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Abstract

This study provides a detailed exposition of in-hospital community-acquired methicillin-

resistant S. aureus (CA-MRSA) which is a new strain of MRSA, and hospital-acquired

methicillin-resistant S. aureus (HA-MRSA) employing Caputo fractional operator.

These two strains of MRSA, referred to as staph, have been a serious problem in hos-

pitals and it is known that they give rise to more deaths per year than AIDS. Hence,

the transmission dynamics determining whether the CA-MRSA overtakes HA-MRSA

is analyzed by means of a non-local fractional derivative. We show the existence and

uniqueness of the solutions of the fractional staph infection model through fixed-point

theorems. Moreover, stability analysis and iterative solutions are furnished by the

recursive procedure. We make use of the parameter values obtained from the Beth

Israel Deaconess Medical Center. Analysis of the model under investigation shows

that the disease-free equilibrium existing for all parameters is globally asymptotically

stable when both RH
0 and RC

0 are less than one. We also carry out the sensitivity

analysis to identify the most sensitive parameters for controlling the spread of the

infection. Additionally, the solution for the above-mentioned model is obtained by the

Laplace-Adomian decomposition method and various simulations are performed by

using convenient fractional-order α.
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1 Introduction

Many compartmental models like SIS, SIR, SIRS, SEIRS, MSEIR, MSEIRS have been

introduced since 1927 in order to analyze the infectious diseases in detail by means of

mathematical tools. When analyzed such models, it is supposed that the population is

in a homogeneous structure, people react the same to infectious diseases and transform

from one situation to another collectively. We should emphasize that this significant

assumption is essential for formulating a complex system. Infectious diseases that

cannot be fully defined have taken a crucial role in shaping world history while reducing

the world population. For instance, in the second century AD, Antonine Plague gave

rise to a sharp decline in the population and economic trouble in the Roman Empire

and so this disease that caused the disruption of order led to the collapse of the Roman

Empire. On the other hand, the Han empire also collapsed owing to similar reasons

in the third century AD. The plague epidemic, which started in the Eastern Roman

Empire in 541, affected the Mediterranean region adversely until 750 and caused an

estimated 20-30 percent decrease in the population. With infectious diseases such as

smallpox, measles, and diphtheria, 90 percent of the indigenous people died, and their

population, which was 30 million in Mexico, decreased to 3 million between 1519–

1530. Moreover, the plague called Black Death that ended up with great destruction

between 1347 and 1351 destroyed about a third of the European population, which

was 70 million in the 1340s and it repeated regularly more than 300 years in many

parts of Europe. Also in the nineteenth century, cholera killed millions of people, and

in 1918-1919 influenza killed more than 20 million people in the United States [1].

Between June 1918 and December 1920, Spanish Flu, the deadliest pandemic, caused

the death of at least 50 million people, which constituted about 3 percent of the world

population, and 500 million people were affected by this virus in almost every region

of the world [2].

The increase in the effectiveness of sanitation programs, antibiotics, and vaccina-

tion programs in the 1960s led to the idea that infectious diseases will be overcome.

Furthermore, infectious diseases adapt and develop in new environments and also

new ecosystems, global warming, rise in international travel, changes in the economic

structure allow novel infectious diseases to emerge easier. Resistance to antibiotics

utilized in gonorrhea, tuberculosis, and pneumonia has developed and some diseases

like dengue fever, yellow fever, malaria have become widespread especially in regions

where climate change is experienced [3,4]. In the last 40 years, various new infectious

diseases such as Lyme (1975), legionary (1976), toxic shock syndrome (1978), hepati-

tis C (1989), hepatitis E (1990), hantavirus (1993), hepatitis G (1995), Nipah (1998),

SARS (2003) have been diagnosed [5]. The Human Immunodeficiency Virus (HIV),

the etiological agent (infectious substances) for Acquired Immune Deficiency Syn-

drome (AIDS), was first diagnosed in 1981 and surrounded the world. According to

2009 data, AIDS was a crucial infectious disease that caused about 25 million deaths

and 33 million people had to live together with this dangerous disease and fight to

death [6].

