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Recently, many fractional integral operators were introduced by different mathematicians. One of these fractional operators,
Atangana-Baleanu fractional integral operator, was defined by Atangana and Baleanu (Atangana and Baleanu, 2016). In this
study, firstly, a new identity by using Atangana-Baleanu fractional integral operators is proved. Then, new fractional integral
inequalities have been obtained for convex and concave functions with the help of this identity and some certain integral
inequalities.

1. Introduction

Mathematics is a tool that serves pure and applied sciences
with its deep-rooted history as old as human history and
sheds light on how to express and then solve problems.
Mathematics uses various concepts and their relations with
each other while performing this task. By defining spaces
and algebraic structures built on spaces, mathematics creates
structures that contribute to human life and nature. The con-
cept of function is one of the basic structures of mathematics,
and many researchers have focused on new function classes
and made efforts to classify the space of functions. One of
the types of functions defined as a product of this intense effort
is the convex function, which has applications in statistics,
inequality theory, convex programming, and numerical analy-
sis. This interesting class of functions is defined as follows.

Definition 1. The mapping f : ½θ1, θ2� ⊆ℝ⟶ℝ is said to be
convex if

f λx + 1 − λð Þyð Þ ≤ λf xð Þ + 1 − λð Þf yð Þ, ð1Þ

is valid for all x, y ∈ ½θ1, θ2� and λ ∈ ½0, 1�.

Many inequalities have been obtained by using this
unique function type and varieties in inequality theory,
which is one of the most used areas of convex functions.
We will continue by introducing the Hermite-Hadamard
inequality that generate limits on the mean value of a convex
function and the famous Bullen inequality as follows.

Assume that f : I ⊆ℝ⟶ℝ is a convex mapping
defined on the interval I of ℝ, where θ1 < b: The following
statement:

Hindawi
Journal of Function Spaces
Volume 2021, Article ID 1055434, 10 pages
https://doi.org/10.1155/2021/1055434

https://orcid.org/0000-0003-2466-0508
https://orcid.org/0000-0001-6611-6370
https://orcid.org/0000-0003-1364-5396
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1055434


f
θ1 + θ2

2

� �
≤

1
κ2 − θ1

ðθ2
θ1

f xð Þdx ≤ f θ1ð Þ + f θ2ð Þ
2 , ð2Þ

holds and known as Hermite-Hadamard inequality. Both
inequalities hold in the reversed direction if f is concave.

Bullen’s integral inequality can be presented as

1
θ2 − θ1

ðθ2
θ1

f xð Þdx ≤ 1
2 f

θ1 + θ2
2

� �
+ f θ1ð Þ + f θ2ð Þ

2

� �
, ð3Þ

where f : I ⊂ℝ⟶ℝ is a convex mapping on the interval I
of ℝ where κ1, θ2 ∈ I with θ1 < θ2.

To provide detail information on convexity, let us con-
sider some earlier studies that have been performed by many
researchers. In [1], Jensen introduced the concept of convex
function to the literature for the first time and drew atten-
tion to the fact that it seems to be the basis of the concept
of incremental function. In [2], Beckenbach has mentioned
about the concept of convexity and emphasized several fea-
tures of this useful function class. In [3], the authors have
focused the relations between convexity and Hermite-
Hadamard’s inequality. This study has led many researchers
to the link between convexity and integral inequalities,
which has guided studies in this field. Based on these studies,
many papers have been produced for different kinds of con-
vex functions. In [4], Akdemir et al. have proved several new
integral inequalities for geometric-arithmetic convex func-
tions via a new integral identity. Several new Hadamard’s
type integral inequalities have been established with applica-
tions to special means by Kavurmaci et al. in [5]. Therefore,
a similar argument has been carried out by Zhang et al. but
now for s − geometrically convex functions in [6]. On all of
these, Xi et al. have extended the challenge to m − and ðα,
mÞ − convex functions by providing Hadamard type
inequalities in [7].

Although fractional analysis has been known since
ancient times, it has recently become a more popular subject
in mathematical analysis and applied mathematics. The
adventure that started with the question of whether the solu-
tion will exist if the order is fractional in a differential equa-
tion has developed with many derivative and integral
operators. By defining the derivative and integral operators
in fractional order, the researchers who aimed to propose
more effective solutions to the solution of physical phenom-
ena have turned to new operators with general and strong
kernels over time. This orientation has provided mathemat-
ics and applied sciences several operators with kernel struc-
tures that differ in terms of locality and singularity, as well as
generalized operators with memory effect properties. The
struggle that started with the question of how the order in
the differential equation being a fraction would have conse-
quences has now evolved into the problem of how to explain
physical phenomena and find the most effective fractional
operators that will provide effective solutions to real-world
problems. Let us introduce some fractional derivative and
integral operators that have broken ground in fractional
analysis and have proven their effectiveness in different
fields by using by many researchers.

