Fractional Klein-Gordon equations and related stochastic processes

:Roberto Garra:
SBAI Department
University of Torino
roberto.garra@sbai.uniroma1.it

Joint work with
.:Federico Polito and Enzo Orsingher:.

Outline

(1) Prologue

2 Fractional powers of hyper-Bessel operators
3 Applications to fractional Klein-Gordon equation
4) Telegraph process
${ }_{5}$ Fractional Telegraph process

Part Zero: Prologue

Klein-Gordon equation

The classical Klein-Gordon equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u(x, t)=-\frac{m^{2} c^{4}}{\hbar^{2}} u(x, t) \tag{1}
\end{equation*}
$$

emerges from the quantum relativistic energy equation

$$
\begin{equation*}
E^{2}=p^{2} c^{2}+m^{2} c^{4} \tag{2}
\end{equation*}
$$

inserting the quantum mechanical operators for energy and momentum, i.e. $E=i \hbar \frac{\partial}{\partial t}$ and $p=-i \hbar \frac{\partial}{\partial x}$, where c is the light velocity and \hbar the Planck constant.

Fractional Klein-Gordon equation

We consider the fractional Klein-Gordon equations of the form

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha} u(x, t)=-\lambda^{2} u(x, t), \quad \alpha \in(0,1] \tag{3}
\end{equation*}
$$

and search a solution of the type $f\left(\sqrt{c^{2} t^{2}-x^{2}}\right)$.
By means of the transformation

$$
w=\sqrt{c^{2} t^{2}-x^{2}}
$$

equation (3) takes the form

$$
\begin{equation*}
\left(\frac{d^{2}}{d w^{2}}+\frac{1}{w} \frac{d}{d w}\right)^{\alpha} u(w)=\frac{\lambda^{2}}{c^{2 \alpha}} u(w) \tag{4}
\end{equation*}
$$

Main objectives:

- Analytical treatment of the fractional Klein-Gordon equation by means of the McBride-Lamb theory of fractional powers of hyper-Bessel-type operators.
- In view of the relation between the fundamental solution of the Klein-Gordon equation and the probability law of the telegraph process, we try to generalize the telegraph process.
- (Further work about random flights governed by fractional Klein-Gordon-type equations)

Part One: Fractional powers of hyper-Bessel operators

Fractional power of hyper-Bessel operators

What is the operator $\left(\frac{d^{2}}{d w^{2}}+\frac{1}{w} \frac{d}{d w}\right)^{\alpha}$ appearing in (4)?
In a series of works, Adam McBride (1975, 1979, 1982), studied fractional powers of the generalized hyper-Bessel-type operator

$$
\begin{equation*}
L=x^{a_{1}} D x^{a_{2}} \ldots x^{a_{n}} D x^{a_{n+1}} \tag{5}
\end{equation*}
$$

where n is an integer number, a_{1}, \ldots, a_{n+1} are complex numbers and $D=d / d x$.

Main results of the McBride theory

Lemma 1: The operator L in (5) can be written as

$$
\begin{equation*}
L f=m^{n} x^{a-n} \prod_{k=1}^{n} x^{m-m b_{k}} D_{m} x^{m b_{k}} f \tag{6}
\end{equation*}
$$

where

$$
D_{m}:=\frac{d}{d x^{m}}=m^{-1} x^{1-m} \frac{d}{d x}
$$

The constants appearing in (6) are defined as

$$
a=\sum_{k=1}^{n+1} a_{k}, \quad m=|a-n|, \quad b_{k}=\frac{1}{m}\left(\sum_{i=k+1}^{n+1} a_{i}+k-n\right)
$$

Example: The operator

$$
L=\frac{d^{2}}{d x^{2}}+\frac{1}{x} \frac{d}{d x}=\frac{1}{x^{2}}\left(x \frac{d}{d x} x \frac{d}{d x}\right)
$$

is a special case of (5) with $a_{1}=-1, a_{2}=1, a_{3}=0, n=m=2$, $a=0, b_{1}=b_{2}=0$. By Lemma 1, we have that

$$
\begin{aligned}
L & =\frac{4}{x^{2}} \prod_{k=1}^{2} x^{2-2 b_{k}} D_{2} x^{2 b_{k}}=\frac{4}{x^{2}}\left(x^{2} D_{2}\right)\left(x^{2} D_{2}\right) \\
& =\frac{4}{x^{2}}\left(\frac{x}{2} \frac{d}{d x}\right)\left(\frac{x}{2} \frac{d}{d x}\right)=\frac{1}{x} \frac{d}{d x}+\frac{d^{2}}{d x^{2}} .
\end{aligned}
$$

