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Introduction. The present research began when the author tried to
generalize classical fractional integration theorems on the interval (0,2ir)
for spaces Lp(logL)°'. He soon discovered, to his pleasant surprise, that it
was easier to work with general Orlicz spaces LA. The earliest results
along this line are presented in §11 (Theorems 2.3 and 2.5). They not
only suggested to the author what the proper statement of the principal
theorem (Theorem 4.7) should be, but also are of interest in themselves.
(Indeed because of their elementary nature, the theorems in §11 are per-
haps the most interesting in the entire paper.)

The notion of "convolution operator" introduced in §111 and used
most particularly in Lemma 4.2, makes clear that for the type of fractional
integration discussed here, little or no role is played by the metric or
group theoretic properties of the spaces which support the functions to
be "convoluted," i.e., only the measure theoretic properties are used. The
author is grateful to Professor E. M. Stein for suggesting to him the notion
of "convolution operator."

In §1 appears a rather technical definition of "Young's function." On a
first reading not much generality will be lost if §1 is omitted and if by
the words "Young's function" the reader understands a convex monotone
increasing, continuous function A defined on [0, <*>) with A(0) = 0.

The results of §11 answer the following questions. (Let A(x), Bix), Cix)
be Young's functions.)

1. If fAi\fix)\)dx and fBi\gix) \)dx are finite, is fd\fix)gix) \)dx
finite?

(We shall see that a sufficient and with a minor qualification, necessary
condition is that A~1ix)B~1ix) g C~\x) for all x ^ 0.)

2. If fAi\fix)\)dx and fBi\gix)\)dx are finite and

Hx) = J fix - t)git)dt
is /C(|A(jc)|)dx finite?

(A sufficient condition is that A~Ax)B~\x) g xC~\x).)
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These questions are discussed further in §VI. (Some readers may wish
to omit entirely §§III, IV and V which discuss the fractional integration
theory.)

In §111 the Banach spaces MA which are closely related to LA are
introduced. The idea for these spaces is essentially due to G. G. Lorentz [ 4].

We shall not discuss here why the convolution of a function g, with a
kernel in MA is called a "fractional integration" of g. Those interested
in this question may refer to Zygmund [10, Vol. II, pp. 133-142] or to
Hardy and Littlewood [2].

In §IV is presented the principal result on fractional integration. The
reader will observe that there is a very close connection between the con-
dition relating the Young's functions A,B,C in Lemma 4.2 and the con-
dition in Theorem 2.5. Theorem 4.7 is in some sense the principal result
of this paper.

In §V the results in §IV are extended to some rather special cases. §V
may be of more interest to the specialist than to the casual reader.

§VI and VII are in the nature of appendices mostly to §11.
The necessity to develop tools and notations for attacking the theorems

has led to greater length than the author would have desired, but it has
had the virtue of making this paper largely self-contained.

I. Young's functions and Orlicz spaces.
Definition 1.1. A(x) is a Young's function if either
Case 1. A(x) is a convex, nondecreasing, finite-valued function which is

not identically 0 on [ 0, œ ) and A (0)   = 0, or
Case 2. There is a number xx> 0 such that A is convex, nondecreasing

and finite valued on [0, xx], A(0) = 0, and for i>ï1iA(i)=», or
Case 3. There is a number xt > 0 such that A is convex, nondecreasing

and finite valued on [0,xx), A(0) = 0, lim^^Aix) = œ, and for x^xx,
A(x) = œ, or

Case 4. A(0) = 0 and for x > 0, A(x) = œ . We shall call this the "trivial"
Young's function.

Definition 1.2. If A is a Young's function then A1 is defined for 0 z% y
^ œ by

A-liy) = inf\x:Aix)>y}

where inf <b — œ .
Remarks.
Io. For 0 ^x< co, A(x) = supjy: A-1(y) <x|, where sup0 = 0.
2°. The domain of A is [0, œ); the domain of A-1 is [0, °= ].
3°. In all cases A_1(°°) = oo.
4°. A is continuous to the left while A"1 is continuous to the right.
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5o. By allowing A to jump to <» at xx we may include L°° as an Orlicz
space.

6°. The following useful inequalities are valid. The reader may easily
verify them for himself.

Property 1.3. If A is a Young's function and if 0 ^ x < °°  then

x^A~\Aix))

and

AiA~\x)) èx.
Definition 1.4. The Orlicz space LA = LAiX) is the set of all {real- or

complex-valued) measurable functions on the measure space iX,p) for which
there exists a number X > 0 sucA that

TAe norm \\f\\A is defined as the inf of such K.
Definition 1.5. Given a Young's function A, the Young's complement A

is defined for 0 g x < °o by

Aix) =  sup ixy- Aiy)).

The following is well known and may easily be verified byjthe reader.
Property 1.6. // A is a nontriyial Young's function, then A is a non-

trivial Young's function. If B = A then A = B.  For all 0 á x < °°,

x á A-\x)Ä-\x) è2x.
For all 0^x< <x>, 0 ^ y < œ,

xy = A (x) + A (y)        ( Young's inequality).

Using Young's inequality and Definition 1.4, G. Weiss [8] has shown
the following generalization of Holder's inequality:

(1.7) §x\fix)gix)\dp<2\\f\\A\\g\\A.

II. Holder's inequality and Young's theorem. One immediate consequence
of Young's inequality is:

If p and q are positive numbers such that 1/p + 1/q = 1 then

x"    y"
xy g — + -.

P      Q
From this we easily derive Holder's inequality. An immediate corollary

of Holder's inequality is:
IffE L" and g EL9 on a measure space (X, p) and if 1/r = 1/p + 1/q then
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[Ji/w^r^J^ii/iuMu.
We shall generalize this for Orlicz spaces by means of the inequality of

Lemma 2.1 which is a generalization of Young's inequality.