We will remember the Caputo-Fabrizio derivative oper-
ators. Also, we would like to note that the functions belong
to Hilbert spaces denoted by H1ð0, θ2Þ.

Definition 2. [8]. Let f ∈H1ð0, θ2Þ, θ2 > θ1, α ∈ ½0, 1�, then the
definition of the new Caputo fractional derivative is

CFDα f τ1ð Þ = M αð Þ
1 − α

ðτ1
κ1

f ′ sð Þ exp −
α

1 − αð Þ τ1 − sð Þ
� �

ds, ð4Þ

where MðαÞ is normalization function.

Depending on this interesting fractional derivative oper-
ator, the authors have defined the Caputo-Fabrizio fractional
integral operator as follows.

Definition 3. [9] Let f ∈H1ð0, θ2Þ, θ2 > θ1, α ∈ ½0, 1�, then the
definition of the left and right side of Caputo-Fabrizio frac-
tional integral is

CF
:::θ1 I

α
� �

τ1ð Þ = 1 − α

B αð Þ f τ1ð Þ + α

B αð Þ
ðτ1
θ1

f yð Þdy, ð5Þ

and

CFIαθ2

� �
τ1ð Þ = 1 − α

B αð Þ f τ1ð Þ + α

B αð Þ
ðκ2
τ1

f yð Þdy, ð6Þ

where BðαÞ is the normalization function.

The Caputo-Fabrizio fractional derivative, which is used
in dynamical systems, physical phenomena, disease models,
and many other fields, is a highly functional operator by def-
inition, but has a deficiency in terms of not meeting the ini-
tial conditions in the special case α = 1. The improvement to
eliminate this deficiency has been provided by the new
derivative operator developed by Atangana-Baleanu, which
has versions in the sense of Caputo and Riemann. In the
sequel of this paper, we will denote the normalization func-
tion with BðαÞ with the same properties with the MðαÞ
which is defined in Caputo-Fabrizio definition.

Definition 4. [10] Let f ∈H1ðθ1, θ2Þ, θ2 > κ1, α ∈ ½0, 1�, then
the definition of the new fractional derivative is given:

ABC
::::::θ1D

α
τ1

f τ1ð Þ½ � = B αð Þ
1 − α

ðτ1
a
f ′ xð ÞEα −α

τ1 − xð Þα
1 − αð Þ

� �
dx: ð7Þ

Definition 5. [10] Let f ∈H1ðθ1, θ2Þ, θ2 > κ1, α ∈ ½0, 1�, then
the definition of the new fractional derivative is given:

ABR
:::::::θ1D

α
τ1

f τ1ð Þ½ � = B αð Þ
1 − α

d
dτ1

ðτ1
θ1

f xð ÞEα −α
τ1 − xð Þα
1 − αð Þ

� �
dx:

ð8Þ

Equations (7) and (8) have a nonlocal kernel. Also, in
Equation (8), when the function is constant, we get zero.
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The associated fractional integral operator has been
defined by Atangana-Baleanu as follows.

Definition 6. [10] The fractional integral associate to the new
fractional derivative with nonlocal kernel of a function f ∈
H1ðκ1, θ2Þ as defined:

AB
::::θ1 I

α f τ1ð Þf g = 1 − α

B αð Þ f τ1ð Þ + α

B αð ÞΓ αð Þ
ðτ1
θ1

f yð Þ τ1 − yð Þα−1dy,

ð9Þ

where θ2 > θ1 and α ∈ ½0, 1�:

In [11], Abdeljawad and Baleanu introduced the right
hand side of integral operator as follows: the right fractional
new integral with ML kernel of order α ∈ ½0, 1� is defined by

ABI
α
θ2

� �
f τ1ð Þf g = 1 − α

B αð Þ f τ1ð Þ + α

B αð ÞΓ αð Þ

�
ðθ2
τ1

f yð Þ y − τ1ð Þα−1dy:
ð10Þ

In [9], Abdeljawad and Baleanu has presented some new
results based on fractional-order derivatives and their dis-
crete versions. Conformable integral operators have been
defined by Abdeljawad in [12]. This useful operator has been
used to prove some new integral inequalities in [13].
Another important fractional operator—Riemann-Liouville
fractional integral operators—have been used to provide
some new Simpson type integral inequalities in [14]. Ekinci
and Ozdemir have proved several generalizations by using
Riemann-Liouville fractional integral operators in [15], and
the authors have established some similar results with this
operator in [16]. In [17], Akdemir et al. have presented some
new variants of celebrated Chebyshev inequality via general-
ized fractional integral operators. The argument has been
proceed with the study of Rashid et al. (see [18]) that
involves new investigations related to generalized k-frac-
tional integral operators. In [19], Rashid et al. have pre-
sented some motivated findings that extend the argument
to the Hilbert spaces. For more information related to differ-
ent kinds of fractional operators, we recommend to consider
[20]. The applications of fractional operators have been
demonstrated by several researchers; we suggest to see the
papers [21–23].

