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Fractional integration for irregular martingales∗
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Abstract

We suggest two versions of the Hardy–Littlewood–Sobolev inequality for discrete time martingales.

In one version, the fractional integration operator is a martingale transform, however, it may vanish

if the filtration is excessively irregular; the second version lacks the martingale property while being

analytically meaningful for an arbitrary filtration.

1 Martingale fractional integration

The classical Hardy–Littlewood–Sobolev inequality plays an important role in analysis, see e.g. Chapter 5
in [14]. It says that the Riesz potential of order α, i.e. the Fourier multiplier with the symbol | · |−α,
maps Lp(R

d) to Lq(R
d) provided 1

p − 1
q = α

d and 1 < p < q < ∞. The Riesz potential is often referred
to as the fractional integration operator. As many other objects in Harmonic Analysis, the fractional
integration has probabilistic interpretation. In [16], Watari transferred this notion to dyadic martingales
and proved the corresponding version of the Hardy–Littlewood–Sobolev inequality; see also [5] and [6] for
related results. In [9], these ideas were generalized to the setting of regular filtrations and martingales.

Consider the atomless probability space (Ω,Σ, P ) equipped with the filtration F = {Fn}
∞
n=0. Assume

that each σ-algebra Fn is generated by at most countable number of atoms and denote by A(Fn) the
set of atoms of Fn. We further assume that the filtration F separates the points of Ω in the sense
that ∪nFn generates Σ. The filtration F is called regular provided there exists ρ > 0 such that any
atoms w ∈ A(Fn) and v ∈ A(Fn+1) such that v ⊂ w satisfy P (v) > ρP (w). This is the same as to say
that the inequality ρFn+1 6 Fn is true for any non-negative martingale F adapted to F . We denote the
martingale differences of F by ∆Fn, i.e. ∆Fn = Fn − Fn−1 whenever n > 1. It is also convenient to
introduce auxiliary functions bn:

bn =
∑

w∈A(Fn)

P (w)χw . (1.1)

Consider the operator Iα, α ∈ (0, 1), acting on martingales by the rule

Iα[F ] =

∞
∑

n=1

bαn−1∆Fn. (1.2)

Note that this operator is a martingale transform in the sense that if we truncate the summation and
consider the sequence

Iα[F ]N =

N
∑

n=1

bαn−1∆Fn, (1.3)
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then this sequence forms a martingale adapted to F . Nakai and Sadasue in [9] proved that Iα is Lp → Lq

continuous provided 1
p − 1

q = α, 1 < p < q < ∞, and F is a regular filtration (see Theorem 5.1 in [9]).

As we have already said, the dyadic case (i.e. when each atom in A(Fn) is split into two atoms of equal
probability in A(Fn+1)) had been already considered by Watari in [16]; see [1] how to link rigorously the
dyadic martingale Hardy–Littlewood–Sobolev inequality to the classical Euclidean version, that paper
also contains information on generalization to the setting of semigroups of operators.

It is easy to see by applying Iα to single step martingales (i.e. martingales for which only one
martingale difference ∆Fn is non-zero) that without the regularity assumption the operator Iα may not
be continuous as an Lp → Lq operator (see Remark 2 below). On the other hand, the papers [3] and [10]
provide results about the sharp constants in weak-type inequalities for operators similar to Iα on uniform
filtrations (i.e. each atom in A(Fn) is split into m atoms of equal probability in A(Fn+1); here m
is independent of w and n); the corresponding constants appear to be uniformly bounded with respect
to m. This hints there must be a reasonable (i.e. Lp → Lq continuous) generalization of the operator (1.2)
to the setting of irregular filtrations.

Consider the modified functions (1.1):

b̃n(x) = inf{bn(y) | y ∈ ω}, x ∈ ω ∈ A(Fn−1). (1.4)

Note that b̃n is Fn−1-measurable and for regular filtrations b̃n is comparable to bn−1. Thus, the operator

Ĩα[F ] =

∞
∑

n=1

b̃αn∆Fn (1.5)

generalizes (1.2). Note that this operator is also a martingale transform. Unfortunately Ĩα vanishes
if w ∈ A(Fn) contains infinitely many atoms of Fn+1. The operator

IAα [F ] =

∞
∑

n=1

bαn∆Fn (1.6)

is no longer a martingale transform; this operator is more interesting from the analytic point of view. In
the case where F is uniform, the three operators Iα, Ĩα, and IAα are multiples of each other.

Theorem 1. Let α ∈ (0, 1), 1 < p < q < ∞, and 1
p−

1
q = α. The operators Ĩα and IAα map Lp martingales

to Lq continuously.