Lemma 2.1 (First Generalized Young's Inequality). If A, B, C, are
extended real-valued, non-negative, nondecreasing, left continuous functions
definedon [0, oo), if for 0 z% x z% œ, A_1(*) = infjy: A(y) > x) (inf0 = »),
similarly define B'1, C~l, then if for all 0 ^ x < œ

A-\x)B~\x) áC-'(i),
then for all 0 z% x < œ, 0 z¿ y < œ

Cixy)z%Aix) + Biy).

Proof. It follows from the definition of A"1 that for all x è 0, A(A_1(*))
zixz%A-\Aix)).

Given any x ^ 0, y ^ 0, either A(x) z% Biy) or A(x) > Biy).
If A(x) z% Biy) then

xy è A-liAix))B~liBiy)) ^A-'iBiy^B-'iBiy))

â C-\B(y)).
Cixy)z%CiC-1iBiy)))z%Biy).

If A(x) > Biy), a similar argument shows that C(xy) ^ A(x).
Therefore,

C(xy) S max(A(x),ß(y)) ^ A(x) + Biy).

Theorem 2.2. If A,B,C are extended real-valued non-negative, non-
decreasing, left continuous functions defined on [0, œ), if

A-1ix) = inf{y:Aiy)>x},

similarly for B~l, C~l, and if

A-\x)B'xix) úC~\x),

then

jd\fix)gix) |) dp z% Ja(|/(x) I) dp + fßi\gix) |) dp.
Proof. We integrate the following inequality which is an immediate

consequence of Lemma 2.1.

Ci\fix)gix)\) z% Ai\fix)\) + Bi\gix)\).
Theorem 2.3 (Generalized Holder's Inequality). If A,B,C are

Young's functions such that
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A-'Wß-'d) áC'W
and if fELA, gELB on a measure space   iX,p),  then  the product A(x)
= fix)gix) is in Lc and

||A||c¿2||/|M|f||»
Proof.  Let e > 0;  without loss of generality assume  ||/||a=1 = ||^||b-
Then, using Theorem 2.2 and the convexity of Cix),

i i

||A||c^2(l + f)2

and the theorem follows by letting t—>0.
We shall comment further on this theorem in §VI.
A well-known theorem of Young which we shall generalize in Theorem

2.5 is the following:

Theorem   (W. H. Young).   // fELp,gELq on the real line and  if
1/p + 1/q è 1, then their convolution

Hx) = (fix - t)g(t) dt

is in U where 1/p + 1/q = 1/r and \\h\\r^\\f\\p\\g\\q.
Lemma 2.4 (Second   Generalized   Young's   Inequality).   //  A,B,

are Young's functions such that for x}^0,

A-\x)B1ix) ^xC-\x),

then for x^ 0,yèO,

xy ?k Aix)C~\Biy)) + Biy)C~liAix)).

Proof. Given x è 0,y è 0, either A(x) è Biy) or A(x) > Biy).
If Aix) g Biy),

xB \Aix)) ^A'\Aix))B-AAix)) ^ Aix)C~liAix)),

lSs4Ís)c"'M<),,)-
But u/B~\u)  is a nondecreasing function so that
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Ajx) Bjy)      ^ Bjy)
B-\Aix))~B-\Biy))-   y   '

Thus xy^/3(y)C-1(A(x)).
If Aix) > Biy)  a  similar  argument  shows  that  xy z% Aix)C~liBiy)).

In either case

xy z% max iAix)C~1iBiy)), Biy)CliAix)))

z% Aix)C'liBiy)) + Biy)C~\Aix)).

Theorem 2.5.   Suppose A, B, C are Young's functions which satisfy,
for x ^ 0,

A-^B-'ix) z%xC~\x),

and that f E LA, g ELB on a locally compact unimodular topological group
iG,u), where u is the Haar measure. Then their convolution {writing dt in-
stead of dp),

hix)=fjit)git1x)dt

is in LciG,u) and

\\h\\c^2\\f\\A\\g\\B.
Proof. Let e > 0. Without loss of generality we may suppose \\f\\A = 1

HUH»
By Lemma 2.4 and Jensen's inequality [10, Vol. I, p. 21, (10.1)]:

+!/K^)c-'(4m))*>

= i+j.
We use Jensen's inequality [10, Vol. I, p. 24,  (10.8)], observing that

/'TO*«-
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'-UXMifO^^H*
i€)c"(a)'-ir- ¡<mdt

■husd-
<n^)dt

"•mbd*s*mdt

Similarly, J g 1/2, I + J^l,

\\h\\cá2il + e)2.

The theorem follows by letting t tend to zero.
Theorem 2.5 is close to the "fractional integration" theorem we are

looking for. Roughly speaking, we can enlarge the class LA to a class of
functions which we shall call MA and still preserve in a slightly altered
form the conclusion of Theorem 2.5. Before we give this result in §IV we
shall need some notation which we develop in §111.

III. The Banach space MA. Convolution operators. If / is a complex-
(or real-) valued measurable function on a measure space iX,p) then for
y^O, mif,y) = piEy) where Ey= jx:|/(x)| > y\. mif,y) is a monotone
nonincreasing function which takes the non-negative reals into [ 0, » ].
We may form its inverse /*.  For x ^ 0,

/*(*) = inf{ y :m(/,y)£x}.

/* is called the nonincreasing rearrangement of |/| onto the positive reals.
/* is equimeasurable with |/|.
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j\fix)\dp = jQ f*it)dt = jo  mif,y)dy.

The integral mean /** off* will be useful to us. For x > 0,

f**ix) = -(Xf*it)dt,
xjo

r*(o) = /*(o).
It is clear that

x/**(x)=   fXf*it) dt = xf*ix) +   f     mif,y)dy.
Jo J ru)

Lemma.  // / and g are measurable functions on iX,u) and if h = f + g
then for x è 0,

h**ix) if**ix)+g**ix).