The main motivation of this paper is to prove an integral
identity that includes the Atangana-Baleanu integral opera-
tor and to provide some new Bullen type integral inequalities
for differentiable convex and concave functions with the
help of this integral identity. Some special cases are also
considered.

2. Main Results

We will start with a new integral identity that will be used as
proofs of our main findings.

Lemma 7. Let f : ½θ1, θ2�⟶ℝ be differentiable function on
ðθ1, θ2Þ with κ1 < θ2. Then, we have the following identity for
Atangana-Baleanu fractional integral operators:

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f
θ1 + θ2

2

� �� �

−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABIαθ1+θ2ð Þ/2 f θ1ð Þ+AB

::::θ1 I
α f

κ1 + θ2
2

� �

+AB
:: θ1+θ2ð Þ/2ð ÞI

α f θ2ð Þ+ABIαθ2 f
θ1 + θ2

2

� ��

=
ð1
0

1 − τ1ð Þα − τα1ð Þf ′ 1 + τ1
2

θ1 +
1 − τ1
2

θ2

� �
dτ1

+
ð1
0
τα1 − 1 − τ1ð Þαð Þf ′ 1 + τ1

2
θ2 +

1 − τ1
2

κ1

� �
dτ1,

ð11Þ

where α, τ1 ∈ ½0, 1�, Γð:Þ is the gamma function, and BðαÞ is
the normalization function.

Proof. By adding I1 and I2, we have

I1 + I2 =
ð1
0

1 − τ1ð Þα − τα1ð Þf ′ 1 + τ1
2 θ1 +

1 − τ1
2 κ2

� �
dτ1

+
ð1
0
τα1 − 1 − τ1ð Þαð Þf ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �
dτ1:

ð12Þ

By using integration, we have

I1 =
ð1
0

1 − τ1ð Þα − τα1ð Þf ′ 1 + τ1
2 θ1 +

1 − τ1
2 κ2

� �
dτ1

= 1 − τ1ð Þα − τα1ð Þf 1 + τ1ð Þ/2ð Þθ1 + 1 − τ1ð Þ/2ð Þθ2ð Þdτ1
θ1 − θ2ð Þ/2

����
0

1

−
2α

κ2 − θ1

ð1
0

1 − τ1ð Þα−1 + τα−11
	 


f
1 + τ1
2 θ1 +

1 − τ1
2 κ2

� �
dτ1

= −
2

θ1 − θ2
f θ1ð Þ − 2

κ1 − θ2
f

θ1 + θ2
2

� �

−
2α

κ2 − θ1

ð1
0
1 − τ1ð Þα−1 f 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �
dτ1

−
2α

θ2 − θ1

ð1
0
τα−11 f

1 + τ1
2 θ1 +

1 − τ1
2 θ2

� �
dτ1

= 2
θ2 − θ1

f θ1ð Þ + f
κ1 + θ2

2

� �� �

−
2α+1α

κ2 − θ1ð Þα+1
ð θ1+κ2ð Þ/2

θ1

x − θ1ð Þα−1 f xð Þdx

−
2α+1α

θ2 − θ1ð Þα+1
ð θ1+θ2ð Þ/2

θ1

κ1 + θ2
2 − x

� �α−1
f xð Þdx:

ð13Þ

Multiplying both sides of (13) identity by ðκ2 − θ1Þα+1/
ð2α+1BðαÞΓðαÞÞ, we have
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θ2 − θ1ð Þα+1
2α+1B αð ÞΓ αð Þ I1 =

θ2 − θ1ð Þα
2αB αð ÞΓ αð Þ f θ1ð Þ + f

θ1 + κ2
2

� �� �

−
α

B αð ÞΓ αð Þ
ð θ1+θ2ð Þ/2

κ1

x − θ1ð Þα−1 f xð Þdx

−
α

B αð ÞΓ αð Þ
ð θ1+θ2ð Þ/2

θ1

θ1 + θ2
2 − x

� �α−1

� f xð Þdx:
ð14Þ

Similarly, by using integration, we get

I2 =
ð1
0
τα1 − 1 − τ1ð Þαð Þf ′ 1 + τ1

2 θ2 +
1 − τ1
2 κ1

� �
dτ1

= τα1 − 1 − τ1ð Þαð Þf 1 + τ1ð Þ/2ð Þθ2 + 1 − τ1ð Þ/2ð Þθ1ð Þdτ1
θ2 − θ1ð Þ/2

����
0

1

−
2α

κ2 − θ1

ð1
0
τα−11 + 1 − τ1ð Þα−1	 


f
1 + τ1
2 θ2 +

1 − τ1
2 κ1

� �
dτ1

= 2
θ2 − θ1

f θ2ð Þ + f
κ1 + θ2

2

� �� �

−
2α+1α

κ2 − θ1ð Þα+1
ðθ2

θ1+θ2ð Þ/2
x −

θ1 + θ2
2

� �α−1
f xð Þdx

−
2α+1α

θ2 − θ1ð Þα+1
ðθ2

θ1+θ2ð Þ/2
θ2 − xð Þα−1 f xð Þdx:

ð15Þ

Multiplying both sides of (13) identity by ðθ2 − κ1Þα+1/
ð2α+1BðαÞΓðαÞÞ, we get

θ2 − θ1ð Þα+1
2α+1B αð ÞΓ αð Þ I2

= θ2 − θ1ð Þα
2αB αð ÞΓ αð Þ f θ2ð Þ + f

θ1 + κ2
2

� �� �

−
α

B αð ÞΓ αð Þ
ðθ2

θ1+θ2ð Þ/2
x −

θ1 + κ2
2

� �α−1
f xð Þdx

−
α

B αð ÞΓ αð Þ
ðθ2

θ1+κ2ð Þ/2
θ2 − xð Þα−1 f xð Þdx:

ð16Þ

By adding identities (14) and (16), we obtain

θ2 − θ1ð Þα+1
2α+1B αð ÞΓ αð Þ I1 + I2½ �

= θ2 − θ1ð Þα + 1 − αð Þ2αΓ αð Þ
2αB αð ÞΓ αð Þ f θ1ð Þ + f

θ1 + θ2
2

� �� �

−
1 − α

B αð Þ f θ1ð Þ − α

B αð ÞΓ αð Þ
ð θ1+θ2ð Þ/2

θ1

x − θ1ð Þα−1 f xð Þdx

−
1 − α

B αð Þ f
θ1 + θ2

2

� �
−

α

B αð ÞΓ αð Þ
ð θ1+θ2ð Þ/2

θ1

� θ1 + θ2
2 − x

� �α−1
f xð Þdx + θ2 − θ1ð Þα + 1 − αð Þ2αΓ αð Þ

2αB αð ÞΓ αð Þ
� f θ2ð Þ + f

θ1 + θ2
2

� �� �
−
1 − α

B αð Þ f θ2ð Þ

−
α

B αð ÞΓ αð Þ
ðθ2

κ1+θ2ð Þ/2
θ2 − xð Þα−1 f xð Þdx

−
1 − α

B αð Þ f
θ1 + θ2

2

� �
−

α

B αð ÞΓ αð Þ
ðθ2

κ1+θ2ð Þ/2

� x −
θ1 + θ2

2

� �α−1
f xð Þdx:

ð17Þ

Using the definition of Atangana-Baleanu fractional
integral operators, we get

θ2 − θ1ð Þα+1
2α+1B αð ÞΓ αð Þ

�ð1
0

1 − τ1ð Þα − τα1ð Þf ′ 1 + τ1
2 θ1 +

1 − τ1
2 θ2

� �
dτ1

+
ð1
0
τα1 − 1 − τ1ð Þαð Þf ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �
dτ1

�

= θ2 − θ1ð Þα + 1 − αð Þ2αΓ αð Þ
2αB αð ÞΓ αð Þ f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2

2

� �� �

− ABIαθ1+θ2ð Þ/2 f κ1ð Þ+AB
::::θ1 I

α f
θ1 + θ2

2

� �

+AB
:: θ1+θ2ð Þ/2I

α f θ2ð Þ + ABI
α
θ2
f

θ1 + θ2
2

� ��
:

ð18Þ

☐☐

Theorem 8. Let f : ½θ1, θ2�⟶ℝ be differentiable function
on ðθ1, θ2Þ with κ1 < θ2 and f ′ ∈ L1½θ1, θ2�. If j f ′j is a convex
function, we have the following inequality for Atangana-
Baleanu fractional integral operators

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f

θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ+AB

∷∷θ1
Iα f

κ1 + θ2
2

� �

+AB
:: θ1+θ2ð Þ/2I

α f θ2ð Þ + ABI
α

θ2
f

θ1 + θ2
2

� �������
≤
2 f ′ θ1ð Þ�� �� + f ′ θ2ð Þ�� ��h i

α + 1
,

ð19Þ

where α ∈ ½0, 1� and BðαÞ is the normalization function.
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Proof. By using Lemma 7, we can write

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2

2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ+AB

::::θ1I
α f

κ1 + θ2
2

� �

+AB
:: θ1+θ2ð Þ/2I

α f θ2ð Þ + ABI
α

θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þα f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����dτ1

+
ð1
0
τα1 f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����dτ1

+
ð1
0
τα1 f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����dτ1

+
ð1
0
1 − τ1ð Þα f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����dτ1:

ð20Þ

By using convexity of j f ′j, we get

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2

2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ+AB

::::θ1I
α f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þα 1 + τ1

2 f ′ θ1ð Þ�� �� + 1 − τ1
2 f ′ θ2ð Þ�� ��� �

dτ1

+
ð1
0
τα1

1 + τ1
2 f ′ θ1ð Þ�� �� + 1 − τ1

2 f ′ θ2ð Þ�� ��� �
dτ1

+
ð1
0
τα1

1 + τ1
2 f ′ θ2ð Þ�� �� + 1 − τ1

2 f ′ κ1ð Þ�� ��� �
dτ1

+
ð1
0
1 − τ1ð Þα 1 + τ1

2 f ′ θ2ð Þ�� �� + 1 − τ1
2 f ′ θ1ð Þ�� ��� �

dτ1:

ð21Þ

By computing the above integral, we obtain

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
∷ðθ1þθ2Þ=2I

α
f θ2ð Þ+ABIαθ2 f

θ1 + θ2
2

� �������
≤
2 f ′ θ1ð Þ�� �� + f ′ θ2ð Þ�� ��h i

α + 1 ,

ð22Þ

and the proof is completed.☐☐

Corollary 9. In Theorem 8, if we choose α = 1, we obtain

f θ1ð Þ + f θ2ð Þ + 2f θ1 + κ2ð Þ/2ð Þ
θ2 − θ1

−
4

θ2 − κ1ð Þ2
ðθ2
θ1

f xð Þdx
�����

�����
≤

f ′ θ1ð Þ�� �� + f ′ κ2ð Þ�� ��
2

:

ð23Þ

Theorem 10. Let f : ½θ1, θ2�⟶ℝ be differentiable function
on ðθ1, θ2Þ with κ1 < θ2 and f ′ ∈ L1½θ1, θ2�. If j f ′j

q
is a convex

function, then we have the following inequality for Atangana-
Baleanu fractional integral operators:

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f

θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤

2

αp + 1ð Þ1/p
"

3 f ′ θ1ð Þ�� ��q + f ′ κ2ð Þ�� ��q
4

 !1/q

+ 3 f ′ θ2ð Þ�� ��q + f ′ κ1ð Þ�� ��q
4

 !1/q#
,

ð24Þ

where p−1 + q−1 = 1, α ∈ ½0, 1�, q > 1, and BðαÞ is the normal-
ization function.

Proof. By using the identity that is given in Lemma 7, we
have

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2

2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þα f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����dτ1

+
ð1
0
τα1 f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����dτ1

+
ð1
0
τα1 f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����dτ1

+
ð1
0
1 − τ1ð Þα f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����dτ1:

ð25Þ
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By applying Hölder inequality, we have

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2

2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þαpdτ1

� �1/p ð1
0
f ′ 1 + τ1

2 κ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

� �1/q

+
ð1
0
ταp1 dτ1

� �1/p ð1
0
f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

� �1/q

+
ð1
0
ταp1 dτ1

� �1/p ð1
0
f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����
q

dτ1

� �1/q

+
ð1
0
1 − τ1ð Þαpdτ1

� �1/p ð1
0
f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����
q

dτ1

� �1/q
:

ð26Þ

By using convexity of j f ′jq, we obtain

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þαpdτ1

� �1/p�ð1
0

1 + τ1
2 f ′ κ1ð Þ�� ��q�

+ 1 − τ1
2 f ′ κ2ð Þ�� ��q�dv�1/q

+
ð1
0
ταp1 dτ1

� �1/p

�
ð1
0

1 + τ1
2 f ′ κ1ð Þ�� ��q + 1 − τ1

2 f ′ κ2ð Þ�� ��q� �
dτ1

� �1/q

+
ð1
0
ταp1 dτ1

� �1/p�ð1
0

� 1 + τ1
2 f ′ κ2ð Þ�� ��q

+ 1 − τ1
2 f ′ κ1ð Þ�� ��q�dτ1

�1/q
+
ð1
0
1 − τ1ð Þαpdτ1

� �1/p

�
ð1
0

1 + τ1
2 f ′ κ2ð Þ�� ��q + 1 − τ1

2 f ′ κ1ð Þ�� ��q� �
dτ1

� �1/q
:

ð27Þ

By calculating the integrals that is in the above inequal-
ities, we get desired result.☐☐

Corollary 11. In Theorem 10, if we choose α = 1, we obtain

f θ1ð Þ + f θ2ð Þ + 2f κ1 + θ2ð Þ/2ð Þ
θ2 − θ1

−
4

κ2 − θ1ð Þ2
ðθ2
θ1

f xð Þdx
�����

�����

≤
1

p + 1ð Þ1/p
"

3 f ′ θ1ð Þ�� ��q + f ′ κ2ð Þ�� ��q
4

 !1/q

+ 3 f ′ θ2ð Þ�� ��q + f ′ θ1ð Þ�� ��q
4

 !1/q#
:

ð28Þ

Theorem 12. Let f : ½θ1, θ2�⟶ℝ be differentiable function
on ðθ1, θ2Þ with κ1 < θ2 and f ′ ∈ L1½θ1, θ2�. If j f ′j

q
is a convex

function, then we have the following inequality for Atangana-
Baleanu fractional integral operators:

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f
θ1 + θ2

2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ+ABIαθ2 f

θ1 + θ2
2

� �������
≤

1
α + 1

� �1− 1/qð Þ"� α + 3
2 α + 1ð Þ α + 2ð Þ f ′ κ1ð Þ�� ��q

+ 1
2 α + 2ð Þ f ′ κ2ð Þ�� ��q�1/q

+
�

2α + 3
2 α + 1ð Þ α + 2ð Þ f ′ θ1ð Þ�� ��q

+ 1
2 α + 1ð Þ α + 2ð Þ f ′ θ2ð Þ�� ��q�1/q

+ 2α + 3
2 α + 1ð Þ α + 2ð Þ f ′ θ2ð Þ�� ��q + 1

2 α + 1ð Þ α + 2ð Þ f ′ θ1ð Þ�� ��q� �1/q

+ α + 3
2 α + 1ð Þ α + 2ð Þ f ′ θ2ð Þ�� ��q + 1

2 α + 2ð Þ f ′ θ1ð Þ�� ��q� �1/q
#
,

ð29Þ

where α ∈ ½0, 1�, q ≥ 1, and BðαÞ is the normalization function.

Proof. By Lemma 7, we get

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þα f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����dτ1

+
ð1
0
tα f ′ 1 + τ1

2 κ1 +
1 − τ1
2 θ2

� �����
����dτ1

+
ð1
0
τα1 f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����dτ1

+
ð1
0
1 − τ1ð Þα f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����dτ1:

ð30Þ
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By applying power mean inequality, we get

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ+AB

::::θ1 I
α f

κ1 + θ2
2

� �

+AB
:: θ1+θ2ð Þ/2I

α f θ2ð Þ + ABI
α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þαdτ1

� �1− 1/qð Þ�ð1
0
1 − τ1ð Þα f ′

� 1 + τ1
2 θ1

����
+ 1 − τ1

2 θ2

�����
q

dτ1

�1/q
+
ð1
0
τα1dτ1

� �1− 1/qð Þ

�
ð1
0
τα1 f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

� �1/q

+
ð1
0
τα1dτ1

� �1− 1/qð Þ ð1
0
τα1 f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����
q

dτ1

� �1/q

+
ð1
0
1 − τ1ð Þαdτ1

� �1− 1/qð Þ�ð1
0
1 − τ1ð Þα f ′

� 1 + τ1
2 θ2

����
+ 1 − τ1

2 θ1

�����
q

dτ1

�1/q
:

ð31Þ

By using convexity of j f ′jq, we obtain

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABIαθ1+θ2ð Þ/2 f θ1ð Þ+AB

∷∷θ1
Iα f

κ1 + θ2
2

� �

+AB
∷ θ1+θ2ð Þ/2I

α f θ2ð Þ+ABIαθ2 f
θ1 + θ2

2

� �������
≤
ð1
0
1 − τ1ð Þαdτ1

� �1− 1/qð Þ�ð1
0
1 − τ1ð Þα

� 1 + τ1
2 f ′ θ1ð Þ�� ��q

+ 1 − τ1
2 f ′ θ2ð Þ�� ��q�dτ1

�1/q
+
ð1
0
τα1dτ1

� �1− 1/qð Þ

�
ð1
0
τα1

1 + τ1
2 f ′ θ1ð Þ�� ��q + 1 − τ1

2 f ′ θ2ð Þ�� ��q� �
dτ1

� �1/q

+
ð1
0
τα1dτ1

� �1− 1/qð Þ�ð1
0
τα1

� 1 + τ1
2 f ′ θ2ð Þ�� ��q

+ 1 − τ1
2 f ′ θ1ð Þ�� ��q�dτ1

�1/q
+
ð1
0
1 − τ1ð Þαdτ1

� �1− 1/qð Þ

�
ð1
0
1 − τ1ð Þα 1 + τ1

2 f ′ θ2ð Þ�� ��q + 1 − τ1
2 f ′ θ1ð Þ�� ��q� �

dτ1

� �1/q
:

ð32Þ

By computing the above integrals, the proof is com-
pleted.☐☐

Corollary 13. In Theorem 12, if we choose α = 1, we obtain

2 f θ1ð Þ + f θ2ð Þ + 2f κ1 + θ2ð Þ/2ð Þ½ �
θ2 − θ1

−
8

θ2 − θ1ð Þ2
ðθ2
θ1

f xð Þdx
�����

�����
≤

1
2

� �1− 1/qð Þ" 2 f ′ θ1ð Þ�� ��q + f ′ θ2ð Þ�� ��q
6

 !1/q

+ 5 f ′ θ1ð Þ�� ��q + f ′ θ2ð Þ�� ��q
12

 !1/q

+ 5 f ′ θ2ð Þ�� ��q + f ′ θ1ð Þ�� ��q
12

 !1/q

+ 2 f ′ θ2ð Þ�� ��q + f ′ θ1ð Þ�� ��q
6

 !1/q#
:

ð33Þ

Theorem 14. Let f : ½θ1, θ2�⟶ℝ be differentiable function
on ðθ1, θ2Þ with κ1 < θ2 and f ′ ∈ L1½θ1, θ2�: If j f ′j

q
is a convex

function, then we have the following inequality for Atangana-
Baleanu fractional integral operators:

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f

θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
∷ðθ1þθ2Þ=2I

α
f θ2ð Þ+ABIαθ2 f

θ1 + θ2
2

� �������
≤

4
p αp + 1ð Þ +

2 f ′ κ1ð Þ�� ��q + f ′ θ2ð Þ�� ��qh i
q

,

ð34Þ

where p−1 + q−1 = 1, α ∈ ½0, 1�, q > 1, and BðαÞ is the normal-
ization function.

