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Part Zero: Prologue



Klein–Gordon equation

The classical Klein–Gordon equation(
∂2

∂t2
− c2 ∂

2

∂x2

)
u(x , t) = −m2c4

~2
u(x , t), (1)

emerges from the quantum relativistic energy equation

E 2 = p2c2 + m2c4, (2)

inserting the quantum mechanical operators for energy and
momentum, i.e. E = i~ ∂

∂t and p = −i~ ∂
∂x , where c is the light

velocity and ~ the Planck constant.



Fractional Klein–Gordon equation

We consider the fractional Klein–Gordon equations of the form(
∂2

∂t2
− c2 ∂

2

∂x2

)α
u(x , t) = −λ2u(x , t), α ∈ (0, 1], (3)

and search a solution of the type f (
√

c2t2 − x2).
By means of the transformation

w =
√

c2t2 − x2,

equation (3) takes the form(
d2

dw2
+

1

w

d

dw

)α
u(w) =

λ2

c2α
u(w), (4)



Main objectives:

• Analytical treatment of the fractional Klein–Gordon equation
by means of the McBride–Lamb theory of fractional powers of
hyper-Bessel-type operators.

• In view of the relation between the fundamental solution of
the Klein–Gordon equation and the probability law of the
telegraph process, we try to generalize the telegraph process.

• (Further work about random flights governed by fractional
Klein–Gordon-type equations)



Part One: Fractional powers of
hyper-Bessel operators



Fractional power of hyper-Bessel operators

What is the operator
(

d2

dw2 + 1
w

d
dw

)α
appearing in (4)?

In a series of works, Adam McBride (1975, 1979, 1982), studied
fractional powers of the generalized hyper-Bessel-type operator

L = xa1Dxa2 . . . xanDxan+1 , (5)

where n is an integer number, a1, . . . , an+1 are complex numbers
and D = d/dx .



Main results of the McBride theory

Lemma 1: The operator L in (5) can be written as

Lf = mnxa−n
n∏

k=1

xm−mbk Dmxmbk f , (6)

where

Dm :=
d

dxm
= m−1x1−m d

dx
.

The constants appearing in (6) are defined as

a =
n+1∑
k=1

ak , m = |a− n|, bk =
1

m

(
n+1∑

i=k+1

ai + k − n

)
.



Example: The operator

L =
d2

dx2
+

1

x

d

dx
=

1

x2

(
x

d

dx
x

d

dx

)
,

is a special case of (5) with a1 = −1, a2 = 1, a3 = 0, n = m = 2,
a = 0, b1 = b2 = 0. By Lemma 1, we have that

L =
4

x2

2∏
k=1

x2−2bk D2x2bk =
4

x2

(
x2D2

) (
x2D2

)
=

4

x2

(
x

2

d

dx

)(
x

2

d

dx

)
=

1

x

d

dx
+

d2

dx2
.

Hereafter we assume that the operator L defined in (5) acts on the
functional space

Fp,µ = {f : x−µf (x) ∈ Fp}, (7)

where

Fp = {f ∈ C∞ : xkdk f /dxk ∈ Lp, k = 0, 1, . . . }, (8)

for 1 ≤ p <∞ and for any complex number µ.



Lemma 2: Let r be a positive integer, a < n, f ∈ Fp,µ and

bk ∈ Ap,µ,m := {η ∈ C : <(mη + µ) + m 6= 1/p −ml , l = 0, 1, 2, . . . }, k = 1, . . . , n.

Then

Lr f = mnrx−mr
n∏

k=1

I bk ,−rm f , (9)

where, for α > 0 and <(mη + µ) + m > 1/p

I η,αm f =
x−mη−mα

Γ(α)

∫ x

0
(xm − um)α−1umηf (u) d(um), (10)

and for α ≤ 0

I η,αm f = (η + α + 1)I η,α+1
m f +

1

m
I η,α+1
m

(
x

d

dx
f

)
. (11)

The fractional integrals I η,αm are Erdélyi–Kober-type operators.



Fractional extension

Definition 1: Let m = n − a > 0, η any complex number,
bk ∈ Ap,µ,m, for k = 1, . . . , n. Then, for any f (x) ∈ Fp,µ

Lηf = mnηx−mη
n∏

k=1

I bk ,−ηm f , (12)

In order to understand the key-role played by the operator Dm, we
remark that the following equality holds

(Dm)ηf =
m

Γ(n − η)
(Dm)n

∫ x

0
(xm − um)n−η−1um−1f (u) du. (13)

Then it is possible to prove Lemma 2, considering the relation
between negative powers of Dm and Erdélyi–Kober integrals.



Part two: Applications to the
fractional Klein–Gordon equation



The fractional Klein–Gordon equation of the form(
∂2

∂t2
− c2 ∂

2

∂x2

)α
u(x , t) = −λ2u(x , t), α ∈ (0, 1], (14)

is reduced to (
d2

dw2
+

1

w

d

dw

)α
u(w) =

λ2

c2α
u(w), (15)

by means of the transformation

w =
√

c2t2 − x2.

Theorem 1: A solution of (14) can be written as

uα(x , t) = (
√

c2t2 − x2)2α−2
∞∑
k=0

(
λ

2αcα

)2k

(−1)k
(
√

c2t2 − x2)2αk

[Γ(αk + α)]2
,

(16)
and for α = 1, it reduces to

u1(x , t) = J0

(
λ

c

√
c2t2 − x2

)
, |x | < ct.



Part three: Telegraph process



The classical symmetric telegraph process is defined as

T (t) = V (0)

∫ t

0
(−1)N (s)ds, t ≥ 0, (17)

where V (0) is a two-valued random variable (±c) independent of
the Poisson process N (t), t ≥ 0. The telegraph process is a
finite-velocity random motion where changes of direction are
governed by N (t).
The absolutely continuous component of the distribution of the
telegraph process is given by (e.g. De Gregorio et al. (2005))

P{T (t) ∈ dx}/dx

=
e−λt

2c

[
λI0

(
λ

c

√
c2t2 − x2

)
+

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)]
, (18)

with |x | < ct and the singular component is

P{T (t) = ±ct} =
e−λt

2
.



The absolutely continuous component of the distribution of the
telegraph process is the solution to the Cauchy problem

∂2p
∂t2

+ 2λ∂p∂t = c2 ∂2p
∂x2

,

p(x , 0) = δ(x),

∂p
∂t (x , t)

∣∣∣∣
t=0

= 0.

(19)

By means of the transformation p(x , t) = e−λtu(x , t), equation
(19) is converted into the Klein–Gordon-type equation(

∂2

∂t2
− c2 ∂

2

∂x2

)
u(x , t) = λ2u(x , t). (20)

To give a fractional generalization of the telegraph process we
consider the relation between a solution of the fractional
Klein–Gordon equation and the distribution of a more general
process.



Part Four: Fractional telegraph
process



Strategy:

1 Find a solution of the fractional Klein–Gordon equation that
generalizes the fundamental solution of the classical
Klein–Gordon equation.

2 Extract from this solution the conditional distribution of the
generalized process and the probability distribution that
governs the number of changes of directions.

3 Find the absolutely continuous and sigular components of the
distribution of the fractional telegraph process.



Step 1
Lemma 3: The function

F (x , t) =
1

2c

∂

∂t

∞∑
k=1

(
λ

2αcα

)2k (c2t2 − x2)αk

[Γ(αk + 1)]2
(21)

solves the fractional Klein–Gordon-type equation(
∂2

∂t2
− c2 ∂

2

∂x2

)α
u(x , t) = λ2u(x , t), α ∈ (0, 1]. (22)

Step 2 The solution (21) can be written as

F (x , t) dx = Eα,1(λtα)
∞∑
k=1

P{T α(t) ∈ dx |Nα(t) = 2k}P{Nα(t) = 2k},

where

P{T α(t) ∈ dx |Nα(t) = 2k} = dx

(
c2t2 − x2

)αk−1
(2ct)2kα−1

Γ(2αk)

[Γ(αk)]2
,

where k ≥ 1, |x | < ct, and P{Nα(t) = 2k} gives the probability
of an even number of changes, according to the fractional Poisson
process Nα(t).



The fractional Poisson process (introduced by Beghin, Orsingher,
2009), Nα(t), t ≥ 0, has the following one-dimensional
distribution

P{Nα(t) = k} =
1

Eα,1(λtα)

(λtα)k

Γ(αk + 1)
, α ∈ (0, 1], k ≥ 0.

It is called fractional, because its probability generating function
Gα satisfies the following fractional equation

C∂α

∂uα
Gα(u, t) = λtαGα(uα, tα),

where C∂α/∂uα is the so-called Caputo fractional derivative.



The conditional densities can be found as the laws of the r.v.’s

T α(t) = ct
[
Tα
(n+) − (1− Tα

(n+))
]
, (23)

where Tα
(n+) possesses probability density given by

fTα
(n+)

(w) =
Γ(nα)

Γ(n+α)Γ((n − n+)α)
wn+α−1(1− w)(n−n

+)α−1,

0 < w < 1.

The r.v. defined in (23) can be regarded as a rightward
displacement of random length of ct Tα

(n+) and a leftward
displacement for the remaining interval of time.
In an analogue way, we can find the conditional distributions when
the fractional Poisson process Nα(t) takes an odd number of
events.



Theorem 2: The fractional telegraph-type process T α(t), t ≥ 0,
has the following probability law

pα(x , t) =
1

Eα,1(λtα)

[
ct
∞∑
k=1

(
λ

2αcα

)2k (c2t2 − x2)αk−1

Γ(αk)Γ(αk + 1)
+

+
∞∑
k=0

(
λ

2αcα

)2k+1 (c2t2 − x2)αk+
α−1
2

[Γ(αk + 1+α
2 )]2

]
+

1

2Eα,1(λtα)
[δ(x + ct) + δ(x − ct)], α ∈ (0, 1].



What is the governing equation of the probability law of the
fractional telegraph process?

Theorem 3: The function

f (x , t) = Eα,1(λtα)P{T α(t) ∈ dx}, x ∈ (−ct,+ct),

where P{T α(t) ∈ dx} represents the absolutely continuous
component of the distribution of the fractional telegraph process
T α(t), t ≥ 0, is a solution to the non-homogeneous fractional
Klein–Gordon equation(
∂2

∂t2
− c2 ∂

2

∂x2

)α
uα(x , t) = λ2uα(x , t) + λ2αcα

(
√

c2t2 − x2)−α−1

[Γ(1−α2 )]2
.



Remark: In the case α = 1, we recover in Theorem 2 the
distribution of the classical telegraph process. Moreover, by
Theorem 3, for α = 1, we have that

f (x , t) = E1,1(λt)P{T (t) ∈ dx} = eλtP{T (t) ∈ dx}

solves the classical Klein–Gordon-type equation(
∂2

∂t2
− c2 ∂

2

∂x2

)
uα(x , t) = λ2uα(x , t),

as expected.
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Proof of Theorem 1:
The Bessel operator

LB =
d2

dw2
+

1

w

d

dw

appearing in (15) is a special case of L, when n = 2, a1 = −1,
a2 = 1, a3 = 0. By Definition 1 and Lemma 2 we have that m = 2,
b1 = b2 = 0 and thus

(LB)αf (w) = 4αw−2αI 0,−α2 I 0,−α2 f (w). (24)

By simple calculations we have that

(LB)αwβ = 4αw−2αI 0,−α2 I 0,−α2 wβ (25)

= 4α

 Γ
(
β
2 + 1

)
Γ
(

1− α + β
2

)
2

wβ−2α.



Let us write the function (16) in the new variable w , i.e.

uα(w) = w2α−2
∞∑
k=0

(
λ

2αcα

)2k

(−1)kw2αk 1

[Γ(αk + α)]2
, (26)

By applying now the operator (LB)α to the function (26) we have
that (being β = 2αk + 2α− 2)

(LB)α

(
w2α−2

∞∑
k=0

(−1)k
(

λ

2αcα
wα

)2k 1

[Γ(αk + α)]2

)
(27)

= − λ2

c2α
uα(w),

and going back to the variables (x , t), we obtain the claimed result.