Remark 2. The theorem above is sharp in the following sense. Let w ∈ A(Fn) and v ∈ A(Fn+1) be such

that v ⊂ w. Consider the martingale F given by the rule

Fn+1(x) =











1
P (v) , x ∈ v;

− 1
P (w)−P (v) , x ∈ w \ v;

0, x /∈ w,

(1.7)

with Fm = 0 when m < n + 1 and Fm = Fn+1 when m > n + 1. The quantities ‖ IAα [F ]‖Lq
and ‖F‖Lp

are comparable provided P (v) 6 1
2P (w).

The purpose of this note is to prove Theorem 1. We will provide a detailed proof for the operator IAα ,
the proof for Ĩα follows the same steps with several shortcuts possible. The proofs in [9] and [16] establish
an a priori stronger inequality

‖ Iα[F ]∗‖Lq
. ‖F‖Lp

, (1.8)

here the star sign means the martingale maximal function: G∗(w) = supn |Gn(w)|; the notation A . B
is short for A 6 CB where the constant C is uniform with respect to the parameters that are clear from
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the context. We do not know whether a similar maximal inequality is true for the operator IAα (it does
not follow from Theorem 1 since IAα is not a martingale transform). Our proof will go as follows. We will
establish the endpoint inequalities

‖ IAα [F ]‖Lq,∞
. ‖F‖L1

, q =
1

1− α
; (1.9)

‖ IAα [F ]‖L∞
. ‖F‖Lp,1

, p =
1

α
(1.10)

and then interpolate. This way of proving the Hardy–Littlewood–Sobolev inequality is related to O’Neil’s
inequality, see p. 38 in [11].

Before we pass to details, we briefly describe the motivation. The Hardy–Littlewood–Sobolev inequal-
ity was designed by Sobolev in [13] as an instrument to prove what is now called the Sobolev embedding
theorem. In the last two decades, there was a strong interest in the so-called Bourgain–Brezis inequali-
ties (originated in [4]). These inequalities somehow extend the Sobolev embedding theorem in the limit
case p = 1 to the setting of more complicated differential operators (we refer the reader to the survey [12]
for more information); there are still many open questions in this field. In [2], a probabilistic model for
Bourgain–Brezis inequalities was suggested; it appeared that, in a sense, these inequalities naturally ex-
tend Watari’s theorem (for uniform not necessarily dyadic filtrations) to the limit case p = 1 by imposing
linear constraints on each step of the martingale (see [15] as well). It is now natural to try to find the way
back from discrete uniform martingales to the classical Euclidean setting, and the extension to the class
of arbitrary martingales seems desirable. We have not found such an extension for a simpler phenomenon
(that is the Hardy–Littlewood–Sobolev inequality) in the literature, and hope that the present paper fills
this gap; it might be thought of as the first step towards the theory of Bourgain–Brezis inequalities for
irregular martingales.

We are grateful to Adam Osekowski, Pavel Zatitskii, and Ilya Zlotnikov for attention to our work.

2 Functional analysis preparation

Let us first comment on our use of the Lp norms. The scalars in our considerations are always real,

however, the reasonings work for the complex case as well. We understand the operator IAα in the
following sense: one takes a summable random variable F = F∞, constructs the martingale F (which we
denote by the same letter) by the formula

Fn = E(F∞ | Fn), (2.1)

then computes the sum (1.6), and obtains the random variable IAα [F ]. So, we consider our operators as
linear mappings between function spaces. The classical martingale mappings do not differ from these
when p > 1 (by Doob’s convergence theorem). Our standpoint allows to verify the boundedness of linear
operators on simple functions (by a simple function we mean a random variable that is Fn-measurable
for some large n) and martingales since any summable random variable allows approximation in L1 by
simple random variables. One may derive the almost sure convergence of the series (1.5) and (1.6) and
corresponding inequalities for arbitrary Lp martingales F from Theorem 1 by a routine limiting argument.

We will be using Lorentz spaces; we refer the reader to [8] for a detailed exposition. A Lorentz
space Lp,q, 1 6 p < ∞, is the space of measurable random variables f such that the quasi-norm

‖f‖Lp,q
=

∥

∥

∥
t
(

P (|f | > t)
)

1
p

∥

∥

∥

Lq(R+,dt/t)
(2.2)

is finite (here dt is the Lebesgue measure on the line). The quasi-norm above may violate the triangle
inequality if q 6= p, however, the Lorentz space Lp,q may be equipped with an equivalent norm when p > 1.
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In particular, it may be treated as a Banach space. We will use this fact several times referring to it as
"Lorentz spaces are normable".