Proof. By using identity that is given in Lemma 7, we get

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þα f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����dτ1
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+
ð1
0
τα1 f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����dτ1

+
ð1
0
τα1 f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����dτ1

+
ð1
0
1 − τ1ð Þα f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����dτ1:

ð35Þ

By using the Young inequality as xy ≤ ð1/pÞxp + ð1/qÞyq

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ+ABIαθ2 f

θ1 + θ2
2

� �������
≤
1
p

ð1
0
1 − τ1ð Þαpdτ1 +

1
q

ð1
0
f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

+ 1
p

ð1
0
ταp1 dτ1 +

1
q

ð1
0
f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

+ 1
p

ð1
0
ταp1 dτ1 +

1
q

ð1
0
f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����
q

dτ1

+ 1
p

ð1
0
1 − τ1ð Þαpdτ1 +

1
q

ð1
0
f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����
q

dτ1:

ð36Þ

By using convexity of j f ′jq and by a simple computation,
we have the desired result.☐☐

Corollary 15. In Theorem 14, if we choose α = 1, we obtain

f θ1ð Þ + f θ2ð Þ + 2f θ1 + κ2ð Þ/2ð Þ
θ2 − θ1

−
4

θ2 − κ1ð Þ2
ðθ2
θ1

f xð Þdx
�����

�����
≤

2
p2 + p

+ f ′ θ1ð Þ�� ��q + f ′ θ2ð Þ�� ��q
q

:

ð37Þ

Theorem 16. Let f : ½θ1, θ2�⟶ℝ be differentiable function
on ðθ1, θ2Þ with κ1 < θ2 and f ′ ∈ L1½θ1, θ2�. If j f ′j is a concave
for q > 1, then we have

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f

θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
∷ðθ1þθ2Þ=2I

α
f θ2ð Þ+ABIαθ2 f

θ1 + θ2
2

� �������

≤
1

α + 1

� ��
f ′ θ1 α + 3ð Þ + θ2 α + 1ð Þ

2 α + 2ð Þ
� �����

����
+ f ′ θ1 2α + 3ð Þ + θ2

2 α + 2ð Þ
� �����

���� + f ′ θ2 2α + 3ð Þ + θ1
2 α + 2ð Þ

� �����
����

+ f ′ κ2 α + 3ð Þ + θ1 α + 1ð Þ
2 α + 2ð Þ

� �����
����
�
, ð38Þ

where α ∈ ½0, 1� and BðαÞ is the normalization function.

Proof. From Lemma 7 and the Jensen integral inequality, we
have

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þαdτ1

� �

� f ′
Ð 1
0 1 − τ1ð Þα 1 + τ1ð Þ/2ð Þθ1 + 1 − τ1ð Þ/2ð Þθ2ð Þdτ1Ð 1

0 1 − τ1ð Þαdτ1

 !�����
�����

+
ð1
0
τα1dτ1

� �
f ′

Ð 1
0τ

α
1 1 + τ1ð Þ/2ð Þθ1 + 1 − τ1ð Þ/2ð Þθ2ð Þdτ1Ð 1

0τ
α
1dτ1

 !�����
�����

+
ð1
0
τα1dτ1

� �
f ′

Ð 1
0τ

α
1 1 + τ1ð Þ/2ð Þθ2 + 1 − τ1ð Þ/2ð Þθ1ð Þdτ1Ð 1

0τ
α
1dτ1

 !�����
�����

+
ð1
0
1 − τ1ð Þαdτ1

� �

� f ′
Ð 1
0 1 − τ1ð Þα 1 + τ1ð Þ/2ð Þθ2 + 1 − τ1ð Þ/2ð Þθ1ð Þdτ1Ð 1

0 1 − τ1ð Þαdτ1

 !�����
�����:
ð39Þ

By computing the above integrals, we have

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2

2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABIαθ1+θ2ð Þ/2 f θ1ð Þ+AB

∷∷θ1
Iα f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤

1
α + 1

� ��
f ′ θ1 α + 3ð Þ + θ2 α + 1ð Þ

2 α + 2ð Þ
� �����

����
+ f ′ θ1 2α + 3ð Þ + θ2

2 α + 2ð Þ
� �����

���� + f ′ θ2 2α + 3ð Þ + θ1
2 α + 2ð Þ

� �����
����

+ f ′ κ2 α + 3ð Þ + θ1 α + 1ð Þ
2 α + 2ð Þ

� �����
����
�
:

ð40Þ

So, the proof is completed.☐☐
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Corollary 17. In Theorem 16, if we choose α = 1, we obtain

f θ1ð Þ + f θ2ð Þ + 2f κ1 + θ2ð Þ/2ð Þ
θ2 − θ1

−
4

κ2 − θ1ð Þ2
ðθ2
θ1

f xð Þdx
�����

�����
≤

1
4

� ��
f ′ 2θ1 + θ2

3

� �����
���� + f ′ 5θ1 + θ2

6

� �����
����

+ f ′ 5θ2 + θ1
6

� �����
���� + f ′ 2θ2 + θ1

3

� �����
����
�
:

ð41Þ

Theorem 18. Let f : ½θ1, θ2�⟶ℝ be differentiable function
on ðθ1, θ2Þ with κ1 < θ2 and f ′ ∈ L1½θ1, θ2�. If j f ′j

q
is a con-

cave function, we have

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f

θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α

θ2
f

θ1 + θ2
2

� �������
≤

2

αp + 1ð Þ1/p
f ′ 3θ1 + θ2

4

� �����
���� + f ′ 3θ2 + θ1

4

� �����
����

� �
,

ð42Þ

where p−1 + q−1 = 1, α ∈ 0, 1�, and q > 1.

Proof. By using the Lemma 7 and Hölder integral inequality,
we can write

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1 f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2

2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2ð Þ/2 f θ1ð Þ + AB

::::θ1 I
α
f

κ1 + θ2
2

� �

+ AB
::ðθ1þθ2Þ=2I

α
f θ2ð Þ + ABI

α
θ2
f

θ1 + θ2
2

� �������
≤
ð1
0
1 − τ1ð Þαpdτ1

� �1/p ð1
0
f ′ 1 + τ1

2 κ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

� �1/q

+
ð1
0
ταp1 dτ1

� �1/p ð1
0
f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

� �1/q

+
ð1
0
ταp1 dτ1

� �1/p ð1
0
f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����
q

dτ1

� �1/q

+
ð1
0
1 − τ1ð Þαpdτ1

� �1/p ð1
0
f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����
q

dτ1

� �1/q
:

ð43Þ

By using concavity of j f ′jq and Jensen integral inequal-
ity, we get

ð1
0
f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

=
ð1
0
τ01 f ′ 1 + τ1

2 θ1 +
1 − τ1
2 θ2

� �����
����
q

dτ1

≤
ð1
0
τ01dτ1

� �
f ′

Ð 1
0τ

0
1 1 + τ1ð Þ/2ð Þθ1 + 1 − τ1ð Þ/2ð Þθ2ð Þdτ1Ð 1

0τ
0
1dτ1

 !�����
�����
q

= f ′ 3θ1 + θ2
4

� �����
����
q

:

ð44Þ

Similarly,

ð1
0
f ′ 1 + τ1

2 θ2 +
1 − τ1
2 θ1

� �����
����
q

dτ1 ≤ f ′ 3θ2 + θ1
4

� �����
����
q

,

ð45Þ

so we obtain

2 θ2 − θ1ð Þα + 1 − αð Þ2α+1Γ αð Þ
θ2 − θ1ð Þα+1

f κ1ð Þ + f θ2ð Þ + 2f θ1 + θ2
2

� �� ������
−
2α+1B αð ÞΓ αð Þ
θ2 − κ1ð Þα+1

�
ABI

α
θ1+θ2/2 f θ1ð Þ+AB

∷∷θ1
Iα f

κ1 + θ2
2

� �

+ AB
∷θ1þθ2=2I

α
f θ2ð Þ+ABIαθ2 f

θ1 + θ2
2

� �������
≤

2
αp + 1ð Þ1/p

f ′ 3θ1 + θ2
4

� �����
���� + f ′ 3θ2 + θ1

4

� �����
����

� �
:

ð46Þ

☐☐

Corollary 19. In Theorem 18, if we choose α = 1, we obtain

f θ1ð Þ + f θ2ð Þ + 2f κ1 + θ2ð Þ/2ð Þ
θ2 − θ1

−
4

κ2 − θ1ð Þ2
ðθ2
θ1

f xð Þdx
�����

�����
≤

1

p + 1ð Þ1/p f ′ 3θ1 + θ2
4

� �����
���� + f ′ 3θ2 + θ1

4

� �����
����

� �
:

ð47Þ

3. Conclusion

In this study, an integral identity including Atangana-
Baleanu integral operators has been proved. Some integral
inequalities are established by using Hölder inequality,
power-mean inequality, Young inequality, and convex func-
tions with the help of Lemma 7 which has the potential to
produce Bullen type inequalities. Some special cases of the
results in this general form have been pointed out.
Researchers can establish new equations such as the integral
identity in the study and reach similar inequalities of these
equality-based inequalities.
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