila,b. Then the
Riemann-Liouville integrals J, f(x) and Ji_ f(x) of order
a > 0 with a > 0 are defined by

19 f(x) = ﬁ /(x— 0O f()dt, x> a )
and

Ja

\w

Ydt, x<b, (6)

where
F(C{):/ e X% dx,
0

is the well known Gamma function.

Lemma 1([18]). Let f: 1 — R be twice differentiable
function. If f" € Lla,b], then

fla) ;f (b) _ 2r (;“ )1) 2 £ (b) + I f (@)
Y 1 (1 _a+l _ a+l
_@® 2) /1 s otr)+1 —— f(ta+ (1= 1)b)dr.
0

Lemma 2([10]). Let f: [a,b] — R be twice differentiable
function on (a,b) witha < b. If f" € L|a,b], then, we have

%[ﬂm) 1)+ s £8)] - £(F0)
2 1
a+1)0/ a+1[ (I;I +1b)
dt.

t 141
+f”<2 ++b>

The above two result play key role in proving our main
results.

3 Inequalities for s-Godunova-Levin
functions of first kind

Theorem 1. Let f : [a,b] — R be twice differentiable on
(a,b) with a < b and f" € Li[a,D). If | f"| is s-Godunova-
Levin function of first kind, then

fla)+f(b) T(a+1)
2 2(b—a)?
(b—a)?
~2(a+1)

where

2l ree >+J,?f<a>}‘

(A (a,s)|f" (a)| + 5 (a,s)|f"(b)]],

Has) =15 - m - st O

_ 542 1 sl (s)l (a+2) 2(0+2)+s
H5(a,s5) = STTI Tat2 I'(o)r+(s+3) - (a+(2)(a+s+2 ®)

Proof. Using Lemma 1, we have

‘f(a)Jrf(b) GRS
2 2(b—a)?

[ £(b) + 95 £(@)] ‘

—p)a+l _gatl

T I (ta+ (1 —1)b)|dt

1
<(b—a)2/1—(1 )cr+1 ta+1
a+1

"(b)]|dr

LH 7(@)
1 1 F(a+2)r(1—s)
l—-s a—s+2  [(a—s+3)

f(a)l
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s+2 1 sM(s)l (a+2)
st1 _a+2 T(a+tst3)

2(0+2)+s
(a+2)(o+s+2)

f”(b)l}

Theorem 2. Let f : [a,b] — R be a twice differentiable
function on (a,b) and f" € Lla,b). If |f"|? for ¢ > 1 is
s-Godunova-Levin function of first kind, then

[a+1)

'f (a)+f(b) [J;; FO)+16, - f (a)} '

This completes the proof. O

2 2(b—a)¥
<“Fﬂf<a>“;
“2a+1)\a+2

X{%(GJ)f"(a)lq+%(G,S)|f"(b)lq} :
where 74 (a,s) and J5(a,s) are given by (7) and (8)
respectively.

Proof. Using Lemma 1, power mean inequality and the fact

that |f”|? is s-Godunova-Levin function of first kind, we
have

fla)+f(b) T(a+1) [
2 2(b—a)¥

Jgﬂm+@ﬁﬂmw

1 o o
L R

2 a+1
0
b-a” (| -
—da
< 1— (1=t oty
—2(a+1)<b/ ( )

1 1
X </(1 — (1 =)0 — 9D " (ta 4 (1 —t)b)th)

0
1

(ba)2< a )”
<
“2a+1)\a+2

1

1 1

I—s a—s+2

ra+2)r(1—s)

M(a—s+3) (@)

s+2 1 sh(s)l (a+2)
s+1 oa+2 T(a+s+3)

f%mw}7

This completes the proof. O

2(a+2)+s
(a+2)(a+s5+2)

Theorem 3. Let f : [a,b] — R be a twice differentiable
function on (a,b) and f" € Lla,b]. If | f"|4 for ¢ > 1 and
% + é = 1 is s-Godunova-Levin function of first kind, then

fla)+f(b) T(a+1)
2 2(b—a)¢

e ) +78, - f(@)] '

=

<(b—a)2 pla+1)—1
“2a+1)\ pla+1)+1

1 2 7
x(Lﬂwmw+“'www>.

s+1

Proof. Using Lemma 1, Holder’s inequality and the fact
that |f”| is s-Godunova-Levin function of first kind, we

have
f(a) ;f(b) B g (E}“j; )13 [J;; FO)+IG, - f (a)] '

(b—a)2/11—(1—t)“+1—za+1

2T f(ta+ (1 —1)b)dt

0
(b—a)2<1 a+l _ La+l ),,
< (I1-(1-1) — 9P dr
2 O/

(fposnls)

0

2/ 1 v

< 2([’_7“) </(1 —(1=p)Pla+h) ,p(ﬂ+1))dt)l
0

e

f(ta+(1—1)b)

1

! q
x(/[;v%ww+ljﬁf%m@d0
0

L
q

s+2u%mw).