Lemma 3. If q ∈ (1,∞), then (Lq,∞)∗ ⊃ Lq′,1, where q′ = q
q−1 is the conjugate exponent to q.

The lemma states that each function f ∈ Lq′,1 defines a continuous linear functional on Lq,∞ according
to the standard formula g 7→ Efg. The lemma is a consequence of the formula

L∗
q′,1 = Lq,∞, q > 1, (2.3)

(see Theorem 1.4.17 in [8]) and the fact that the second dual contains the Banach space itself (here we
use that Lorentz spaces are normable). The complete description of the dual space (Lq,∞)∗ is given in [7].

Lemma 4. Inequality (1.9) is true.

Lemma 5. Inequality (1.10) is true.

The proofs of the two lemmas above are presented in Section 3 below. Theorem 1 follows from them
by standard interpolation, e.g. by Theorem 1.4.19 in [8]. We end this section with some "soft" functional
analysis preparation to the proofs of the lemmas. First, we would like to dualize inequality (1.10), and
for that we need to compute the conjugate operator (IAα )

∗. We do not care about domains of operators
and convergence since we are allowed to work with simple functions and martingales. Let Mn be the
operator of multiplication by bαn, let us also write EnF = E(F | Fn) for brevity. The Riesz potential IAα
can be rewritten within new terms as

IAα [F ] =
∞
∑

n=1

Mn(En − En−1). (2.4)

Note that the operators Mn and En, n = 1, . . . ,∞, are self-adjoint. Therefore, the formal conjugate
operator to IAα may be expressed as

(IAα )
∗ =

∞
∑

n=1

(En − En−1)Mn. (2.5)

We understand this identity in the sense that the formula

E IAα [F ]G = EF (IAα )
∗[G] (2.6)

is true provided both functions F and G are simple. There is a peculiarity here: the conjugate operator
does not map simple functions to simple functions; however, as we will prove in the next section (see
formulas (3.8), (3.9), and (3.16)), it maps simple functions to bounded ones, which allows to work with
the formula (2.6). Therefore, Lemma 5 is reduced to the inequality

‖(IAα )
∗[G]‖Lq,∞

. ‖G‖L1
, q =

1

1− α
, (2.7)

via Lemma 3.
Thus, we are left with proving the L1 → Lq,∞ boundedness of two operators (namely, IAα and (IAα )

∗).
We end our preparation with a simple lemma about operators from L1 to a Banach space, which is merely
a manifestation of the principle that the extremal points in the unit ball of the space of measures are the
delta measures.

Definition. A function F is called atomic provided it is a scalar multiple of a characteristic function of

an atom w ∈ A(Fn) for some n.
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Lemma 6. Let T be a linear operator initially defined on the set of simple functions and mapping them

to some Banach space X. Assume there exists c > 0 such that for any atomic F the inequality

‖TF‖X 6 c‖F‖L1
(2.8)

holds true. Then, the same estimation is valid for any simple function F .

Proof. Let F be an arbitrary simple function. Without loss of generality, let F be FN -measurable. Then,
we may write

F =
∞
∑

k=1

akχwk
, (2.9)

where A(FN ) = {wk | k ∈ N} (possibly, there is only a finite number of atoms in FN ). Let gk := akχwk
,

note that the gk are atomic. It remains to use the triangle inequality

‖TF‖X =
∥

∥

∥

∞
∑

k=1

Tgk

∥

∥

∥

X
6

∞
∑

k=1

‖Tgk‖X 6 c

∞
∑

k=1

‖gk‖L1
= c‖F‖L1

. (2.10)

3 Two weak type inequalities

Proof of Lemma 4. According to Lemma 6 and the fact that Lorentz spaces are normable, it suffices to
verify (1.9) for atomic functions F only. Consider a sequence of atoms

Ω = w0 ⊃ w1 ⊃ . . . ⊃ wN , wn ∈ A(Fn), (3.1)

and an atomic function F = aχwN
. Let P (wn) = rn, for n = 0, . . . , N . Without loss of generality, we

may assume

Fn =
1

rn
χwn

, n = 0, 1, . . . , N, (3.2)

i.e. we set a = r−1
N . Now let us write the action of IAα explicitly:

IAα [F ](x) =

n
∑

k=1

rαk

(

1

rk
−

1

rk−1

)

− bαn+1(x)
1

rn
, x ∈ wn \ wn+1, n = 1, . . . , N − 1. (3.3)

In the case x ∈ wN , the formula is slightly simpler:

IAα [F ](x) =

N
∑

k=1

rαk

(

1

rk
−

1

rk−1

)