Proof. Assume that (X, u) is atom free, then

xh**ix) = sup I    |A(f) | dp,

the supremum taken over sets E such that uiE) — x. But

fjhit) | dp zi jjfit) | dp + Jjgit) | dp
z%xf**ix)+xg**ix).

If (X,/i)  has atoms the proof is more complicated but nonetheless we
leave it to the reader.

If A is a Young's function and a(x) = A'(x) then

f A(\f(x)\)(k- i"miA(\f\),y)dy

= J   mi\f\,A~1iy))dy = fo   mif,u)dAiu)

= j    aiu)mif,u)du,

where we have made the substitution y = Aiu).
Definition. / E MA on (X, u) if and only if there is a positive number

K so large that

f**ix) z%KA  l(±) .

\\f\\MA is defined as the infimum of all such K.
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Lemma. || -\\ma is a norm.

Proof. Homogeneity and vanishing only on the zero function are obvious.
To show the triangle inequality suppose that g = fx + f2, then for all iáO,

£**(*) á /?*(*) + /?*<*)

so that

á||/ilUAA  ^I)+||/2|U4A-1(i)

= (||/i||m, + II/2|Ua)a-1(1),

II«II«a^II/iIIma + II/2||ma.
Lemma 3.1.  // fELA then fEMA and MA

Proof. Let t > 0; without loss of generality let
inequality [10, Vol. I, p. 24, (10.8)],

A= 1.   By Jensen's

*m A Jo   l + €

/:
di

^SA-.(A(çm))sA-.(i).

The lemma follows by letting c tend to zero.
Definition. Let iX,p),iX,p) and iY,») be three inot necessarily dis-

tinct) measure spaces and T a bilinear operator taking measurable functions
on X and X into measurable functions on Y. Suppose further that

IW»*)||i;
(3.2) \\Tif,g)\\^\\f\\x\\g\\„,

\\Tif,g)\\^\\f\U\\g\\x.
Tis called a "convolution operator."

The definition of a convolution operator is to be understood as defining
Tif.g) only in the case the existence is forced by equations (3.2), that is,
in case one of the functions, say g, belongs to L and the other can be split
into a sum, f = fx + f2, with fxEL,f2EL". In Lemma 4.1 we shall see
that in certain cases it is possible to extend the "convolution operator"
in a natural way.
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Example 3.3. If iG,p) is a locally compact unimodular topological group
and

hix) = Tif.g) =jG fit)gir1x)duit),

then T is a convolution operator.
We remark that in establishing the last two inequalities of (3.2) we

need both the right and the left invariance of p.
Example 3.4. Ordinary convolution on Euclidean n-space is an example

of a convolution operator.

IV. The fractional integration theorem.

Lemma 4.1. // fa f*it)g*it) dt is finite then the convolution operator T may
be extended so that Tif,g) is defined. Moreover,

(4.1) || TV,*) ||_ zif~f*(t)g*(t)dt.

Proof. We shall assume throughout the proof that f,g are functions
suchthat fôf*it)g*it)dt< «,. We begin by proving (4.1) in a series of
five steps where Tif,g) is already known to exist. In step six we shall
extend T.

Io. |g(x) | = bxEÍ*),XE a characteristic function.
Let k = mes E = HxbIIi-
Let

.fix) if |/(x) |á",
fu\X)        { . . ,,      .

I usgn/(x)        if |/(x)| > u.

Define /" by the equation: fix) = f (x) +/u(x).   It follows that

\\fJl\i-f*m(f,y)dy,
and

\\fu\\i=fu"mif,y)dy,

h = Tif.g) = Tifu,g) + Tifu,g) - hy + h2,

Pi||^|iniilli?ll-=/B   rnif,y)dy.b,

||A>iUá||/.||.||*||i£i<M-
If we set u = f*ik),
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||IV»#)||-á||*l||- + ll*«ll-
í bkf*ik) + b (    mif,y) dy = bkf**ik)J /*(*)

= fobf*it)dt = fo   f*it)g*it)dt.
2°. If \gix)| is a simple function, let 0 = y0 <yx < ••• <y„ be the values

ofkl.
Let

f 0 if \gix) | < yk,

ghix) = j gix) - yk_xsgngix) if \gix) | = yk,

( (y* - y*-i) sgng(x) if \gix) I > yk,
n

gix) = Xg*(x).
*-l

It is easily seen that

S*(0=¿ £**«).*-i

||IV,*)||-S¿||2V,ft)l|-

á¿ (œf*it)gw)dt= C°nt)g*it)dt.
k=iJo Jo

3°. If fEL and g EL.  Given x> 0 and e > 0, let <px,At) be a simple
function such that \(¡>it)\ ̂  |g(í) |   and such  that \\g — 4>\\i < tx.

A = Tif,g) = Tif,<b) + Tif,g -<b) = hx+ A2.

Af*(x) ̂ Af*(0) = HAill . á jo  f*it)<t>*it) dt

úVf*it)g*it)dt.
xA2**(*)a||A2||ia||/||i|k-0||i = ||/||ï**.

h**ix)^hî*ix)+ht*ix) èj  f*it)g*it)dt + \\f\\xe.

Let « tend to zero.

h**ix)^(   f*it)g*it)dt.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] FRACTIONAL INTEGRATION IN ORLICZ SPACES. I 311

But this is true for any x > 0.

||A|| _ = h**i0) = \imh**ix) zi f   f*(t)g*(t) dt.
x—0 J 0

4°. If limx^„f*ix) = 0 and g EL. Given t > 0, there is an x so large
that /*(x) < €. This means there is a set E of measure less than or equal
x such that outside E,\f\ is less than t. Let f = fx + f2 where fx is / re-
stricted to E.

Tif.g) = Tifx,g) + Tif2,g).

l|7Vi,*)||-^ ("fîit)g*it)dtz% f"f*it)g*it)dt.
Jo Jo

\\Tif2,g)\\^\\f2\U\g\\xi(\\g\\x.