Hereafter we assume that the operator L defined in (5) acts on the functional space

$$
\begin{equation*}
F_{p, \mu}=\left\{f: x^{-\mu} f(x) \in F_{p}\right\} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{p}=\left\{f \in C^{\infty}: x^{k} d^{k} f / d x^{k} \in L^{p}, k=0,1, \ldots\right\} \tag{8}
\end{equation*}
$$

for $1 \leq p<\infty$ and for any complex number μ.

Lemma 2: Let r be a positive integer, $a<n, f \in F_{p, \mu}$ and $b_{k} \in A_{p, \mu, m}:=\{\eta \in \mathbb{C}: \Re(m \eta+\mu)+m \neq 1 / p-m l, I=0,1,2, \ldots\}$,

Then

$$
\begin{equation*}
L^{r} f=m^{n r} x^{-m r} \prod_{k=1}^{n} I_{m}^{b_{k},-r} f \tag{9}
\end{equation*}
$$

where, for $\alpha>0$ and $\Re(m \eta+\mu)+m>1 / p$

$$
\begin{equation*}
I_{m}^{\eta, \alpha} f=\frac{x^{-m \eta-m \alpha}}{\Gamma(\alpha)} \int_{0}^{x}\left(x^{m}-u^{m}\right)^{\alpha-1} u^{m \eta} f(u) d\left(u^{m}\right) \tag{10}
\end{equation*}
$$

and for $\alpha \leq 0$

$$
\begin{equation*}
I_{m}^{\eta, \alpha} f=(\eta+\alpha+1) I_{m}^{\eta, \alpha+1} f+\frac{1}{m} I_{m}^{\eta, \alpha+1}\left(x \frac{d}{d x} f\right) \tag{11}
\end{equation*}
$$

The fractional integrals $I_{m}^{\eta, \alpha}$ are Erdélyi-Kober-type operators.

Fractional extension

Definition 1: Let $m=n-a>0, \eta$ any complex number, $b_{k} \in A_{p, \mu, m}$, for $k=1, \ldots, n$. Then, for any $f(x) \in F_{p, \mu}$

$$
\begin{equation*}
L^{\eta} f=m^{n \eta} x^{-m \eta} \prod_{k=1}^{n} I_{m}^{b_{k},-\eta} f \tag{12}
\end{equation*}
$$

In order to understand the key-role played by the operator D_{m}, we remark that the following equality holds

$$
\begin{equation*}
\left(D_{m}\right)^{\eta} f=\frac{m}{\Gamma(n-\eta)}\left(D_{m}\right)^{n} \int_{0}^{x}\left(x^{m}-u^{m}\right)^{n-\eta-1} u^{m-1} f(u) d u \tag{13}
\end{equation*}
$$

Then it is possible to prove Lemma 2, considering the relation between negative powers of D_{m} and Erdélyi-Kober integrals.

Part two: Applications to the fractional Klein-Gordon equation

The fractional Klein-Gordon equation of the form

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha} u(x, t)=-\lambda^{2} u(x, t), \quad \alpha \in(0,1] \tag{14}
\end{equation*}
$$

is reduced to

$$
\begin{equation*}
\left(\frac{d^{2}}{d w^{2}}+\frac{1}{w} \frac{d}{d w}\right)^{\alpha} u(w)=\frac{\lambda^{2}}{c^{2 \alpha}} u(w) \tag{15}
\end{equation*}
$$

by means of the transformation

$$
w=\sqrt{c^{2} t^{2}-x^{2}} .
$$

Theorem 1: A solution of (14) can be written as
$u_{\alpha}(x, t)=\left(\sqrt{c^{2} t^{2}-x^{2}}\right)^{2 \alpha-2} \sum_{k=0}^{\infty}\left(\frac{\lambda}{2^{\alpha} c^{\alpha}}\right)^{2 k}(-1)^{k} \frac{\left(\sqrt{c^{2} t^{2}-x^{2}}\right)^{2 \alpha k}}{[\Gamma(\alpha k+\alpha)]^{2}}$,
and for $\alpha=1$, it reduces to

$$
u_{1}(x, t)=J_{0}\left(\frac{\lambda}{c} \sqrt{c^{2} t^{2}-x^{2}}\right), \quad|x|<c t
$$

Part three: Telegraph process

The classical symmetric telegraph process is defined as

$$
\begin{equation*}
\mathcal{T}(t)=V(0) \int_{0}^{t}(-1)^{\mathcal{N}(s)} d s, \quad t \geq 0 \tag{17}
\end{equation*}
$$

where $V(0)$ is a two-valued random variable ($\pm c$) independent of the Poisson process $\mathcal{N}(t), t \geq 0$. The telegraph process is a finite-velocity random motion where changes of direction are governed by $\mathcal{N}(t)$.
The absolutely continuous component of the distribution of the telegraph process is given by (e.g. De Gregorio et al. (2005))

$$
\begin{align*}
& P\{\mathcal{T}(t) \in d x\} / d x \\
& =\frac{e^{-\lambda t}}{2 c}\left[\lambda I_{0}\left(\frac{\lambda}{c} \sqrt{c^{2} t^{2}-x^{2}}\right)+\frac{\partial}{\partial t} I_{0}\left(\frac{\lambda}{c} \sqrt{c^{2} t^{2}-x^{2}}\right)\right], \tag{18}
\end{align*}
$$

with $|x|<c t$ and the singular component is

$$
P\{\mathcal{T}(t)= \pm c t\}=\frac{e^{-\lambda t}}{2}
$$

The absolutely continuous component of the distribution of the telegraph process is the solution to the Cauchy problem

$$
\left\{\begin{array}{l}
\frac{\partial^{2} p}{\partial t^{2}}+2 \lambda \frac{\partial p}{\partial t}=c^{2} \frac{\partial^{2} p}{\partial x^{2}} \tag{19}\\
p(x, 0)=\delta(x) \\
\left.\frac{\partial p}{\partial t}(x, t)\right|_{t=0}=0
\end{array}\right.
$$

By means of the transformation $p(x, t)=e^{-\lambda t} u(x, t)$, equation (19) is converted into the Klein-Gordon-type equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u(x, t)=\lambda^{2} u(x, t) \tag{20}
\end{equation*}
$$

To give a fractional generalization of the telegraph process we consider the relation between a solution of the fractional Klein-Gordon equation and the distribution of a more general process.

Part Four: Fractional telegraph process

Strategy:

(1) Find a solution of the fractional Klein-Gordon equation that generalizes the fundamental solution of the classical Klein-Gordon equation.
2 Extract from this solution the conditional distribution of the generalized process and the probability distribution that governs the number of changes of directions.
3 Find the absolutely continuous and sigular components of the distribution of the fractional telegraph process.

Step 1

Lemma 3: The function

$$
\begin{equation*}
F(x, t)=\frac{1}{2 c} \frac{\partial}{\partial t} \sum_{k=1}^{\infty}\left(\frac{\lambda}{2^{\alpha} c^{\alpha}}\right)^{2 k} \frac{\left(c^{2} t^{2}-x^{2}\right)^{\alpha k}}{[\Gamma(\alpha k+1)]^{2}} \tag{21}
\end{equation*}
$$

solves the fractional Klein-Gordon-type equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha} u(x, t)=\lambda^{2} u(x, t), \quad \alpha \in(0,1] \tag{22}
\end{equation*}
$$

Step 2 The solution (21) can be written as

$$
F(x, t) d x=E_{\alpha, 1}\left(\lambda t^{\alpha}\right) \sum_{k=1}^{\infty} P\left\{\mathcal{T}^{\alpha}(t) \in d x \mid \mathcal{N}^{\alpha}(t)=2 k\right\} P\left\{\mathcal{N}^{\alpha}(t)=2 k\right\}
$$

where

$$
P\left\{\mathcal{T}^{\alpha}(t) \in d x \mid \mathcal{N}^{\alpha}(t)=2 k\right\}=d x \frac{\left(c^{2} t^{2}-x^{2}\right)^{\alpha k-1}}{(2 c t)^{2 k \alpha-1}} \frac{\Gamma(2 \alpha k)}{[\Gamma(\alpha k)]^{2}},
$$

where $k \geq 1,|x|<c t$, and $P\left\{\mathcal{N}^{\alpha}(t)=2 k\right\}$ gives the probability of an even number of changes, according to the fractional Poisson process $\mathcal{N}^{\alpha}(t)$.

The fractional Poisson process (introduced by Beghin, Orsingher, 2009), $\mathcal{N}^{\alpha}(t), t \geq 0$, has the following one-dimensional distribution

$$
P\left\{\mathcal{N}^{\alpha}(t)=k\right\}=\frac{1}{E_{\alpha, 1}\left(\lambda t^{\alpha}\right)} \frac{\left(\lambda t^{\alpha}\right)^{k}}{\Gamma(\alpha k+1)}, \quad \alpha \in(0,1], k \geq 0
$$

It is called fractional, because its probability generating function G_{α} satisfies the following fractional equation

$$
\frac{{ }^{c} \partial^{\alpha}}{\partial u^{\alpha}} G_{\alpha}(u, t)=\lambda t^{\alpha} G_{\alpha}\left(u^{\alpha}, t^{\alpha}\right)
$$

where ${ }^{C} \partial^{\alpha} / \partial u^{\alpha}$ is the so-called Caputo fractional derivative.

The conditional densities can be found as the laws of the r.v.'s

$$
\begin{equation*}
\mathcal{T}^{\alpha}(t)=c t\left[T_{\left(n^{+}\right)}^{\alpha}-\left(1-T_{\left(n^{+}\right)}^{\alpha}\right)\right] \tag{23}
\end{equation*}
$$

where $T_{\left(n^{+}\right)}^{\alpha}$ possesses probability density given by

$$
\begin{aligned}
& f_{T_{\left(n^{+}\right)}^{\alpha}}(w)=\frac{\Gamma(n \alpha)}{\Gamma\left(n^{+} \alpha\right) \Gamma\left(\left(n-n^{+}\right) \alpha\right)} w^{n^{+} \alpha-1}(1-w)^{\left(n-n^{+}\right) \alpha-1}, \\
& 0<w<1
\end{aligned}
$$

The r.v. defined in (23) can be regarded as a rightward displacement of random length of $c t T_{\left(n^{+}\right)}^{\alpha}$ and a leftward displacement for the remaining interval of time.
In an analogue way, we can find the conditional distributions when the fractional Poisson process $\mathcal{N}^{\alpha}(t)$ takes an odd number of events.

Theorem 2: The fractional telegraph-type process $\mathcal{T}^{\alpha}(t), t \geq 0$, has the following probability law

$$
\begin{aligned}
p^{\alpha}(x, t)= & \frac{1}{E_{\alpha, 1}\left(\lambda t^{\alpha}\right)}\left[c t \sum_{k=1}^{\infty}\left(\frac{\lambda}{2^{\alpha} c^{\alpha}}\right)^{2 k} \frac{\left(c^{2} t^{2}-x^{2}\right)^{\alpha k-1}}{\Gamma(\alpha k) \Gamma(\alpha k+1)}+\right. \\
& \left.+\sum_{k=0}^{\infty}\left(\frac{\lambda}{2^{\alpha} c^{\alpha}}\right)^{2 k+1} \frac{\left(c^{2} t^{2}-x^{2}\right)^{\alpha k+\frac{\alpha-1}{2}}}{\left[\Gamma\left(\alpha k+\frac{1+\alpha}{2}\right)\right]^{2}}\right] \\
& +\frac{1}{2 E_{\alpha, 1}\left(\lambda t^{\alpha}\right)}[\delta(x+c t)+\delta(x-c t)], \quad \alpha \in(0,1] .
\end{aligned}
$$

What is the governing equation of the probability law of the fractional telegraph process?

Theorem 3: The function

$$
f(x, t)=E_{\alpha, 1}\left(\lambda t^{\alpha}\right) P\left\{\mathcal{T}^{\alpha}(t) \in d x\right\}, \quad x \in(-c t,+c t)
$$

where $P\left\{\mathcal{T}^{\alpha}(t) \in d x\right\}$ represents the absolutely continuous component of the distribution of the fractional telegraph process $\mathcal{T}^{\alpha}(t), t \geq 0$, is a solution to the non-homogeneous fractional Klein-Gordon equation

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha} u_{\alpha}(x, t)=\lambda^{2} u_{\alpha}(x, t)+\lambda 2^{\alpha} c^{\alpha} \frac{\left(\sqrt{c^{2} t^{2}-x^{2}}\right)^{-\alpha-1}}{\left[\Gamma\left(\frac{1-\alpha}{2}\right)\right]^{2}}
$$

Remark: In the case $\alpha=1$, we recover in Theorem 2 the distribution of the classical telegraph process. Moreover, by Theorem 3, for $\alpha=1$, we have that

$$
f(x, t)=E_{1,1}(\lambda t) P\{\mathcal{T}(t) \in d x\}=e^{\lambda t} P\{\mathcal{T}(t) \in d x\}
$$

solves the classical Klein-Gordon-type equation

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u_{\alpha}(x, t)=\lambda^{2} u_{\alpha}(x, t)
$$

as expected.

References

L. Beghin, E. Orsingher. Fractional Poisson processes and related planar random motions, Electronic Journal of Probability, 14(61):1790-1826, (2009)
A. De Gregorio, E. Orsingher, L. Sakhno. Motions with finite velocity analyzed with order statistics and differential equations, Theory of Probability and Mathematical Statistics, 71:63-79, (2005)
R. Garra, E. Orsingher, F. Polito, Fractional Klein-Gordon equations and related stochastic processes, preprint, arXiv:1308.2139, (2013)
A.C. McBride. A theory of fractional integration for generalized functions, SIAM Journal on Mathematical Analysis, 6(3):583-599, (1975)
A.C. McBride. Fractional calculus and integral transforms of generalised functions, Pitman, London, (1979)
A.C. McBride. Fractional Powers of a Class of Ordinary Differential Operators, Proceedings of the London Mathematical Society, 3(45):519-546, (1982)

Proof of Theorem 1:

The Bessel operator

$$
L_{B}=\frac{d^{2}}{d w^{2}}+\frac{1}{w} \frac{d}{d w}
$$

appearing in (15) is a special case of L, when $n=2, a_{1}=-1$, $a_{2}=1, a_{3}=0$. By Definition 1 and Lemma 2 we have that $m=2$, $b_{1}=b_{2}=0$ and thus

$$
\begin{equation*}
\left(L_{B}\right)^{\alpha} f(w)=4^{\alpha} w^{-2 \alpha} I_{2}^{0,-\alpha} I_{2}^{0,-\alpha} f(w) \tag{24}
\end{equation*}
$$

By simple calculations we have that

$$
\begin{align*}
\left(L_{B}\right)^{\alpha} w^{\beta} & =4^{\alpha} w^{-2 \alpha} I_{2}^{0,-\alpha} I_{2}^{0,-\alpha} w^{\beta} \tag{25}\\
& =4^{\alpha}\left[\frac{\Gamma\left(\frac{\beta}{2}+1\right)}{\Gamma\left(1-\alpha+\frac{\beta}{2}\right)}\right]^{2} w^{\beta-2 \alpha} .
\end{align*}
$$

Let us write the function (16) in the new variable w, i.e.

$$
\begin{equation*}
u_{\alpha}(w)=w^{2 \alpha-2} \sum_{k=0}^{\infty}\left(\frac{\lambda}{2^{\alpha} c^{\alpha}}\right)^{2 k}(-1)^{k} w^{2 \alpha k} \frac{1}{[\Gamma(\alpha k+\alpha)]^{2}}, \tag{26}
\end{equation*}
$$

By applying now the operator $\left(L_{B}\right)^{\alpha}$ to the function (26) we have that (being $\beta=2 \alpha k+2 \alpha-2$)

$$
\begin{align*}
& \left(L_{B}\right)^{\alpha}\left(w^{2 \alpha-2} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{\lambda}{2^{\alpha} c^{\alpha}} w^{\alpha}\right)^{2 k} \frac{1}{[\Gamma(\alpha k+\alpha)]^{2}}\right) \tag{27}\\
& =-\frac{\lambda^{2}}{c^{2 \alpha}} u_{\alpha}(w)
\end{align*}
$$

and going back to the variables (x, t), we obtain the claimed result.