. (3.4)

We start with the estimate

rαk

(

1

rk
−

1

rk−1

)

= rαk

rk−1
∫

rk

1

x2
dx 6

rk−1
∫

rk

xα−2dx. (3.5)

Using formula (3.3) and the estimate bn+1(x) 6 rn for x ∈ wn \ wn+1, we obtain

∣

∣

∣
IAα [F ](x)

∣

∣

∣
6

1
∫

rn

xα−2dx+ rα−1
n =

1− rα−1
n

α− 1
+ rα−1

n . r
− 1

q
n (3.6)
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for x ∈ wn \ wn+1. For x ∈ wN , we also have | IAα [F ]| . r
− 1

q

N .
Recall that (1.9) means that for every λ > 0

P
(

| IAα [F ]| > λ
)

. λ−q (3.7)

since we have ‖F‖L1
= 1. It follows from (3.6) that if | IAα [F ](x)| > λ, then x ∈ wn with λ . r

− 1
q

n , which
immediately leads to (3.7).

Proof of Lemma 5. It suffices to verify (2.7) for an atomic function G. Let G = r−1
N χwN

as in the proof

of the previous lemma. We split the operator (IAα )
∗ given by formula (2.5), into two parts:

J1 =

N
∑

n=1

(En − En−1)Mn, (3.8)

J2 =
∑

n>N

(En − En−1)Mn. (3.9)

It suffices to prove the inequalities

sup
λ>0

λ
(

P
(

| J1[G]| > λ
)

)
1
q

. 1; (3.10)

sup
λ>0

λ
(

P
(

| J2[G]| > λ
)

)
1
q

. 1. (3.11)

We begin with the estimate for the operator J1. Note that for n 6 N , the equality MnG = rαnG holds
true, which helps to rewrite J1[G] in the following way (we use the same notation as in the proof of the
previous lemma: wn is the atom of Fn containing wN , n 6 N , we also postulate rN+1 = 0 and wN+1 = ∅):

J1[G] =

N
∑

n=1

rαn(Gn −Gn−1) = −rα1G0 +

N
∑

n=1

Gn(r
α
n − rαn+1) = −rα1G0 +

N
∑

n=1

rαn − rαn+1

rn
χwn

. (3.12)

In particular,

J1[G]|wn\wn+1
= −rα1 +

n
∑

k=1

rαk − rαk+1

rk
(3.13)

for any n 6 N . Similar to the proof of Lemma 4, we use the inequality

rαk − rαk+1

rk
=

1

rk

rk
∫

rk+1

αxα−1dx 6 α

rk
∫

rk+1

xα−2dx (3.14)

to obtain the pointwise bound

| J1[G](x)| 6 1 + α

n−1
∑

k=1

rk
∫

rk+1

xα−2dx+ rα−1
n . r

− 1
q

n , x ∈ wn \ wn+1. (3.15)

This means that the inequality | J1[G](x)| > λ does indeed hold only within a set of size O(λ−q), and we
have proved (3.10).

Now consider the operator J2. In fact, we will show the inequality

‖ J2[G]‖L∞
. rα−1

N (3.16)
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in this case. Since the function J2[G] vanishes outside wN , this implies (3.11).
Consider a point x lying within the atoms wN ⊃ wN+1 ⊃ . . . whose probabilities are PN = rN , PN+1, . . .

respectively; we assume wn ∈ A(Fn) as usually. Then, for all n > N , and x ∈ wn,

EnMnG(x) = MnG(x) =
Pα
n

rN
, (3.17)

Pα+1
n

rNPn−1
6 En−1MnG(x) 6

Pα
n−1

rN
. (3.18)

Therefore,

r−1
N

∑

n>N

(Pα
n − Pα

n−1) 6 J2[G](x) 6 r−1
N

∑

n>N

Pα
n

(

1−
Pn

Pn−1

)

. (3.19)

Using the inequality

Pα
n

(

1−
Pn

Pn−1

)

= Pα+1
n

Pn−1
∫

Pn

1

x2
dx 6

Pn−1
∫

Pn

xα−1dx, (3.20)

we obtain the bound

J2[G](x) 6 r−1
N

PN
∫

0

xα−1dx =
Pα
N

rNα
=

rα−1
N

α
. (3.21)

The bound from below is even simpler:

J2[G](x) > r−1
N

∑

n>N

(Pα
n − Pα

n−1) = −r−1
N Pα

N = −rα−1
N . (3.22)

Since both estimates (3.21) and (3.22) hold true for any x ∈ wN , we have verified (3.16).
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