\\Tif,g)\Uif~f*it)g*it)dt + *\\g\\i.
Let e tend to zero.
5°. If / is arbitrary and g EL. Let a = lim^^^ix),

/i(x) =asgn/(x),

/2(x)=/(x)-/i(x),

Tif,g) = Tify,g) + Tif2,g).

\\Tif1,g)\U*\\fy\U\g\\y=afo      g*it)dt.

\\Tif2,g)\uèfo mog*it)dt.

\\Tif,g)\Uéjo'[a + mt)]g*(t)dt

-/; f*it)g*it) dt.

6°. If /$L, g(£L but Jo""f*it)g*it)dt< oo we may extend T so that
T(f,g) has a meaning. If lim,_„/*(i) = a > 0, then the finiteness of the
above integral would imply g EL. So both lim(_„/*(i) = 0 and limt_,«,g*(i)
= 0. Let En be an increasing sequence of sets of finite measure whose
union is E = \ x :g(x) ^ 0 [. Let gn(x) = g(x) if x E En,gnix) = 0 if x $ En.
Then the operator Vign) = Tif,gn) is a bounded operator taking the
Banach space whose norm is given by Jo" f*it)g*it) dt into L". Moreover,
gn is a Cauchy sequence and so Vign) converges in L". By definition Tif,g)
= lim,,^ Tif,gr), limit in the L" norm.   Since
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\\Tif,gn)\U 5í f° f*it)g*it) dt í j   f*it)g*it) dt,
it is clear that

Tif,g)\Uâfo°°f*it)g*it)dt.
If we had decided instead to extend T by choosing an increasing se-

quence of sets of finite measure Dm whose union was the support of f,fm
= /restricted to Dm, we would have arrived at the same value for Tif,g).

Tifm,g) - Tif,gn) = Tifm,g - gn) - Tif-fm,gn).
Let rm = f — fm, limm^„rm(x) =0; moreover, the convergence is monotone.

\\Tif - fm,gn)\U 5S j rZit)g*it) dt^fo~ r*it)g*it) dt

and the last integral tends to zero by the Lebesgue monotone convergence
theorem. Similarly, lim„^„ || Tifm,g— g„) ||„ = 0 uniformly in m. Thus,
hmm^œTifm,g) = lim^cTif.gA, lim in L" norm.

Corollary.  Necessary and sufficient conditions that a bilinear operator
be a convolution operator are

l|7V,*)||xá||/||i||f||i.

\\Tif,g)\u zf~nt)g*it)dt.
Remark. Tif,g) is defined if and only if the three integrals are finite:

flf*it)dt, flg*it)dt, f"f*it)g*it)dt.
Lemma 4.2. // A,B are Young's functions such that

1 A-\t)B-\t) dt<
jo r

and
s.
^=/;^r<v

then C is a Young's function.
If fEMA,gELB,\\f\\MA^l,\\g\\B^l, and h=Tif,g) where  T  is   a

convolution operator then

(4.2) m( —-,z) ^ .„-uf,,.. I -i      mig,y)dy\3 + 6   I      6B  \tiz))jB \c{¿¡)

where 8 is any positive constant.
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Proof. Since A~lit)/t,B~l(t)/t are nonincreasing it follows that C~\x)
is concave and C~\0) = 0. Therefore C is a Young's function. Further-
more,

'<*>=/.'
A~\t)   B-'it) ,        A~\x)  B~\x)dt> xt t =       x x

so that
A-\x)B~\x) z%xC\x).

As in the proof of Io in Lemma 4.1, we let

/-/■ + /",       g = gw + gw,

where u = /*(s)  and w = B_1(l/s).

h=T(J,g) = T(fu + r,gw + gw)

= T(fu,gw) + T(/U,g") + T(f,gw) + Tif.t)
= hx + h2 + A3 + h4.

By Lemma 4.1,

\\hi\\ . = || T(fU)gw) || _ z% f°f*(t)gMt) dt

=  [ + f  èuws+ f   f*(t)g*(t)dtJo Js Js

= S/*(S)5{l)+C-(l).

n*«ii--iiw-/oii.áii/.ii-iirHi
áu I    m(g,y)dy = f*(s) I _1    m(g,y)dy

Jw J B     (1/s)

^ /*(*) f    m(*,y) dy z% f*(s)sg**(s)

Ss.-.(í)B.(i)sc-.(í).

IIM-HIW,*rf||.á||/"lhlM-
â f  m(f,y)dy.w= f   m(f,y)dy ■ Bl(-\

J"- Jf'U) \s/
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¡|A1 + A2 + A3|U^2C1Q) +sf*is)B-í(^j+(^ mif,y)dy-B-i(^J

= ̂ (l)+[sris)+j^mif,y)dy]B-^)

-2C-l(j) +sf**is)B '(^j

ssc-.(i)+M-.(i)B-.(i)sac-<l).

INIx-IITíy^lIráliniill^lli
= I    m(J,y)dy- I    mig,y)dy= I     m(J,y)dy- I    m(g,y)dy

Ju J» J/*(s) Ju>

á «/**(«) J   m(g,y) dy ̂  sA  x ( ̂  J   m(¿,y) dy.

,.    .     HAJl!     sA-'U/   f" VJ(A4, t) á '-^ á —;-      m(g, y) dy.
t r j wm

But

m (*.3C-(i)+.c-'(i))Sm(».«;-(i))

Let2=C_1(l/s); then

■G).   1

M-(i)

1       sA
s =

m

Cfc)    c-1^)      b_1(t)     ^W»

( 3TÍ'2) = m(A'(3 + Ö)2) - m {K °C_1( s1))

" »c-'(l)  ^1(1"(g'y)dy " ^HcwJB-W))mte'y)dy-
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Lemma 4.2 is established.
Before stating our principal theorem we need a fact about Young's

functions. Orlicz [6] considered Young's functions which satisfy the
inequality A(2x) z% KA(x). It can be shown [3, p. 26, Lemma 4.1] that a
Young's function satisfies Orlicz' condition if and only if there is a con-
stant p è 1 such that

(4.3) xa(x)z%pA(x)

where

I   a(t)dt = A(x).