1 7 q
X<1—s|f @+

This completes the proof. O

4 Inequalities for s-Godunova-Levin
functions of second kind

Theorem 4. Let f : [a,b] — R be differentiable on (a,b)
with a < b and " € Lyla,b). If | f"| is s-Godunova-Levin
function of second kind, then

fl@)+f) T(a+1)r 4 a
—a)?
< O a1 @)+ 1B,
where
1 1 Ma+2)r(1—s)

L%ﬂ(a’s)_l—s_a—s—i—Z_ [(o—s+3) ©)
Proof. Using Lemma 1, we have

ﬂ”;““—gftﬁpﬁﬂw+¢fwﬂ
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b_GZ 1=(1 a+1 ta+l
<! 2)/ ( a)+1 " (ta+ (1 —1)b)|dt
0
(b_a)Z /1 1 (] _t)Of+l _t0+1
- 2 a—+1
0

B (bfa)2
S 2(a+1)

1 1 ra+2)r(1—s)
. 1—s a—s+2  [(a—s+3)

This completes the proof. O

Theorem 5. Let f : 1 — R be a twice differentiable
function on I° and f" € Lla,b]. If |f"|7 for ¢ > 1 is
s-Godunova-Levin function of second kind, then

fla)+f(b) T(a+1)7 4 a
‘ 2 2(b—a)“[10*f(b)“<b>f(“)]‘

1-1 1 :
feh(5t) e ror o)

where 7€(d,s) is given by (9).

Proof. Using Lemma 1, power mean inequality and the fact
that |f”|7 is s-Godunova-Levin function of second kind,
we have

‘f(a) erf (b) _ 2r (EJ“_‘;)I‘Z 2. re)+98 - fla)] ‘
_a2 1 _ _ o+l ca+1
R iy

0
(b—a)? l =
< 2(OHLI)(O/I—(I—t)"’+1 —t““dt)
1 1
</(1—(1 £+ et ”(ta—f—(l—t)b)‘th)
0

(b_a>z( a )
< -
“2a+1)\a+2

X( 1 _I'(C(+2)I'(ls)>;

I—-s o—s+2 ro—s+3)

1

x (If”(a)q 4 f”(b)lq) q

- 2(?;’)12) (ai’z) 7(%( 9)" (1f" @17 w))".

This completes the proof. O

(" (@) +1£" (®)]].

Theorem 6. Let f : [a,b] — R be a twice differentiable
function on (a,b) and f" € La,b]. If | "] for ¢ > 1 and
% + é = 1 is s-Godunova-Levin function of second kind,
then

fla)+f(b) Ma+l)ra a
‘ 2 2(b—a)a{1a*f(b)“<b>f(“)}‘

_ -ap (p(a+1)—1>’]’<f”(a)lq+f”(b)lq);
2a+1) \ pla+1)+1 1—s '

Proof. Using Lemma 1, Holder’s inequality and the fact
that |f”|7 is s-Godunova-Levin function of second kind,
we have

fla) ;f(b) _ zr (gj"fa )13 e re)+78 - r(@)] ‘
a2 1 a+1 a+1
- /1 a+1 M at (1 0)b)dr
0

1 s
< é?;f)f) (0/(1(1 —0)*! t‘”')"c#)
! :
x </ FMra+ (1 t)b))%)
0
1
“setn( [0
1 1 1 g
x ( @ = If”(b)"]dt>
0

C-a? (plat )1\ (@B
T 2(a+ D)\ plad+1)+1 I—s '

This completes the proof. O

/\

1
(at1) (a+1))dl>'

Theorem 7. Let f : [a,b] — R be twice differentiable
function on (a,b) with a < b. If f" € Lla,b] and |f"| is
s-Godunova-Levin function of second kind, then

gt g Fl@) 0y F0)] — F(452)

< m{%a,wm M} [W )|+|f”(b>|],

1
where € (s,a,t) = [(1—
0

1) (1 +1)7%dt.

2Fi(1,s,34a,—1),
—1) is hypergeometric function.

2+a
where 2Fi(1,5,34a,

Proof. Using Lemma 2 and the fact that [f”] is

s-Godunova-Levin function of second kind, we have

2010 (a41)
(b—a)?

a—l—b)

UGG
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2 2

(1 7t)a+1 [f”(l—'_taJrl_tb)

1—1 I—Hb) dr

(et

I\J

1
1 -
/ 1)ty H +—’b)d¢
/ 2

=

(1—r)o+! dt

2 1
OH—]
25 o
1
b__,f)lz) '/(I_Z)OH-I
0
() 1r@l+ (75) 17w |}
1
+ [a-nen {(ﬂ)‘f”( al+ (1) 17" )} }
0
= s |/
1 1

AP =0 a1 @] [0

0 0

IN

o0 |~
S
Z|
o _

dt

,, —t 141 )
—b
2 a+

IN

a+l 1+[ .sdt

1

+f”(b)|/(1+t)a“(l—t)‘Ydt}
0

(b—a)

BEIEICES)) [f"(a)|€ (s, 0,0) + | f"(b)]

a—s+2

7 1 /!
+1f (“)\m +1f (b)%(s,a,t)]

+2} [If”(a)l + f”(b)l} -

Theorem 8. Ler f : [a,b] — R be twice differentiable
Sunction on (a,b) with a < b. If f" € L[a,b] and |f"|? is
s-Godunova-Levin function of second kind, then

(b—a)?
= M(HU{%(S’GJ)JF a

This completes the proof. O

201 (a+1)
(b—a)®

vzq 1
<2 (b— a) 1 r
- a+1 pla+1)+1

i) 1@+ 0] ‘f(anrb>

x {f”( (s fsle))w"(b)w(ll_s)}”

oy ron( ) |

Proof. Using Lemma 2, Holder’s inequality and the fact
that |f”'|? is s-Godunova-Levin function of second kind,
we have

201 (a4 1)
(b—a)®

1
—a) ' a
8(a+1)0/(1_’) o
t 1+1

(et )

a—i—b)

iy S @)+ 9. F0)] 1 (55

—~
S
()

dt

(b—a)® /1(1 —t)a+1f"<%a+ %b)dt

1
- -t 1
b-a /(1 —z)"'“f”(TtaJr %b)dt

X
— o0 |~
/—

.

P

Q

&

=
O\H

S
=
Tl
AR
N—
o

QU

-~

+

iy

S

=
O\_

/~
-

‘ ‘

-
N——

Y

&
N—

I

1. ) 1 s é
+ (If”(a)lq [(5) arwr [ (75) dz) }
0 0
2" (b—a)? 1 C
T oatl (p(a+1)+1>
x {f”( (3 (Zsfzf))w"'(b)w(ll_s)}”
() oz V]

This completes the proof. O

Theorem 9. Let f : [a,b] — R be twice differentiable
function on (a,b) with a < b. If " € La,b] and |f"|9 is
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s-Godunova-Levin function of second kind, then

20°1M (@ +1)
(b—a)®

: zq -1
i (b—a)? 1 !
a+1 o+2

{(f”( )19 (s, a,0)) + 1" ()1

a—;—b>

gy F(@) + 5 £0)] = 7

1
1 B
afs+2)

1

+ (If”(“)|q (a_lﬂ> + f”(b)ﬂ(ﬂs,a,z))) q }

1O (1 +1)7%dt.

where € (s,a,t) = [(1—
0

= H% 2Fi(ls,34+a,—1).

Proof. Using Lemma 2, power-mean inequality and the
fact that |f”|7 is s-Godunova-Levin function of second
kind, we have

201 (a41)
(b—a)®

(b-a? [
s(a+1).0/(1_’) o

+f//(

[Py 1072501 (22)

141t 1—t¢
- fﬁ( ;a’L 2 b)

dt

—t 141
+ib)

2

2 2

(b—a)? /1'(1—1)‘”1]”(1“ +Eb)d
0

(b—a)? /1(1 7t)a“f”(%a+ 1—2Hb>dt

f’(lzt +ﬂb> '

O o _
| |

1

2 a1 i
- a+1 a+?2

{ (f”(anq(%(s, a,0)+ 11" 6)1

e

1
a—s+2)>
’ (lf”(a)|q(als+2) + lf"(b)q(%(s.,a,r))) q }

This completes the proof. O

5 Inequalities for logarithmic
s-Godunova-Levin functions of second kind

Theorem 10. If f : I — (0,00) is logarithmically
s-Godunova-Levin function of second kind, then for

€ (0,1), we have

a+b 2s+1
(%)

<exp [bi / blogf(X)dx] < @) fB))TS.

Proof. When f is a logarithmically s-Godunova-Levin
function of second kind, we have

a-t+b
()
_(ta+(1—=1)b+(1—t)a+1th
-y
<[fta+ (=)o) [f ((1—r)a+rb)]2“v
={[f(ta+ (1 =0)B)][f((1 —t)a+1D)]}*.

Taking the logarithms on both sides of the above inequality
yields

o)

<In[f(ta+ (1 —1)b) f((1 —t)a+1b)]*
=2In[f(ta+ (1 —1)b) f((1—1)a+1b)),

which implies that

L f(a+b)

<In[f(ta+ (1—1)b)f((1 —1)a+1b)]
=Ilnf(ta+(1—1)b)+Inf((1—1)a+1b).

Integrating the above inequality with respect to 7 € [0, 1]

procures
2 b
b—a/a In f(x)dx

Lng(422) -

which is equivalent to

1 a+b 1 b
— 1nf< : )Sba/a In £(x)dx. (10)

Since f is logarithmically s-Godunova-Levin function
of second kind, then for s € (0, 1), we have

Inf(ta+(1—1)b) < tlsln fla)+ In £(b).

1
1=ty
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Integrating on both sides of the above inequality with
respect to ¢ € [0, 1] generates

ﬁ /ab In f(x)dx < {In[f(a)] +1n[f(b)]}/01 tlsdt. (11)
Combining (10) and (11) gives

1
s+1
1nf<”;b)2
1]

1 b
<o [ nsear <mlr@so) [ Sar

Taking the power of e on all sides of the above inequality
produces

1
a+b\ T
)

<exp [bla /‘;b lnf(x)dx}

1§ Kar 1
< MVETOIREE = [f(a) f(b)] 7.
This completes the proof. O
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