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Abstract

This paper presents the procedure to obtain analytical solutions of Liénard type
model of a fluid transmission line represented by the Caputo-Fabrizio fractional
operator. For such a model, we derive a new approximated analytical solution by
using the Laplace homotopy analysis method. Both the efficiency and the accuracy of
the method are verified by comparing the obtained solutions with the exact
analytical solution. Good agreement between them is confirmed.

Keywords: pipelines; fluid dynamics; nonlinear oscillators; Liénard equation; Laplace
homotopy analysis method; fractional differential coupled equation

1 Introduction

Many dynamical phenomena can be represented by Liénard equations, such as biological,

mechanical, and electrical systems. In [–], the reader can find a broad list of contribu-

tions in mathematics and engineering which are based on such equations. In particular,

the authors in [] presented a Liénard type model in terms of the flow rate that was de-

rived from the water hammer equations and subsequently used for parameter estimation

purposes. The contribution presented in this article can be considered as an extension of

this work, because we present another space-temporal Liénard type model for pipelines

but governed by fractional derivatives, which gives the opportunity to model unknown

dynamics associated to fluid phenomena in the pipeline. Another feature of the proposed

model is that it can be conveniently expressed in terms of the flow rate or in terms of the

pressure head as required.

In the last decades fractional calculus (FC) allowed the investigation of the nonlocal

response of multiple phenomena [–], the fractional derivatives may be memory op-

erators which usually represent dissipative effects or damage []. The fractional deriva-

tive considers the history and nonlocal distributed effects of any physical system. Some

fundamental definitions in the context of FC are Erdelyi-Kober, Riesz, Riemann-Liouville,

Hadamard, Grünwald-Letnikov,Weyl, Jumarie and Caputo [–]. Some advantages and

disadvantages of these fractional derivatives are reviewed by Abdon in []. The Riemann-

Liouville definition entails physically unacceptable initial conditions (fractional order ini-

tial conditions) []; conversely for the Caputo representation, the initial conditions are

expressed in terms of integer-order derivatives having direct physical significance [],
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these definitions have the disadvantage that their kernel has a singularity [], this kernel

includesmemory effects and therefore both definitions cannot accurately describe the full

effect of the memory. Due to this inconvenience, Caputo and Fabrizio in [] presented a

new definition of fractional operator without a singular kernel, the Caputo-Fabrizio (CF)

fractional operator; this operator possesses very interesting properties, for instance, the

possibility to describe fluctuations and structures with different scales []. Furthermore,

this definition allows for a description of mechanical properties related with damage, fa-

tigue, and material heterogeneities. The properties of this new fractional operator are re-

viewed in detail in Lozada andNieto []. Other applications of the CF fractional operator

are given in [–].

In , based on the homotopy in topology, Liao [] proposed a method, named ho-

motopy analysis method (HAM), which transforms a nonlinear problem into an infinite

number of linear problems without using perturbation techniques []. An account of the

recent developments of HAMwas given in []. TheHAMhas been applied to solve linear

and nonlinear fractional partial differential equations []. The fractional KdV-Burgers-

Kuramoto equation was solved using the HAM []. Also the nonlinear Riccati differen-

tial equations of fractional order were solved with this method []. Hashim et al. []

employed the homotopy analysis method to solve some fractional initial value problems

(fIVPs). In [] the applicability of HAM was extended to construct a numerical solution

for the fractional BBM-Burgers equation. This method has also been employed for solv-

ing the fractional Klein-Gordon equation []. The HAM was applied to a linear homo-

geneous one and two-dimensional fractional heat-like partial differential equations sub-

ject to the Neumann boundary conditions []. The HAM was also applied to linear and

nonlinear homogeneous fractional diffusion-wave equations []. Recently, the HAMwas

shown to be capable of solving linear and nonlinear systems of fractional partial differen-

tial equations (FPDEs) [].

The aim of this paper is to apply the Laplace homotopy analysis method (LHAM) to

provide analytical solutions of a Liénard type models of a pipeline, the Caputo-Fabrizio

fractional operator is applied. The current paper is organized as follows: In Section ,

we describe the Liénard representation. In Section , the water hammer equations are

obtained. Section  describes the fractional Liénard Model of a fluid transmission line

and the general description of the LHAM is presented. Section  presents the application

of the LHAM using the Caputo-Fabrizio fractional derivative, and a conclusion is given in

Section .

2 Liénard equation

A generalization of differential equations that describes the behavior of second-order me-

chanical systems is the so-called Liénard system [], corresponding to the following equa-

tion:

ẍ(t) + F
(

x(t)
)

ẋ(t) +G

(

x(t)
)

= , where ẋ(t) =
∂

∂t
, ẍ(t) =

∂

∂t
, ()

for given functions F,G and position x(t). On the one hand, a particular case of Eq. () is

the equation of damped oscillations: ẍ(t)+γ ẋ(t)+ωx(t) = , where ẍ(t) is the acceleration,

ẋ(t) is the velocity, and γ , ω are constant parameters. For γ = , the equation of the linear

harmonic oscillator is obtained, which represents one of the fundamental equations of



Gómez-Aguilar et al. Advances in Difference Equations  ( 2016)  2016:173 Page 3 of 13

both classical and quantum physics. Generally, a linear oscillation can be described by

the equation ẍ(t) + F(t)ẋ(t) +G(t)x(t) = . On the other hand, the Liénard equation is a

generalization of the Levinson-Smith type equation []

ẍ(t) + F
(

x(t), ẋ(t)
)

ẋ(t) +G

(

x(t)
)

= . ()

The Liénard type equation (), for representing non-scalar systems, can be rewritten in

a state space representation by considering x(t), ẋ(t) as state variables x(t),x(t) ∈ X (X,

being an adequate Banach space), leading to

ẋ(t) = x(t); ẋ(t) = –F
(

x(t)
)

x(t) –G

(

x(t)
)

. ()

Therefore F : X → L(X) (where L(X) is the space of bounded linear functions from X

to X) and G : X → X. Now, if there exists a function F : X → X such that F(ξ (t)) is the

Fréchet derivative of F at ξ (t) for all ξ (t) ∈ X and F(X) = X (where X is the zero element

of X), then the change of variables

(

ζ(t) ζ(t)
)

= �
(

x(t) x(t)
)

, ()

defined as

� :
(

x(t) x(t)
)

→
(

x(t) ẋ(t) + F(x(t))
)

, ()

transform system () into

ζ̇(t) = ζ(t) – F
(

ζ(t)
)

; ζ̇(t) = –G

(

ζ(t)
)

. ()

3 Water hammer equations

By assuming that convective changes in velocity are negligible, as well as that both the

liquid density and the cross-sectional area are constant, the momentum and continuity

equations governing the dynamics of the fluid in a horizontal pipeline can be expressed as

[]

∂Q(z, t)

∂t
+ gAr

∂H(z, t)

∂z
+

f

φAr

Q(z, t)
∣

∣Q(z, t)
∣

∣ = , ()

∂H(z, t)

∂t
+

b

gAr

∂Q(z, t)

∂z
= , ()

where (z, t) ∈ (,L) × (,∞) are the space (m) and time (s) coordinates, respectively, L is

the length of the pipe, H(z, t) is the pressure head (m), Q(z, t) is the flow rate (m/s), b is

the wave speed in the fluid (m/s), g is the gravitational acceleration (m/s), Ar is the cross-

sectional area of the pipe (m), φ is the inside diameter of the pipe (m), and f is the Darcy-

Weisbach friction factor.

In this work, the initial conditions expressing the spatial profiles of Q(z, t) and H(z, t) at

the instant t =  are denoted H(z, ) = H(z), Q(z, ) = Q(z); and the following Dirichlet

conditions can be imposed at the boundaries of the pipeline: (i) upstream pressure head,

H(, t) = Hin(t), (ii) downstream pressure head, H(L, t) = Hout(t), (iii) upstream flow rate,

Q(, t) =Qin(t) and (iv) downstream flow rate, Q(L, t) =Qout(t).
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3.1 Linearized version of the water hammer equations

In [] and [], Eq. () and Eq. () were linearized for using two common procedures

in making flow studies: the impedance approach and the matrix method, which utilize

transfer functions for the pressure and flow. Such a linear version of equations () and ()

is given as follows:

∂h(z, t)

∂z
+



Ar

∂q(z, t)

∂t
+

fq

gφA
r

q(z, t) = , ()

∂q(z, t)

∂z
+
gAr

b
∂h(z, t)

∂t
= , ()

where q and h are the flow and pressure in equilibrium, q(z, t) and h(z, t) are the flow rate

and pressure head around the equilibrium (q,h), respectively. The physical parameters

of the pipeline can be redefined in terms of electrical parameters as follows:

L =


gAr

, C =
gAr

b
, R =

fq

gφA
r

, ()

such that Eq. () and Eq. () can be rewritten as

∂h(z, t)

∂z
+L

∂q(z, t)

∂t
+Rq(z, t) = , ()

∂q(z, t)

∂z
+ C

∂h(z, t)

∂t
= . ()

Notice that Eq. () and Eq. () are the telegrapher equations without the admittance

term G . In a pipeline, the meaning of this admittance term is distributed outflow. Hence,

the following equations represent a pipeline with outflow:

∂h(z, t)

∂z
+L

∂q(z, t)

∂t
+Rq(z, t) = , ()

∂q(z, t)

∂z
+ C

∂h(z, t)

∂t
+ Gh(z, t) = . ()

3.2 Liénard model of a fluid transmission line (integer order)

By differentiating equations () and () and applying some algebraic manipulation, we

obtain a pair of hyperbolic partial differential equations that involve only one variable

∂h(z, t)

∂z
=LC

∂h(z, t)

∂t
+ (RC + GL)

∂h(z, t)

∂t
+ GRh(z, t), ()

∂q(z, t)

∂z
=LC

∂q(z, t)

∂t
+ (RC + GL)

∂q(z, t)

∂t
+ GRq(z, t). ()

Either using the Liénard transform in terms of the flow

� :
(

x(t) x(t)
)

→
(

q(z, t) q̇(z, t) + F(q(z, t))
)

, ()

or in terms of the pressure head

� :
(

x(t) x(t)
)

→
(

h(z, t) ḣ(z, t) + F(h(z, t))
)

, ()
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the couple of equations () and () becomes

∂x(z, t)

∂t
= x(z, t) –

(

RC + GL

LC

)

x(z, t),

∂x(z, t)

∂t
= –

(

GR

LC

)

x(z, t) +

(



LC

)

∂x(z, t)

∂z
.

()

4 Liénardmodel of a fluid transmission line (fractional order)

The CF fractional operator is defined as follows [, ]:

CF
 Dα

t f (t) =


 – α

∫ t



f ′(τ ) exp

(

–
α(t – τ )

 – α

)

dτ ,  < α ≤ , ()

where CF
 Dα

t f (t) is the CF fractional operator with respect to t, M(α) is a normalization

function, such thatM() =M() = ; in this definition, the derivative of a constant is equal

to zero, but unlike the usual Caputo definition [], the kernel does not have a singularity

at t = τ .

The Laplace transform (L ) of this novel definition () is defined as follows [, ]:

L
[

CF
 D

(α+n)
t f (t)

]

=


 – α
L

[

f (α+n)(t)
]

L

[

exp

(

–
α

α – 
t

)]

=
sn+L [f (t)] – snf () – sn–f ′() – · · · – f (n)()

s + α( – s)
. ()

From this expression we have

L
[

CF
 Dα

t f (t)
]

=
sL [f (t)] – f ()

s + α( – s)
, n = ,

L
[

CF
 D

(α+)
t f (t)

]

=
sL [f (t)] – sf () – f ′()

s + α( – s)
, n = .

()

4.1 Description of the LHAM

An alternative procedure for constructing fractional differential equation was reported in

[], and successfully applied in [–]. In this context, to keep the dimensionality of the

fractional differential equation a new parameter σ is introduced in the following way:

d

dt
→



σ –α
· CF Dα

t , m –  < α ≤ m,m ∈M = , , , . . . , ()

and

d

dt
→



σ (–α)
· CF Dα

t , m –  < α ≤ m,m ∈M = , , , . . . , ()

where α represents the order of the fractional temporal operator and σ has the dimension

of seconds, this auxiliary parameter is associated with the temporal components in the

system (these components change the time constant of the system) []. In this context,

the authors of [] used the Planck time, tp = . × – seconds, with the finality

to preserve the dimensional compatibility. Following [] the σ parameter corresponds
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to the tp in our calculations. For the case α =  the expressions () and () become

ordinary temporal operators. Following this idea, we consider the following coupled linear

fractional partial differential equations:

CF
 Dα

t x(z, t) – t–α
p x(z, t) + t–α

p

(

RC + GL

LC

)

x(z, t) = ,

CF
 Dα

t x(z, t) + t–α
p

(

RG

LC

)

x(z, t) – t–α
p

(



LC

)

∂x(z, t)

∂z
= ,

()

with the initial conditions

∂kxi(z, )

∂tk
= xi,k(z, ), k = , , . . . ,n – , ()

and the boundary conditions

xi(, t) = xi,(t), t ≥ . ()

The Laplace transform satisfies

L
[

CF
 Dα

t f (t)
]

(s) =


(s + α( – s))

(

sL
[

f (t)
]

(s) – f ()
)

, s > , ()

we can define �(x, s) = L[f (x, t)](s), for equation (), we can write

X(z, s) =L
[

x(z, t)
]

(s)

=
x(z, )

s
+ (tp)

–α

(

(s + α( – s))

s

)[

X(z, s) –

(

RC + GL

LC

)

X(z, s)

]

, ()

X(z, s) =L
[

x(z, t)
]

(s)

=
x(z, )

s
+ (tp)

–α

(

(s + α( – s))

s

)[(

RG

LC

)

+

(



LC

)

∂

∂z

]

X(z, s). ()

According to LHAM, we construct the homotopy for Eq. () as follows:

X(z, s) =
x(z, )

s
+ p(tp)

–α

(

(s + α( – s))

s

)[

X(z, s) –

(

RC + GL

LC

)

X(z, s)

]

,

X(z, s) =
x(z, )

s
+ p(tp)

–α

(

(s + α( – s))

s

)[(

RG

LC

)

+

(



LC

)

∂

∂z

]

X(z, s),

()

where Xi(z, s) denote the Laplace transform of xi(z, t).

Applying the LHAM to obtain the solution of Eq. (), we can start by the hypothesis

that the solution �(x, z) is expressed as

Xi(z, s) =

∞
∑

j=

pjXi,j(z, s), ()
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where Xij(z, s), j = , , , . . . , are the unknown functions. Substituting () into (), we get

∞
∑

j=

pjX,j(z, s)

=
x(z, )

s
+ p(tp)

–α

(

(s + α( – s))

s

)

×
[ ∞
∑

j=

pjX,j(z, s) –

(

RC + GL

LC

) ∞
∑

j=

pjX,j(z, s)

]

,

∞
∑

j=

pjX,j(z, s)

=
x(z, )

s
+ p(tp)

–α

(

(s + α( – s))

s

)

×
[(

RG

LC

)

+

(



LC

)

∂

∂z

] ∞
∑

j=

pjX,j(z, s),

()

which, on comparing the coefficients of powers of p, yields

p : X,(z, s) =
x(z, )

s
,

X,(z, s) =
x(z, )

s
,

p : X,(z, s) = (tp)
–α

(

(s + α( – s))

s

)[

X,(z, s) –

(

RC + GL

LC

)

X,(z, s)

]

,

X,(z, s) = (tp)
–α

(

(s + α( – s))

s

)[(

RG

LC

)

+

(



LC

)

∂

∂z

]

X,(z, s), ()

. . . ,

pn+ : X,n+(z, s) = (tp)
–α

(

(s + α( – s))

s

)[

X,n(z, s) –

(

RC + GL

LC

)

X,n(z, s)

]

,

X,n+(z, s), = (tp)
–α

(

(s + α( – s))

s

)[(

RG

LC

)

+

(



LC

)

∂

∂z

]

X,n(z, s).

In the limit p→ , we note that () becomes the approximate solution for the problem

of ()-() and is given by

H,n(z, s) =

n
∑

i=

X,n(z, s),

H,n(z, s) =

n
∑

i=

X,n(z, s).

()

Taking the inverse Laplace transform of (), we obtain

x(z, t) ≈ L
–

[

H,n(z, s)
]

,

x(z, t) ≈ L
–

[

H,n(z, s)
]

.
()
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5 Applications

Consider the coupled linear fractional partial differential equation () with initial condi-

tion

x(z, ) =

(


√
LC(CR + GL)

(CR – GL)

)

sin

(

(CR – GL)


√
LC

z

)

,

x(z, ) =

(

(CR + GL)
√
LC(CR – GL)

)

sin

(

(CR – GL)


√
LC

z

)

,

()

the exact solution of the given problem () is given by

x(z, t) =

( 
√

(LC)tαp exp(
(CR+GL)tαtp

(–LCtαp +(–+α)tp(GL+CR))
)

(LCtαp – (– + α)(GL + CR)tp)(CR – GL)

)

× sin

(

(CR – GL)


√
LC

z

)

,

x(z, t) =

(
√
LCtαp (CR + GL) exp(

(CR+GL)tαtp
(–LCtαp +(–+α)tp(GL+CR))

)

(LCtαp – (– + α)(GL + CR)tp)(CR – GL)

)

× sin

(

(CR – GL)


√
LC

z

)

,

()

Xi,j(z, s) = L
[

xi,j(z, t)
]

= , ()

therefore we can apply the LHAMmethod, which yields

p : X,(z, s) =L
[

x(z, )
]

,

p : X,(z, s) =L
[

x(z, )
]

,

p : X,(z, t) =L
–

[

(tp)
–α

(

(s + α( – s))

s

)[

X,(z, s) –

(

RC + GL

LC

)

X,(z, s)

]]

=

(

t–α
p (CR + GL)( + (– + t)α)

√
LC(GL – CR)

)

sin

(

(CR – GL)


√
LC

z

)

,

X,(z, t) =L
–

[

(tp)
–α

(

(s + α( – s))

s

)[(

RG

LC

)

+

(



LC

)

∂

∂z

]

X,(z, s)

]

=

(

t–α
p (CR + GL)( + (– + t)α)


√

(LC)(GL – CR)

)

sin

(

(CR – GL)


√
LC

z

)

,

p : X,(z, t) =L
–

[

(tp)
–α

(

(s + α( – s))

s

)[

X,(z, s) –

(

RC + GL

LC

)

X,(z, s)

]]

()

= –

(

t–αp (CR + GL)( + (– + t)α + ( + (– + t)t)α)


√

(LC)(GL – CR)

)

× sin

(

(CR – GL)


√
LC

z

)

,

X,(z, t) =L
–

[

(tp)
–α

(

(s + α( – s))

s

)[(

RG

LC

)

+

(



LC

)

∂

∂z

]

X,(z, s)

]
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= –

(

t–αp (CR + GL)( + (– + t)α + ( + (– + t)t)α)


√

(LC)(GL – CR)

)

× sin

(

(CR – GL)


√
LC

z

)

,

. . .

and so on. Here Xi,j(z, s) = L [xi,j(z, t)] are the Laplace transforms of the approximated

solution xi,j(z, t). By (), we get

x,n(z, t) =

n
∑

i=

X,i(z, t)

=

[

–

(


√
LC(CR + GL)

(GL – CR)

)

+

(

t–α
p (CR + GL)( + (– + t)α)

√
LC(GL – CR)

)

–

(

t–αp (CR + GL)( + (– + t)α + ( + (– + t)t)α)


√

(LC)(GL – CR)

)]

× sin

(

(CR – GL)


√
LC

z

)

+ · · · ,

x,n(z, t) =

n
∑

i=

X,i(z, t)

=

[

–

(

(CR + GL)
√
LC(GL – CR)

)

+

(

t–α
p (CR + GL)( + (– + t)α)


√

(LC)(GL – CR)

)

–

(

t–αp (CR + GL)( + (– + t)α + ( + (– + t)t)α)


√

(LC)(GL – CR)

)]

× sin

(

(CR – GL)


√
LC

z

)

+ · · · ,

()

which, on taking the limit n→ ∞, yields

x(z, t) = lim
n→∞

x,n(z, t) = lim
n→∞

n
∑

i=

X,i(z, t)

=

( 
√

(LC)tαp exp(
(CR+GL)tαtp

(–LCtαp +(–+α)tp(GL+CR))
)

(LCtαp – (– + α)(GL + CR)tp)(CR – GL)

)

× sin

(

(CR – GL)


√
LC

z

)

,

x(z, t) = lim
n→∞

x,n(z, t) = lim
n→∞

n
∑

i=

X,i(z, t)

=

(
√
LCtαp (CR + GL) exp(

(CR+GL)tαtp
(–LCtαp +(–+α)tp(GL+CR))

)

(LCtαp – (– + α)(GL + CR)tp)(CR – GL)

)

× sin

(

(CR – GL)


√
LC

z

)

,

()
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Table 1 Physical parameters

Parameter Value

L 12.5734 (m)
φ 0.1016
R 6.414
C ≈ 4.8240× 10–8

Parameter Value

b 1,284 (m/s)
f 0.022
L ≈ 123.3453
q0 ≈ 0.019130 (m3/s)

where these functions x(z, t) and x(z, t) are the analytical solutions () to the original

problem ().

5.1 Analysis of the limit case α = 1

Consider the limit of the coupled linear fractional partial differential () equation when

α =  (classical case), i.e.

∂x(z, t)

∂t
– x(z, t) +

(

RC + GL

LC

)

x(z, t) = ,

∂x(z, t)

∂t
+

(

RG

LC

)

x(z, t) –

(



LC

)

∂x(z, t)

∂z
= ,

()

if we take the limit α =  in the exact solutions () we obtain the following solu-

tions:

x(z, t) =

(


√
LC exp(– (CR+GL)t

LC
)

(CR – GL)

)

sin

(

(CR – GL)


√
LC

z

)

,

x(z, t) =

(

(CR + GL) exp(– (CR+GL)t
LC

)
√
LC(CR – GL)

)

sin

(

(CR – GL)


√
LC

z

)

,

()

which are actually the correct solutions to the coupled equation ().

5.2 Simulation and comparison of the models

Table  shows the physical parameters considered in the simulations.

Figures (a) and (b) show the numerical simulations for the approximate and exact so-

lutions for arbitrarily chosen α values.

6 Conclusions

The Liénard equation is used in many fields of science for representing the dynamical be-

havior of physical systems. For this reason it is very important to analyze its solutions

under different conditions as well as explore different ways to solve it. In this article,

we presented the procedure to solve a Liénard equation by using the Laplace homotopy

analysis method using a new fractional derivative without singular kernel. In particular,

this equation represents the fluid dynamics of a pipeline. The solution obtained by the

aforementioned method is valid for the equation governed by both integer and fractional

derivatives.

This results may relate to, or may be extended to relate to a class of fractional oscillators

based on fractional Langevin equation, which have interesting behavior in the locations

of the characteristic [] as well as roots stability [].
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Figure 1 Numerical simulations for the approximate and exact solutions.
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