(4.3) with p < œ is equivalent to a condition on the complementary
Young's function B, namely

(4.4) xb(x)^p'B(x),       p'>l,

where 1/p + 1/p' = l,b(x) is inverse to a(x) and B(x) = Jüxb(t) dt. A
Young's function B which satisfies (4.4) gives rise to an Orlicz space LB
which in some sense is bounded away from L and thus avoids some of the
well-known pathology of the latter space. We shall need one fact about
a Young's function satisfying (4.4).

Lemma 4.5. If B is a Young's function such that

pB(x)z%xb(x),       p>l,

then

rbit) ,B(x)    p'— dtz^p'-ú-bix),
Jo    t x        p

where 1/p + 1/p' = 1.
Proof.  Integrate by parts.

Jo     t t       o     Jo     t2

^BW_^m + lrumd^BSxl+i_I
x t-^o    t        p Jo     V x        p

lj    Bjx)   bjx)
P' x    -   p

Corollary 4.6. If B is a Young's function such that

pBix)z%xbix),       p>l,

then
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'*»    dtJ'Biy>     dt

Proof. Let t = Biu)
■Biy)rm   dt      r biu)   p' t/ ,7FÏÏÂ =       -rrè?-biy)ip'biy).Jo      B   it)     Jo     u       p

Theorem 4.7 (Fractional integration for Orlicz spaces).  // A,B
are Young's functions such that

KOB-Kt)
£** dt<

pBix) ^ xbix),       p>l,

and the Young's function C is defined by

\t)B-At)Cx A
C-\x) =       -y^-^ dt,Jo t

and if, furthermore, fE MA, gELB and A = Tif,g) where T is a convolution
operator, then A G Lc and

PHcá 4p'||/||mJ|s|U
Proof. By the homogeneity of T it will be enough if we show that for

ma Ú 1, ||g||s< 1 we have

We note that 3 + p' ^ 4p' and so by Lemma 4.2 with 9 = p',

"/. m(sTV'z)c(z)dz

= Jo   c{z)p'B-ACiz))L-\^m{8'y)dy
1   f"    /      >j    fc~W)      ciz)

= — I    miM,y)dy\ r,urt,udzp Jo Jo B \tiz))

(let t = Ciz) and use Corollary 4.6)
1 f° fBly)   dt        1 r°= — I    mig,y) dy ■s=i77- ^ —       mig,y)p'biy) dyp Jo Jo     B   it)     p Jo

= Jß(|g(x)|)d/T<l.       Q.E.D.
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Several known theorems on V spaces are implied by Theorem 4.7. We
shall demonstrate only the two most celebrated of these.

Theorem of Hardy and Littlewood [2, p. 595, Theorem 4]. If g
E Lp, p > 1, and 0 < a < 1/p then ga, ath fractional integral of g, belongs to
U where

1     1
— =-a.
r    p

Proof. By definition, ^(x) = f0œgix - t)Fait) dt where F„(f) = l/ri«)*1-.
But clearly Fait)EMA where A(x) = x1/(1-o) and g E LB where ß(x) = x".
Then 6(x) = pxp x so that pJB(x) ̂  x6(x) with p > 1.

_ X/ .     rxt1""t1/pJ    x1/r

Therefore Lc = Lr and the theorem is established.

Theorem of Soboleff [7, p. 481, Theorem]. If gELp on n-space and
0 < a < n/p then ga, the ath fractional integral of g, belongs to U where 1/r
= 1/p — a/n.

Proof. By definitionga(X) = f g(X - T)FaiT) dT, where X = (x1; • • -, x„),
T = (ii, • • •, O, dT = dtx ■ ■ ■ dtn and FaiT) is of the form KnJ \ T\ —. By
integrating F„iT) over spheres centered at the origin it is easily seen that
FaEMA, where A(x) = xnn"-a).

„   Xl   , r*?-«mtVP 1/r

Thus Lc = U.
V. Endpoint results for fractional integration. If we wish to form the con-

volution of a function / E MA with a function gELB and ß(x) fails to
satisfy condition (4.4) then we need to complicate slightly the previous
analysis. We first state a more delicate form of Lemma 4.2 which leads
to our result.

Lemma 5.1. Under the hypotheses and notation of Lemma 4.2 the following
conclusion holds:

f ° ,l    , j        ¿-1(2)   f " /      V J
J3C     (2) Z        Jb     (z)

The proof proceeds the same as the proof of Lemma 4.2 up to the point
where we conclude that

\\K\\xz%sA-l[^j J   mig,y)dy.
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But   since    A = hx + h2 + h3+ A4    and    ||Ai + A2 + A3|| „ ^ 3C_1(l/s) it
follows that

( _x     m(A,y)dy^||A4||lSssA  Y-)   (   mig,y)dy.
J 3c   a/s) \ s / Jw

But w = B~\l/s), and the conclusion follows by setting z = 1/s.

Theorem 5.2. // A,B are Young's functions such that

'l A-\t)B~\t)J? dt<
t2

if the Young's function C is defined by

A-\t)B\t)■"«-£
t2

dt.

if r(x) is any non-negative, nondecreasing function on the non-negative reals
such that

™sLa°Âk)dHB~'{,))'
(6(x) = dJ3(x)/dx), and if

Rix) = f* rit) dt,
then, if fEMA, gELB and A= Tif,g)  where T is a convolution operator
then hELR and

PllaaSH/IUJIfH»
Proof. Assume that ||/||ma è 1, \\g\\ß < 1. Let

If we form the Stieltjes integral of both sides of the equation of Lemma
5.1 with respect to dViz) = (2/A-\z))dbiB~liz)), then

f   dV(z) f"_x   m(A,y)dy^ f"^-^dV(z) f*!   m(g,y)dy
Jo J3C     (2) Jo 2 Jfi     (2)

= f   dôi/j-1^)) f_!   m(g,y)dy= f   d6(x) f    mig,y) dyJo J B     (2) Jo J*

= J     m(g,y)6(y)dy<l.