Numerous deaths due to plague, smallpox, cholera, and influenza outbreaks have

led to the creation of various models for the monitoring and prevention of the spread

of infectious diseases since the 17th century. Initially, it was aimed at monitoring only
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the simple data collection and the increase and decrease in the number of deaths, but

today, the models are set using all the possibilities of information and communication

technologies. In this context, system dynamics and agent-based simulation models,

geographic information systems, spatial data mining, complex networks, heuristic

methods, and dynamic system approaches play an important role. The basics of all

these methods are based on mathematical models that seek solutions with differential

equations laid in the 1920s. The first mathematical model related to infectious dis-

eases belongs to Daniel Bernoulli published in 1766. In Bernoulli’s study, variolation

discussions, a vaccination method developed for smallpox, are tackled by means of a

mathematical model [7]. In 1906, Hamer designed and analyzed a discrete-time model

to examine the recurrence of measles outbreaks. The model is important because it

is the first model that assumes that the number of new cases that occur per unit time

depends on the number of susceptible and disease-carrying individuals. After these

studies, A. G. McKendrick and W. O. Kermack made the biggest contribution, which

was shown as the first example in the prediction of the spread of infectious diseases

by means of mathematical models and published in 1927 [8].

As an example of the SIS model, let us make mention of the spread of staph infection

in hospitals. Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that

can cause serious infections in humans and is often referred to as staph. In fact, this

bacterium is resistant to the typically used antibiotic methicillin. In hospitals, patients

with compromised immune systems or elderly patients can easily catch the MRSA

bacterium and get bloodstream infectious. MRSA, traditionally a crucial problem in

hospitals, accounts for the significant part of hospital fatalities and brings about more

deaths than AIDS each year [9]. Recently, a different genetic type of MRSA has been

identified and it has been found that this novel strain CA-MRSA can also infect healthy

and young individuals while traditional strain HA-MRSA has occasionally. In some

studies, it is asserted that CA-MRSA may surpass HA-MRSA and so deaths may

increase yearly owing to the severity of the problem handled. Therefore, a compart-

mental mathematical model has been developed to determine whether the CA-MRSA

overtakes HA-MRSA. For more details on the above-mentioned model, we refer the

reader to [9].

Fractional calculus, a venerable branch of mathematical analysis, examines the pos-

sibilities of the order of the derivative and integral operator, which is generally denoted

by D and I , to be real or complex number. Although the idea of fractional derivative

was first introduced when L’Hopital asked a question about fractional derivative to

Leibniz in 1695, the definition of fractional derivative was not presented by Leib-

niz at that time. Hence, the fractional derivative definition has been put forward by

subsequent scientists and today has many applications in biology, physics, chemistry,

engineering, and so on. The topic of fractional calculus has attracted great attention

from several authors due to applicability to various real-world problems and has the

potential to achieve better results than the classical derivative [10,11]. The most com-

mon way of explaining fractional operators is to present the Riemann-Liouville (RL)

integral and derivative of an arbitrary complex analytic function. These substantial

definitions are given as follows
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RLI
α f (t) =

1

Ŵ(α)

∫ t

a

f (τ )

(t − τ)1−α
dτ, Re(α) > 0; (1)

RLD
α f (t) =

dn

dxn
RL

I
n−α f (t), n = ⌊Re(α)⌋ + 1, Re(α) ≥ 0. (2)

respectively. However, the definition of RL is not sufficient to fully explain fractional

calculus because it has some shortcomings in practice related to initial conditions. So,

various fractional derivatives with a wide variety of properties have been defined to

compensate for these shortcomings. It should be emphasized that in fractional calculus,

unlike classical analysis, there are dozens of differintegral definitions instead of a

specific definition. This active and popular field of research has great importance for

the modeling of certain biological, physical, etc processes. For more information on

fractional operators, see [12–23] and the references given there. On the other hand,

Caputo fractional derivative obtained by modifying the Riemann-Liouville definition

is of paramount significance because of the applicability to various problems in daily

life [24]. So, we present the definition of Caputo fractional operator as below:

CD
α f (t) =

1

Ŵ(n − α)

∫ t

a

f (n)(τ )

(t − τ)α−n+1
dτ, (3)

where Re(α) ≥ 0 and n = ⌊Re(α)⌋ + 1. From the applications point of view, this

useful fractional derivative has been widely interpreted in connection with different

areas such as finance, diffusion, control engineering, optics, non-Markovian physical

processes, etc. One of the best ways to comprehend the fractional calculus is to consider

the tautochrone problem in which non-integer order is needed to get the desired results.

It can be predicted that in the future, a definition covering all definitions of fractional

operators available in the literature may be introduced. To learn more about the content

of this study, we refer the readers to [25–43].

In hospitals, the infection of MRSA, a gram-positive bacterium, has traditionally

been a crucial problem causing many deaths each year. Hospital-acquired MRSA

strain (HA-MRSA) is usually seen in elderly people or patients with a weak immune

system while community-acquired MRSA strain can also infect young and healthy

individuals. Thus in order to critically enunciate the actual characteristics of the sit-

uation, an expansive study needs to be carried out. It can be noted that, in the recent

past, multifarious scientists have shown that the fractional calculus can more precisely

explain natural phenomena than the integer calculus. In light of these facts, fractional

calculus has become increasingly important and common in modeling realistic cases,

particularly those with memory effects. We get inspired to investigate and evaluate

the fractional variant of the governing model with an effective fractional operator

called Caputo fractional derivative. To the best of our knowledge, this is the first

time a fractional operator has been employed for the analysis and investigation of

the underlying model. Consequently, several properties of the model such as exis-

tence and uniqueness of the solution, positivity, stability analysis, sensitivity analysis,

basic reproduction number have been analyzed. Furthermore, by means of an effec-

tive method called Laplace-Adomian decomposition method (LADM), simulation and
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comparative analysis are carried out on the basis of the model being considered and

the values of parameters to determine the efficiency and effectiveness of the current

fractional variant of the model in the Caputo sense.

The remainder of this study is as follows: In Sect 2, model description and necessary

prerequisites are given in both classical and fractional manner. We show the existence

and uniqueness of solutions related to the Caputo fractional derivative and some other

crucial theoretical information such as stability analysis, sensitivity analysis, and so

on are furnished in Sect. 3. Moreover, we present the solution for the MRSA model

using the method of LADM related to Caputo’s definition and plot various graphs to

get comparative results in Sect. 4. Finally, we give some important concluding remarks

in Sect. 5.

2 Model description and prerequisites

In this segment, we present the methicillin-resistant Staphylococcus aereus (MRSA)

model with two strains, CA-MRSA and HA-MRSA, by making use of standard works

on the current model in [9,23,25]. Hence, the population exposed to an infectious

disease in the model is divided into three groups:

• H(t) =patients colonized with HA-MRSA,

• C(t) =patients colonized with CA-MRSA,

• S(t) =susceptible patients who are not colonized with HA-MRSA or CA-MRSA.

The parameters of the model we studied are given as follows:

• N = the total number of the individuals who are the patients in the hospital,

• � = the daily entrance rate of patients to the hospital,

• δC = the daily exit rate of patients who are colonized with CA-MRSA through

death or discharge,

• δH = the daily exit rate of patients who are colonized with HA-MRSA through

death or discharge,

• δS = the daily exit rate of susceptible patients through death or discharge,

• βC = the daily transfer rate of CA-MRSA among patients,

• βH = the daily transfer rate of HA-MRSA among patients,

• γC = the daily rate of undergoing decolonization measures of patients who are

colonized with CA-MRSA,

• γH = the daily rate of undergoing decolonization measures of patients who are

colonized with HA-MRSA,

Susceptible patients denoted by S(t) can become contaminated when visited by the

colonized healthcare team or as a result of failure to pay attention to hand hygiene, the

healthcare team can become colonized by coming into contact with infected patients.

The susceptible patient is the person who does not have enough immunity to prevent

the infection that will occur with this factor when it is exposed to a certain pathogen.

Also, C(t) and S(t) are infectious individuals who carry the disease and can transmit

it to susceptible individuals. Although some people have a natural immunity to certain

infectious diseases, individuals in this situation can be neglected in modeling as they
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will constitute a very small proportion of the population. In the model, the concept

of population refers to the number of people living in a particular geographic area.

The population N and the number of individuals susceptible to the disease S are

considered as two different concepts in order to avoid confusion in other models in

which the entire population is not sensitive to a particular infectious disease. In the

model, it is assumed that the individuals in both compartments will be in contact

with each other and the level of contagiousness will occur during each contact so that

individuals susceptible to the disease can be infected by infectious individuals. The SIS

model is one of the compartmental models in which individuals are not immune and

are susceptible to illness with recovery. As patients become colonized or decolonized,

they move between compartments S(t), C(t) and H(t). It should be noted that HA-

MRSA occurs generally in elderly patients while CA-MRSA can also occur in healthy

young people.

The transition between states is modeled by

d S(t)

dt
= � −

βH S(t)H(t)

N
−

βC S(t)C(t)

N
+ γH H(t) + γC C(t) − δS S(t),

d H(t)

dt
=

βH S(t)H(t)

N
− γH H(t) − δH H(t),

dC(t)

dt
=

βC S(t)C(t)

N
− γC C(t) − δC C(t).

(4)

Assuming the hospital is always full, � = δS S(t) + δH H(t) + δC C(t) and N =

C(t) + H(t) + S(t), then the system (4) can be also shown by the following system:

d H(t)

dt
=

βH

N
(N − C(t) − H(t)) − (δH + γH )H(t),

dC(t)

dt
=

βC

N
(N − C(t) − H(t))C(t) − (δC + γC )C(t).

(5)

Here, S(t) is determined by the equation S(t) = N − H(t) − C(t).

The essential objective is to investigate transmission dynamics in the hospital of

MRSA strains: HA-MRSA and CA-MRSA. When it is assumed that patients can only

be colonized with HA-MRSA or CA-MRSA, according to global results, competitive

exclusion occurs between the two strains of MRSA [23,25]. In this case, the strain

having a larger reproduction number become endemic and the other one is extinguished

because of competition. As a consequence, some novel studies present that patients

can be colonized with both HA-MRSA and CA-MRSA, that is, it is allowed patients

to be co-colonized with two strain. The extended version of the single-colonization

model (4) to the co-colonization model has been presented in [25].

2.1 Mathematical formulation of the fractional-order model

In current years, fractional calculus has attracted great attention, which enables us

to take derivative or integral of arbitrary order. The main advantage of the fractional

differential equations systems is to ensure the memory-effect in the model. Taking
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into account all these benefits, we present a novel system of fractional differential

equations to model the CA-MRSA and HA-MRSA . This model is given by Caputo

fractional derivative as follows:

CD
α S(t) = �α −

βα
H S(t)H(t)

N
−

βα
C S(t)C(t)

N
+ γ α

H H(t) + γ α
C C(t) − δα

S S(t),

CD
α H(t) =

βα
H S(t)H(t)

N
− γ α

H H(t) − δα
H H(t),

CD
αC(t) =

βα
C S(t)C(t)

N
− γ α

C C(t) − δα
C C(t).

(6)

If we presume � = δS S(t) + δH H(t) + δC C(t) and N = C(t) + H(t) + S(t), we

can rewrite the (6) as below:

CD
α H(t) =

βα
H

N
(N − C(t) − H(t)) − (δα

H + γ α
H )H(t),

CD
αC(t) =

βα
C

N
(N − C(t) − H(t))C(t) − (δα

C + γ α
C )C(t).

(7)

S(t) can be calculated by the S(t) = N − H(t) − C(t).

3 Mathematical analyses of theMRSAmodel

3.1 Existence and uniqueness of solutions via Caputo fractional derivative

Here, by utilizing the theory of fixed-point, we furnish the existence and uniqueness of

the solution for the non-linear system under the account by means of Caputo fractional

derivative. Let us assume that B(J ) is a Banach space for the continuous real-valued

functions defined on the interval J = [0, a] with sub norm and Q = B(J )×B(J )×

B(J ) with the norm ‖ (S, H , C) ‖=‖ S ‖ + ‖ H ‖ + ‖ C ‖, ