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FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES

FOR INTERVAL-VALUED FUNCTIONS

HÜSEYIN BUDAK, TUBA TUNÇ, AND MEHMET ZEKI SARIKAYA

(Communicated by Mourad Ismail)

Abstract. In this paper, we define interval-valued right-sided Riemann-
Liouville fractional integrals. Later, we handle Hermite-Hadamard inequality
and Hermite-Hadamard-type inequalities via interval-valued Riemann-Liouville
fractional integrals.

1. Introduction

The Hermite-Hadamard inequality discovered by C. Hermite and J. Hadamard
(see, e.g., [12], [37, p. 137]) is one of the most well established inequalities in the
theory of convex functions with a geometrical interpretation and many applications.
These inequalities state that if f : I → R is a convex function on the interval I of
real numbers and a, b ∈ I with a < b, then

(1.1) f

(

a+ b

2

)

≤
1

b− a

b
∫

a

f(x)dx ≤
f (a) + f (b)

2
.

Both inequalities hold in the reversed direction if f is concave. We note that the
Hermite-Hadamard inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. The Hermite-Hadamard
inequality for convex functions has received renewed attention in recent years and
a remarkable variety of refinements and generalizations have been studied (see, for
example, [2], [6]-[8], [13]-[15], [22], [34], [36], [44]-[46]).

On the other hand, interval analysis is a particular case of set-valued analysis
which is the study of sets in the spirit of mathematical analysis and general topol-
ogy. It was introduced as an attempt to handle interval uncertainty that appears in
many mathematical or computer models of some deterministic real-world phenom-
ena. An old example of interval enclosure is Archimedes’ method which is related
to computing the circumference of a circle. In 1966, the first book related to in-
terval analysis was written by Moore who is known as the first user of intervals
in computational mathematics [29]. After his book, several scientists started to
investigate the theory and application of interval arithmetic. Nowadays, because of
its applications, interval analysis is a useful tool in various areas which are inter-
ested intensely in uncertain data. You can see applications in computer graphics,
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experimental and computational physics, error analysis, robotics, and many others
[20], [26], [43].

What’s more, several important inequalities (Hermite-Hadamard, Ostrowski,
etc.) have been studied for the interval-valued functions in recent years. In [4],[5]
Chalco-Cano et al. obtained Ostrowski-type inequalities for interval-valued func-
tions by using Hukuhara derivative for interval-valued functions. In [16], Román
Flores et al. established Minkowski and Beckenbach’s inequalities for interval-
valued functions. For the others, please see [9], [10], [16]–[18], [48]. However,
inequalities were studied for more general set-valued maps. For example, Sadowska
gave the Hermite-Hadamard inequality in [41]. For the other studies, you can see
[28], [32], [35].

The purpose of this paper is to complete the Riemann-Liouville fractional inte-
grals for interval-valued functions and to obtain Hermite-Hadamard inequality via
these integrals. Furthermore, Hermite-Hadamard-type inequalities will be proved
using these integrals.

2. Interval calculus

A real-valued interval X is a bounded, closed subset of R defined by

X =
[

X,X
]

=
{

t ∈ R : X ≤ t ≤ X
}

,

where X, X ∈ R and X ≤ X. The numbers X and X are called the left and the
right endpoints of interval X, respectively. When X = X = a, the interval X is
said to be degenerate and we use the form X = a = [a, a]. Also, we call X positive
if X > 0 or negative if X < 0. The set of all closed intervals of R, the sets of all
closed positive intervals of R, and closed negative intervals of R are denoted by RI ,
R

+
I
, and R

−

I
, respectively. The Hausdorff-Pompeiu distance between the intervals

X and Y is defined by

d (X,Y ) = d
([

X,X
]

,
[

Y , Y
])

= max
{

|X − Y | ,
∣

∣X − Y
∣

∣

}

.

It is known that (RI , d) is a complete metric space [1].
Now, we give the definitions of basic interval arithmetic operations for the inter-

vals X and Y as follows [30]:

X + Y =
[

X + Y ,X + Y
]

,

X − Y =
[

X − Y ,X − Y
]

,

X.Y = [minS,maxS] where S =
{

X Y ,X Y, XY ,X Y
}

,

X/Y = [minT,maxT ] where T =
{

X/Y ,X/Y ,X/Y ,X/Y
}

and 0 /∈ Y.

Scalar multiplication of the interval X is defined by

λX = λ
[

X,X
]

=

⎧

⎨

⎩

[

λX, λX
]

, λ > 0,
{0} , λ = 0,
[

λX, λX
]

, λ < 0,

where λ ∈ R. For λ = −1, the interval

−X := (−1)X = [−X,−X]

gives the opposite of the interval X.
The subtraction is given by

X − Y = X + (−Y ) = [X − Y ,X − Y ].
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In general, −X is not additive inverse for X, i.e., X −X �= 0. Equality is provided
when X = X.

The definitions of operations lead to a number of algebraic properties which
allows RI to be a quasilinear space [24]. They can be listed as follows [23]-[25],
[29]:

(1) (Associativity of addition) (X + Y )+Z = X +(Y +Z) for all X,Y, Z ∈ RI ,
(2) (Additive element) X + 0 = 0 +X = X for all X ∈ RI ,
(3) (Commutativity of addition) X + Y = Y +X for all X,Y ∈ RI ,
(4) (Cancellation law) X + Z = Y + Z =⇒ X = Y for all X,Y, Z ∈ RI ,
(5) (Associativity of multiplication) (X.Y ).Z = X.(Y.Z) for all X,Y, Z ∈ RI ,
(6) (Commutativity of multiplication) X.Y = Y.X for all X,Y ∈ RI ,
(7) (Unit element) X.1 = 1.X = X for all X ∈ RI ,
(8) (Associate law) λ(µX) = (λµ)X for all X ∈ RI and all λ, µ ∈ R,
(9) (First distributive law) λ(X+Y ) = λX+λY for all X,Y ∈ RI and all λ ∈ R,
(10) (Second distributive law) (λ + µ)X = λX + µX for all X ∈ RI and all

λ, µ ∈ R with λµ ≥ 0.
Besides these properties, the distributive law is not always valid for intervals.

For example, X = [1, 2], Y = [2, 3], Z = [−2,−1]

X.(Y + Z) = [0, 4]

whereas

X.Y +X.Z = [−2, 5].

But, this law holds in certain cases. If Y Z > 0, then

X.(Y + Z) = X.Y +X.Z.

What’s more, one of the set properties is the inclusion “⊆” that is given by

X ⊆ Y ⇐⇒ Y ≤ X and X ≤ Y .

Also, one has the following property which is called an inclusion isotonic of interval
operations ([30, p. 34]).

Let ⊙ be the addition, multiplication, subtraction, or division. If X,Y, Z, and
T are intervals such that

X ⊆ Y and Z ⊆ T,

then the following relation is valid

X ⊙ Z ⊆ Y ⊙ T.

The following remark is about that scalar multiplication preserve the inclusion.

Remark 2.1. Let X,Y ∈ RI and λ ∈ R. If X ⊆ Y , then λX ⊆ λY.

Proof. It is clear from the above property with Z = T = [λ, λ]. �

2.1. Integral of interval-valued functions. In this section, the notion of integral
is mentioned for interval-valued functions. Before the definition of integral, the
necessary concepts will be given as follows.

A function F is said to be an interval-valued function of t on [a, b] if it assigns a
nonempty interval to each t ∈ [a, b]

F (t) =
[

F (t), F (t)
]

,

where F and F are real-valued functions.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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A partition of [a, b] is any finite ordered subset P having the form

P : a = t0 < t1 < ... < tn = b.

The mesh of a partition P is defined by

mesh(P ) = max {ti − ti−1 : i = 1, 2, ..., n} .

We denote by P ([a, b]) the set of all partitions of [a, b]. Let P (δ, [a, b]) be the set of
all P ∈ P ([a, b]) such that mesh(P ) < δ. Choose an arbitrary point ξi in interval
[ti−1, ti] , i = 1, 2, ..., n and we define the sum

S(F, P, δ) =

n
∑

i=1

F (ξi) [ti − ti−1] ,

where F : [a, b] → RI . We call S(F, P, δ) a Riemann sum of F corresponding to
P ∈ P (δ, [a, b]) .

Definition 2.2 ([11], [38], [39]). A function F : [a, b] → RI is called interval
Riemann integrable (IR-integrable) on [a, b] if there exists A ∈ RI such that, for
each ε > 0, there exists δ > 0 such that

d (S(F, P, δ), A) < ε

for every Riemann sum S of F corresponding to each P ∈ P (δ, [a, b]) and indepen-
dent of choice of ξi ∈ [ti−1, ti] for 1 ≤ i ≤ n. In this case, A is called the IR-integral
of F on [a, b] and is denoted by

A = (IR)

b
∫

a

F (t)dt.

The collection of all functions that are IR-integrable on [a, b] will be denoted by
IR([a,b]).

The following theorem gives a relation between IR-integrable and Riemann in-
tegrable (R-integrable) ([30, p. 131]).

Theorem 2.3. Let F : [a, b] → RI be an interval-valued function such that F (t) =
[

F (t), F (t)
]

. F ∈ IR([a,b]) if and only if F (t), F (t) ∈ R([a,b]) and

(IR)

b
∫

a

F (t)dt =

⎡

⎣(R)

b
∫

a

F (t)dt, (R)

b
∫

a

F (t)dt

⎤

⎦ ,

where R([a,b]) denotes the R-integrable function.

It is easily seen that if F (t) ⊆ G(t) for all t ∈ [a, b], then (IR)
b
∫

a

F (t)dt ⊆

(IR)
b
∫

a

G(t)dt.

In [47], Zhao et al. introduced a kind of convex interval-valued function as follows.

Definition 2.4. Let h : [c, d] → R be a nonnegative function, (0, 1) ⊆ [c, d] and
h �= 0. We say that F : [a, b] → R

+
I

is an h−convex interval-valued function if for
all x, y ∈ [a, b] and t ∈ (0, 1), we have

(2.1) h(t)F (x) + h(1− t)F (y) ⊆ F (tx+ (1− t)y).

SX(h, [a, b],R+
I
) will denote the set of all h−convex interval-valued functions.
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The usual notion of convex interval-valued function corresponds to relation (2.1)
with h(t) = t [31], [41]. Also, if h(t) = ts in (2.1), then Definition 2.4 gives the
other convex interval-valued function defined by Breckner [3].

Otherwise, Zhao et al. obtained the following Hermite-Hadamard inequality for
interval-valued functions by using h−convex [47].

Theorem 2.5. Let F : [a, b] → R
+
I
be an interval-valued function such that F (t) =

[F (t), F (t)] and F ∈ IR([a,b]), let h : [0, 1] → R be a nonnegative function, and let

h
(

1
2

)

�= 0. If F ∈ SX(h, [a, b],R+
I
), then

(2.2)
1

2h
(

1
2

)F

(

a+ b

2

)

⊇
1

b− a
(IR)

b
∫

a

F (x)dx ⊇ [F (a) + F (b)](IR)

1
∫

0

h(t)dt.

Remark 2.6. (i) If h(t) = t, (2.2) reduces the following result:

F

(

a+ b

2

)

⊇
1

b− a
(IR)

b
∫

a

F (x)dx ⊇
[F (a) + F (b)]

2

which is obtained by [41].
(ii) If h(t) = ts, (2.2) reduces the following result:

2s−1F

(

a+ b

2

)

⊇
1

b− a
(IR)

b
∫

a

F (x)dx ⊇
1

s+ 1
[F (a) + F (b)]

which is obtained by [33].

3. Main results

In this section, we give an interval-valued right-sided Riemann–Liouville frac-
tional integral of a function F and then we prove the Hermite-Hadamard inequality
for convex interval-valued functions by using interval-valued fractional integrals.
Also, Hermite-Hadamard-type inequalities for the product two convex interval-
valued functions are given.

First, we recall that the Riemann-Lioville fractional integrals are defined as fol-
lows [21].

Definition 3.1. Let f ∈ L1[a, b]. The Riemann-Liouville fractional integrals Jα
a+f

and Jα
b−f of order α > 0 with a ≥ 0 are defined by

Jα
a+f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1 f(t)dt, x > a,

and

Jα
b−f(x) =

1

Γ(α)

∫ b

x

(t− x)α−1 f(t)dt, x < b,

respectively. Here, Γ(α) is the Gamma function and J0
a+f(x) = J0

b−f(x) = f(x).

In [42] Sarikaya et al. gave the Hermite-Hadamard inequality by using fractional
integrals as follows.
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Theorem 3.2. Let f : [a, b] → R be a positive function with 0 ≤ a < b and

f ∈ L1[a, b]. If f is a convex function on [a, b], then the following inequalities for

fractional integrals hold:

f

(

a+ b

2

)

≤
Γ(1 + α)

2(b− a)α
[

Jα
a+f(b) + Jα

b−f(a)
]

≤
f(a) + f(b)

2

with α > 0.

For more information about Riemann-Liouville integrals, see [19], [21], [27], [40].
By considering the Riemann-Liouville integral for real-valued functions, in [23]

Lupulescu defined the following interval-valued left-sided Riemann–Liouville frac-
tional integral.

Definition 3.3. Let F : [a, b] → RI be an interval-valued function such that
F (t) =

[

F (t), F (t)
]

and F ∈ IR([a,b]). The interval-valued left-sided Riemann–
Liouville fractional integral of function F is defined by

J α
a+F (x) =

1

Γ(α)
(IR)

x
∫

a

(x− t)
α−1

F (t)dt, x > a, α > 0,

where Γ is an Euler Gamma function.

Based on the definition of Lupulescu, we define the corresponding interval-valued
right-sided Riemann–Liouville fractional integral of function F by

J α
b−F (x) =

1

Γ(α)
(IR)

b
∫

x

(t− x)
α−1

F (t)dt, x < b, α > 0,

where Γ is an Euler Gamma function.

Corollary 1. If F : [a, b] → RI is an interval-valued function such that F (t) =
[

F (t), F (t)
]

with F (t), F (t) ∈ R([a,b]), then we have

J α
a+F (x) =

[

Jα
a+F (x), Jα

a+F (x)
]

and

J α
b−F (x) =

[

Jα
b−F (x), Jα

b−F (x)
]

.

Proof. It is obvious from Theorem 2.3. �

Now, we give the Hermite-Hadamard inequality for the convex interval-valued
function:

Theorem 3.4. If F : [a, b] → R
+
I

is a convex interval-valued function such that

F (t) =
[

F (t), F (t)
]

and α > 0, then we have

(3.1) F

(

a+ b

2

)

⊇
Γ(α+ 1)

2 (b− a)α
[

J α
a+F (b) + J α

b−F (a)
]

⊇
F (a) + F (b)

2
.

Proof. Since F is a convex interval-valued function, we have

(3.2) F

(

x+ y

2

)

⊇
F (x) + F (y)

2
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for all x, y ∈ [a, b] . Taking x = ta+(1− t)b and y = (1− t)a+ tb, t ∈ [0, 1] in (3.2),
we have

(3.3) F

(

a+ b

2

)

⊇
1

2
[F (ta+ (1− t)b) + F ((1− t)a+ tb)] .

Multiplying (3.3) by tα−1, α > 0, we have

(3.4) tα−1F

(

a+ b

2

)

⊇
tα−1

2
[F (ta+ (1− t)b) + F ((1− t)a+ tb)] .

Integrating (3.4) on [0, 1], we obtain

(IR)

1
∫

0

tα−1F

(

a+ b

2

)

dt(3.5)

⊇
1

2

⎡

⎣(IR)

1
∫

0

tα−1F (ta+ (1− t)b)dt+ (IR)

1
∫

0

tα−1F ((1− t)a+ tb)dt

⎤

⎦ .

In the relation (3.5), by using Theorem 2.3, we get

(IR)

1
∫

0

tα−1F

(

a+ b

2

)

dt(3.6)

=

⎡

⎣(R)

1
∫

0

tα−1F

(

a+ b

2

)

dt, (R)

1
∫

0

tα−1F

(

a+ b

2

)

dt

⎤

⎦

=

⎡

⎣F

(

a+ b

2

)

(R)

1
∫

0

tα−1dt, F

(

a+ b

2

)

(R)

1
∫

0

tα−1dt

⎤

⎦

=

[

1

α
F

(

a+ b

2

)

,
1

α
F

(

a+ b

2

)]

=
1

α
F

(

a+ b

2

)

.
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Moreover, we get

(IR)

1
∫

0

tα−1F (ta+ (1− t)b)dt(3.7)

=

⎡

⎣(R)

1
∫

0

tα−1F (ta+ (1− t)b)dt, (R)

1
∫

0

tα−1F (ta+ (1− t)b)dt

⎤

⎦

=

⎡

⎣

1

(b− a)α
(R)

b
∫

a

(b− x)
α−1

F (x)dx,
1

(b− a)α
(R)

1
∫

0

(b− x)
α−1

F (x)dx

⎤

⎦

=
Γ(α)

(b− a)α
[

Iαa+F (b), Iαa+F (b)
]

=
Γ(α)

(b− a)α
J α
a+F (b)

and similarly

(3.8) (IR)

1
∫

0

tα−1F ((1− t)a+ tb)dt =
Γ(α)

(b− a)α
J α
b−F (a).

Substituting the equalities (3.6)-(3.8) in (3.5), then we have

(3.9)
1

α
F

(

a+ b

2

)

⊇
Γ(α)

2 (b− a)α
[

J α
a+F (b) + J α

b−F (a)
]

.

Multiplying both sides of (3.9) by α, we obtain the first relation in (3.1).
For the second relation (3.1), by using the convex interval-valued function F , we

have

(3.10) F (ta+ (1− t)b) ⊇ tF (a) + (1− t)F (b)

and

(3.11) F ((1− t)a+ tb) ⊇ (1− t)F (a) + tF (b)

for t ∈ [0, 1] . If we add the relation (3.10) and (3.11), we have

(3.12) F (ta+ (1− t)b) + F ((1− t)a+ tb) ⊇ F (a) + F (b).

Multiplying both sides of (3.12) by tα−1 and integrating on [0, 1] , we have

(IR)

1
∫

0

tα−1F (ta+ (1− t)b)dt+ (IR)

1
∫

0

tα−1F ((1− t)a+ tb)dt

⊇ (IR)

1
∫

0

tα−1 [F (a) + F (b)] dt.

(3.13)
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By Theorem 2.3, we obtain

(IR)

1
∫

0

tα−1 [F (a) + F (b)] dt(3.14)

=

⎡

⎣(R)

1
∫

0

tα−1 [F (a) + F (b)] dt, (R)

1
∫

0

tα−1
[

F (a) + F (b)
]

dt

⎤

⎦

=

⎡

⎣[F (a) + F (b)] (R)

1
∫

0

tα−1dt,
[

F (a) + F (b)
]

(R)

1
∫

0

tα−1dt

⎤

⎦

=

[

1

α
[F (a) + F (b)] ,

1

α

[

F (a) + F (b)
]

]

=
1

α
[F (a) + F (b)] .

By substituting the equalities (3.7), (3.8), and (3.14) in (3.13), then we establish

(3.15)
Γ(α)

(b− a)α
[

J α
a+F (b) + J α

b−F (a)
]

⊇
1

α
[F (a) + F (b)] .

If we multiply both sides of (3.15) by α
2 , then we obtain the second relation in (3.1).

This completes the proof. �

Theorem 3.5. If F,G : [a, b] → R
+
I

are two convex interval-valued functions such

that F (t) =
[

F (t), F (t)
]

and G(t) =
[

G(t), G(t)
]

, then for α > 0 we have

Γ(α+ 1)

2 (b− a)α
[

J α
a+F (b)G(b) + J α

b−F (a)G(a)
]

(3.16)

⊇

(

1

2
−

α

(α+ 1) (α+ 2)

)

M(a, b) +
α

(α+ 1) (α+ 2)
N(a, b),

where

M(a, b) = F (a)G(a) + F (b)G(b)

and

N(a, b) = F (a)G(b) + F (b)G(a).

Proof. Since F and G are two convex interval-valued functions for t ∈ [0, 1] , we
have

(3.17) F (ta+ (1− t) b) ⊇ tF (a) + (1− t)F (b)

and

(3.18) G (ta+ (1− t) b) ⊇ tG (a) + (1− t)G (b) .

Since F (x), G(x) ∈ R
+
I
for all x ∈ [a, b] , from (3.17) and (3.18), we get

(3.19)

F (ta+ (1− t) b)G (ta+ (1− t) b) ⊇ t2F (a)G(a) + (1− t)2 F (b)G(b)

+t (1− t) [F (a)G(b) + F (b)G(a)] .
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Similarly, as F and G are convex interval-valued functions, we have

(3.20)

F ((1− t) a+ tb)G ((1− t) a+ tb) ⊇ (1− t)
2
F (a)G(a) + t2F (b)G(b)

+t (1− t) [F (a)G(b) + F (b)G(a)] .

By adding (3.19) and (3.20), we obtain

F (ta+ (1− t) b)G (ta+ (1− t) b) + F ((1− t) a+ tb)G ((1− t) a+ tb)(3.21)

⊇
[

t2 + (1− t)2
]

[F (a)G(a) + F (b)G(b)] + 2t (1− t) [F (a)G(b) + F (b)G(a)]

=
[

2t2 − 2t+ 1
]

M(a, b) + 2t (1− t)N(a, b).

Multiplying both sides of (3.21) by tα−1 and integrating on [0, 1] , we have

(IR)

1
∫

0

tα−1F (ta+ (1− t)b)G (ta+ (1− t) b) dt(3.22)

+(IR)

1
∫

0

tα−1F ((1− t)a+ tb)G ((1− t) a+ tb) dt

⊇ (IR)

1
∫

0

[

2tα+1 − 2tα + tα−1
]

M(a, b)dt+ (IR)

1
∫

0

2tα (1− t)N(a, b)dt.

By Theorem 2.3, we obtain

(3.23) (IR)

1
∫

0

tα−1F (ta+ (1− t)b)G (ta+ (1− t) b) dt =
Γ(α)

(b− a)
αJ

α
a+F (b)G(b)

and

(3.24) (IR)

1
∫

0

tα−1F ((1− t)a+ tb)G ((1− t) a+ tb) dt =
Γ(α)

(b− a)
αJ

α
b−F (a)G(a).

Similarly, by using Theorem 2.3, one can show that
(3.25)

(IR)

1
∫

0

[

2tα+1 − 2tα + tα−1
]

M(a, b)dt =
2

α

(

1

2
−

α

(α+ 1) (α+ 2)

)

M(a, b)

and

(3.26) (IR)

1
∫

0

2tα (1− t)N(a, b)dt =
2

(α+ 1) (α+ 2)
N(a, b).
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By substituting the equalities (3.23)-(3.26) in (3.22), then we establish

Γ(α)

(b− a)α
[

J α
a+F (b)G(b) + J α

b−F (a)G(a)
]

(3.27)

⊇
2

α

(

1

2
−

α

(α+ 1) (α+ 2)

)

M(a, b) +
2

(α+ 1) (α+ 2)
N(a, b).

If we multiply both sides of (3.27) by α
2 , then we obtain the second relation in

(3.16). This completes the proof. �

Theorem 3.6. If F,G : [a, b] → R
+
I

are two convex interval-valued functions such

that F (t) =
[

F (t), F (t)
]

and G(t) =
[

G(t), G(t)
]

, then for α > 0 we have

2F

(

a+ b

2

)

G

(

a+ b

2

)

(3.28)

⊇
Γ(α+ 1)

2 (b− a)
α

[

J α
a+F (b)G(b) + J α

b−F (a)G(a)
]

+
α

(α+ 1) (α+ 2)
M(a, b) +

(

1

2
−

α

(α+ 1) (α+ 2)

)

N(a, b),

where M(a, b) and N(a, b) are defined as in Theorem 3.5.

Proof. For t ∈ [0, 1], we can write

a+ b

2
=

(1− t)a+ tb

2
+

ta+ (1− t)b

2
.

Since F and G are two convex interval-valued functions, we have

F

(

a+ b

2

)

G

(

a+ b

2

)

(3.29)

= F

(

(1− t)a+ tb

2
+

ta+ (1− t)b

2

)

G

(

(1− t)a+ tb

2
+

ta+ (1− t)b

2

)

⊇
1

4
[F ((1− t)a+ tb) + F (ta+ (1− t)b)] [G((1− t)a+ tb) +G(ta+ (1− t)b)]

=
1

4
[F ((1− t)a+ tb)G((1− t)a+ tb) + F (ta+ (1− t)b)G(ta+ (1− t)b)]

+
1

4
[F ((1− t)a+ tb)G(ta+ (1− t)b) + F (ta+ (1− t)b)G((1− t)a+ tb)]

⊇
1

4
[F ((1− t)a+ tb)G((1− t)a+ tb) + F (ta+ (1− t)b)G(ta+ (1− t)b)]

+
1

4

[

2t(1− t)M(a, b) +
[

(1− t)2 + t2
]

N(a, b)
]

.
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Multiplying by tα−1 both sides of the inequality (3.29) and then integrating on [0, 1]
the result obtained, we get

(IR)

1
∫

0

tα−1F

(

a+ b

2

)

G

(

a+ b

2

)

dt

⊇
1

4
(IR)

1
∫

0

tα−1F ((1− t)a+ tb)G((1− t)a+ tb)dt

+
1

4
(IR)

1
∫

0

tα−1F (ta+ (1− t)b)G(ta+ (1− t)b)dt

+
1

2
(IR)

1
∫

0

tα(1− t)M(a, b) +
1

4
(IR)

1
∫

0

tα−1
[

(1− t)2 + t2
]

N(a, b)dt.

That is,

1

α
F

(

a+ b

2

)

G

(

a+ b

2

)

(3.30)

⊇
1

4

Γ(α)

(b− a)α
J α
b−F (a)G(a) +

1

4

Γ(α)

(b− a)α
J α
a+F (b)G(b)

+
1

2(α+ 1)(α+ 2)
M(a, b) +

1

2α

(

1

2
−

α

(α+ 1)(α+ 2)

)

N(a, b).

If we multiply both sides of the inequality (3.30) by 2α, we obtain the desired
result. �

Remark 3.7. Theorems 3.5 and 3.6 generalize Theorems 2.1 and 2.4 in [6], respec-
tively.

Remark 3.8. If we choose α = 1 in Theorems 3.5 and 3.6, then we obtain the same
results by taking h1(t) = h2(t) = t in Theorems 4.5 and 4.6 which are proved by
Zhao et al. in [48].
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Turkey

Email address: sarikayamz@gmail.com

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=0231516
https://www.ams.org/mathscinet-getitem?mr=2482682
https://www.ams.org/mathscinet-getitem?mr=901799
https://www.ams.org/mathscinet-getitem?mr=2070994
https://www.ams.org/mathscinet-getitem?mr=3787891
https://www.ams.org/mathscinet-getitem?mr=3368212
https://www.ams.org/mathscinet-getitem?mr=1162312
https://www.ams.org/mathscinet-getitem?mr=2199140
https://www.ams.org/mathscinet-getitem?mr=1658022
https://www.ams.org/mathscinet-getitem?mr=1487604
https://www.ams.org/mathscinet-getitem?mr=3593739
https://www.ams.org/mathscinet-getitem?mr=1719056
https://www.ams.org/mathscinet-getitem?mr=1457248
https://www.ams.org/mathscinet-getitem?mr=3874054

	1. Introduction
	2. Interval calculus
	2.1. Integral of interval-valued functions

	3. Main results
	References