But
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(let 3x = y)

Thus

11*11**3
and the general conclusion of Theorem 5.2 follows by homogeneity of
the norms.

We shall give an application of Theorem 5.2. M(logM)",a > 0 denotes
MA on a measure space of finite total measure, where A(x) ~ x(logx)a.
Fix) ~ G(x) means limx^„.F(x)/G(x) = 1. To simplify the discussion we
shall use convolution on (0,1) rather than a general convolution operator.

Theorem 5.3. // /GM(logM)",«>0 and gEL(\ogLY, ß> 0, on
(0,1) are extended periodically then their convolution h(x) = jZ1f(x — t)git) dt
is in L(logL)a+" on  (0,1).   iMore precisely, hEßLi\ogL)a+lS.)

Proof. The following remarks should enable the reader to do the neces-
sary computations himself:

Io. The properties of the Orlicz space LA over a totally finite measure
space depend only on the values of A (x) for x sufficiently large. Thus the
integrals occuring in the statement of Theorem 5.2 may be taken with any
convenient lower limit of integration.

2°.   If A(x)~x(logx)'", then A  '(x) ~ x(logx) ".
We then find using the notation of Theorem 5.2: A(x) ~ x(logx)a,

B(x) ~ x(logx)", C(x) ~ x(logx)Q+,J and R(x) ~ ßx(\ogx)a+fi. By Theorem
5.2, hELR = ßLi\ogL)a+" = ßLc = Lc.. This proves Theorem 5.3.

Theorem 5.3 generalizes the following theorem of Zygmund [9, p. 609,
Corollary].

Theorem. // /GL(logL)a,a > 0,gELilogL)",ß > 0, on (0.1) are
extended periodically then their convolution belongs to L(logL)a+li.

It is to be remarked that, of course, the above theorem also follows

i ^X)m(hrx) dx

m(A,3x)r(x)dx^       m(h,Sx) dx I       —,-r dbiB~lit))
Jo Jo Jo      A    (t)

•t'U)
f   m(A,3x)dx  f     dV(z)

I    /•" /*Ciy/A)

= z\\     m(h,y)dy\        dV(z)¿Jo Jo

= \C dV(z) C ,¿Jo J3C
m(h,y)dy<-<l.

(2) 3
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immediately from Theorem 2.5.
It is interesting to compare Theorem 2.5 with Theorem 5.2. We shall

restrict ourselves to ordinary convolution on the interval (0,1). Theorem
2.5 says that if fELA,gELB and
(5.4) A1ix)B~1ix) = OixC Ax)),

then in all cases f*gELc. Theorem 5.2 says that if fEMA, gELB then
in certain cases the condition (5.4) is sufficient to give f*gELc and in
certain other cases not. For example if /G Mp = MA,p > 1 and g G L(logL)1/p
= LB then there follows from Theorem 5.2 the well-known fact [ 9, p. 606
Theorem 2] that f*gELp = LR and not UlogL = Lc.

Theorem 5.2 seems to say that if we start with a function gELB and
form the convolution with a function / G MA then A must not grow too
much faster than B if (5.4) is to guarantee that f*gELc.

Example. If /G MdoglogAQV > 0, and gELÜogL)ß,ß >0 then
(5.4) is sufficient to give us that f*gELc= LilogL^loglogL)"'. If, how-
ever, the situation is reversed and fEMi\ogM)ß while gG(loglogL)"
then (5.4) is not sufficient and indeed

f*gELR= LOgLnioglogL)«-1 ^L(logL)'(loglog D" = Lc.

VI. Further remarks on the generalized Holder's inequality. Our first
theorem completes  Lemma  2.1.

Theorem 6.1. // A(x),/3(x),C(x) are nondecreasing functions from
[ 0, œ ] into [ 0, oo ] which are continuous to the left, if A (0) = BiO) = C(0) = 0,
// A"1,B~l, C_1 are their inverses normalized so as to be continuous to the
right and if A~\œ) = B~\œ) = C~\°°) = œ then for all x è 0,

A(A"x(x)) èx^A~AAix)).

Similarly for B and B~\ C and C K If there exists a number X > 0, such
iAar for all x ^ 0,A~1ix)B-1ix) ^ KC~\x) then for all x ^ 0,y ^ 0,

c(^) £Aix)+Biy).

Conversely, if for all x ^ 0,y ^ 0, Cixy/K) ^ A(x) + Biy), then for all
x^O,

A~\x)B~Ax) è KC A2x) ̂  2KC \x).
Remark. A and A"1 are related by the following equations:

A-1(y) = inf{x:A(x)>yj,

A(x) = sup (y:A_1(y) <x},

where sup0 = O,inf0 = œ .
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Proof. The first part of the theorem is established in exactly the same
way as Lemma 2.1. To prove the last statement for any given uH we
let x = A~\u),y = B~\u).

<!) *
Aix)+B{y),

A  \u)B \u)

A\

f-^-) úAiA1iu)) + BiB1iu))^2u.

!f^),C-1(c(A"1(^'1("))),C-H2a).

The theorem is established.
Two closely related problems immediately suggest themselves.
Problem 6.2. Given two Young's functions A,B how shall we choose a

Young's function C such that whenever fELA and gELB then fgELc1
Problem 6.3. Given two Young's functions A and C, how shall we choose

a Young's function B such that whenever fELA and gELs then fg£Lc?
To solve Problem 6.2 we consider a subset of the first quadrant.

E = j (x,y) : x 2: 0,0 ^ y S A^B^x) ¡.

Let E = convex closure of E. If E ¿¿ first quadrant, it is bounded above
by a concave curve which we denote by y = C_1(x). Clearly A lix)B~\x)
z^C~\x) so that by Theorem 2.3, fELA and gELB implies fef'•-

Theorem 6.4. If E = first quadrant then there exist functions fE LAiO, 1),
g E LBiO, 1) such that the product A(x) = /(x)g(x) does not belong to any
Orlicz space.

Sketch of proof. E = first quadrant if and only if

.. A-^B'ix)
lim sup- = oo .

*-.« X

Let Kyi<y2<y3--- such that A-'iyJB-'iyJ > 2"y„. Let xn=l/2"y".
Let

;'-i
rix) =

0 if JJ Xj < x,
;=i

y„       if  X XjKxzi^Xj.
j-n+l j=n

Let fix) = A \rix)),gix) = B \rix)). The reader may easily show that

r(x)dx=l    sothat||/|U=l,   ||*||b=1.
/.
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But fo'Mgix) dx = co .
Thus fix)gix) is not integrable in any neighborhood (0, e) of the origin

and so cannot belong to any Orlicz space.

Theorem 6.5. Let A,B,C be Young's functions.  The following conditions
are equivalent:

1. hmsupx^œA-1ix)B-1ix)/C-Ax) < ».
2. There exist numbers X > 0, x0 ̂  0 sucA íAaí for all x,y Sï x0,

<f)*A ix)+Biy).

3. There is a number M > 0 such that for all measurable functions f,g
on (0,1),

llfrlIcâMII/IUIMI»
4. For every /GLA(0,1) and gELBiO,l), fg belongs to  LC(0,1).
Remark. The equivalence of 3 and 4 appears in Krasnosel'skii and

Rutickii [3, Lemma 13.5, p. 118]. The equivalence of 2 and 4 is due to
Andô [ 1, Theorem 1, p. 178].

Sketch of proof. 1 implies that there exist numbers i*0 > 0 and X > 0
such  that   for  x > u0, A'^B'Ax) < KC~\x).   Let

x0= max(A-1(uo),/j_1("o))-

For x,y > x0 we may reason as in Lemma 2.1 to establish 2. Thus 1 implies 2.
If 2   is  satisfied  let  M = KL  where  L = 2 + A(x0) + -B(x0).    Suppose

without loss of generality that ||/||A < l,||g||ß< 1. Let F= jx:/(x) ^ x0},
G={x:gix)^x0\.

+/«*c(r)*)
-l{L A<\f(x)\)dx+fp AixQ) dx +fG Bi\gix)\)dx +jg Bix0) dx)

<^(l + A(x0) + l + ß(x0)) = l.
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Observe that we have used strongly the fact that (0,1) is a totally finite
measure space. We have shown that 2 implies 3. 3 obviously implies 4.

To show that 4 implies 1 we assume 1 false. Then reasoning as in the
proof of Theorem 6.4, we find 1 <yi<y2< ••• such that A'1iy^)B~1iyJ
> 2"C~1iyn). Starting with the sequence yi,y2, •••, we define r(x),/(x),
gix) as in Theorem 6.4; then ||/||A = l,\\g\\B= 1. But for any 8 > 0, there
is an integer n such that 2"0 > 1.  Therefore,

f  Cidfix)gix)) dx ̂   ¿  CieA-'iy^BKy^x,
J° j=n+l

^ ¿ C(e2JC1(y;))x^o¿2J1C(2C-1(y;))x; = ».
/—»+1 j=n

(The reader may verify for himself that Ci2C1iyn)) ^ y„.)

Theorem 6.6. Let A,B,C be Young's functions. The following con-
ditions  are  equivalent:

1. limsup^A-HxJß-WC-Hx) < oo.
2. There exist numbers K > 0,x0> 0 such that for all x,y ^ x0,

c(g) z%Aix)+Biy).

3. TAere  is a  number M such  that for all sequences  f = ifx,f2, ••■),g
=  igl,g2,"-),

\\fg\\c^M\\f\\A\\g\\B.

4. For every sequence f = ifx,f2, •• •) in LA and every sequence g = igx,g2, ••■)
in LB, the product sequence fg = ifxgx,f2g2, ••■) belongs to Lc.

Sketch of proof. The proof is analogous to the proof of Theorem 6.5.
The only point that might cause the reader difficulty is in showing that 4
implies 1.

If 1 is false then we may choose inductively a sequence y„.

\>yy        A1iyx)B-1iyx)>2C \yx).4

yn < \yn-u      A-\y¿B-\y¿ > 2"C"1(yn).

Let m„ be the unique integer such that

2^y; = m"<2^y; + L
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But 1 < l/2n+1yn so that mn < l/2nyn. Let r, = yn if £&* ^ j < £ »-i»»*-
Then

¿D = ¿"»»y»< ¿ 7pr-yn = i.
j = l n=l n=l ¿ y«

Let   fj = A-1ty,gj = B-xirJ),   then   ||/||A < l.H^IU < 1.    But given any
6 > 0 there is an integer TV such that 2^0 > 1.  Therefore

¿ CiOfjgj) = ¿ mnCieAAyJB-AyJ)
j=l ra=l

^ ¿ mnCie2nC-1iyJ) ̂  ¿ /«„Ci^c-HyJ)
n=l n=N+l

^  ¿ m„2"-1eC(2C-1(yn)) = ».
n-N+1

We may combine Theorem 6.5 and Theorem 6.6 to obtain

Theorem 6.7. Let A,B, C be Young's functions. The following conditions
are equivalent:

1. There is a number X > 0 sucA that for all x ^ O, A ~Ax)BAx) Ú KC~Ax).
2. There is a number X > 0 sucA íAaí for all x,y ^ 0,

c(^^Aix) + Biy).

3. TAere is a number M > 0 such that, for all measure spaces (X, p), if f
and g are measurable then

lltelMMii/iwiiiu
4. For each measure space (X, p.), if fE LA and gELB then fg E Lc.

The following theorem which together with Theorem 6.4 solves Problem
6.2 follows as an immediate corollary of Theorem 6.7. We therefore leave
the proof to the reader.

Theorem 6.8. If A,B are Young's functions such that E = convex closure
of {ix,y) :x 2ï 0,0 ^y ^ A~\x)B~1ix) \ is not the entire first quadrant
and if we denote by y = C~\x) the upper boundary of E, then A,B,D are
Young's functions such that /GLA(X), gELBiX) implies, for any measure
space X, that their product fgELDiX) if and only if there is a positive con-
stant X sucA that Dix) ^ C(Xx).  In this case it follows that

\\fg\\Dâ2K\\f\\A\\g\\
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We now consider Problem 6.3. This was solved by Andô [1, Theorem 4]
and [5, pp. 180-181]. We may rephrase his theorem in our terminology.
(He considered iV-functions which is a less general notion than that of
Young's function.)

Theorem of Andô.  If A and C are Young's functions and for y ^ 0,

(6.9) ß(y) = sup[C(xy)-A(x)],
IÈ0

then B is a Young's function.
A,D,C are Young's functions such that for any measure space X,fE LAiX),

g E LDiX) implies that their product fg E LciX) if and only if there is a
positive constant K such that Dix) ^ Bix/K).

Remark. B may be the "trivial" Young's function.
We close with a theorem which throws some  light  on  the  "relative

complementation" defined by equation (6.9).

Theorem. // A and C are Young's functions and for x,y ^ 0,

B(y) = sup(C(xy)-A(x)),
xèO

Ai(x) = sup(C(xy)-ß(y)),
>so

ßi(y) = sup(C(xy)-A1(x)),
ISO

then Ai(x) ^ A(x) but Bxiy) = 5(y).

The proof is easy and we leave it as an exercise for the reader. That the
inequality Ai(x) zi A(x) may not be replaced by equality is easily seen by
means of an example.

Let
(0 if0<x<l,

C(x)= -    -
lx-1        ifx>l,

and let A(x) = x2.   Then Ai(l/2) = 0 < 1/4 = A(l/2).

VII. Further remarks on the generalized Young's theorem.

Converse to Lemma 2.4. // A,B,C are Young's functions such that for
all x ^ 0,y ^ 0,

xy â Aix)C~liBiy)) + Biy)C1iAix)),

then for any u ^ 0,
A~liu)B~liu) z%2uC~liu).

Proof. Let x = A\u),y = B-\u).    Q.E.D.
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If we restrict ourselves to Orlicz spaces of a special form (namely Lp
spaces) then the results of Theorem 2.3, Theorem 2.5 and Theorem 4.7
may be seen to be best possible by various methods. But if we consider
function spaces more general than the Orlicz spaces then this is no longer
true as far as Theorem 2.5 and Theorem 4.7 are concerned. The reader
who wishes to understand this point should refer to a paper of the author
[5].

We shall discuss here an improvement in Theorem 2.5 which follows as
a consequence of Theorem 4.7.

We need for this purpose the "associated space" of the space MA. Like
MA this was introduced by G.G.  Lorentz [4].

Definition 7.1. Let A and A be complementary Young's functions. Let
f be a function on a measure space iX, p.).

KA = sup J fix)gix) dp,

sup over all gE MA of norm less than or equal to 1.

KA=\f:\\f\\KA<~\.

Lemma 7.2. \\f\\MA Ú \\f\U â ||/||«,
Proof. The first inequality is Lemma 3.1.  It is proved in the standard

treatises on Orlicz spaces [3, p. 80] or  [10, Vol.  I, pp.  170-175] that

g
•jA zz sup I fix)gix) dp

sup over g such that \\g\\A Ú 1- But \\gWuz ä ||g|U so that the SUP above
is less than or equal to the sup taken over g E MA with ||g|| m^ ú 1- There-
fore H/IUs 11/11^.

Theorem 7.3.  // A,B,C are Young's functions such that for all x > 0,
1. pAix) zZ xA'(x) for a given p > 1,
2. qBix) zi xB'ix) for a given q> 1,
3. A-lix)B~\x) z%xC-\x),

and if fELA, gELB on a locally compact unimodular topological group G,
then their convolution

h(x)=j fit)git~1x)dt

is in Kc and

U^iepVII/IUIirllB,
where 1/p + 1/p' = 1,  1/q + 1/q' = 1.

Proof. Suppose vEMc, 11 l> 11 j^^ ̂  1.
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j vix)hix) dx ï j\v(x)IJ 1/(0||*(r^| dtdx

= j\fit)\j\vix)\\gir1x)\dxdt

= j\fit)\wit)dt.

wit) = J*\vix)\\git~1x)\ dx is the convolution of a function in Mc of norm
less than or equal to 1 with a function in LB, and so by Theorem 4.7 is in
LD,  \\w\\D^4\q'\\g\\B, where

D-\x) =
C-lit)B-\0

t¿ dtX
< r 2t    B-\t) ..<0r   dt
= Jo C^W  ~F~     =   Jo A~At)

-X
it)   t2

A'1*) A'iu)

^2p'

u

X

du ^ 2p'
Aiu) l A     (x)

A-\x)\
In the above evaluation we have used Property 1.6 and Lemma 4.5.

A-\x)D-\x) ^ 2p'x £A-xix)X-\x),
D~\x) ^2p/A"1(x),

A(ê)iD(x)

so that
w *IMIn-

We use equation (1.7).

f vix)h(x) dx á  (\f(t)\w(t)dt

á2||/||A|ju;|Uá4p'||/|U||ii;||B
âl6p'Q'\\f\\A\\g\\B.

But ||A||Kc= 8upvf vix)Hx)dx where ||i;||Me-^ 1.
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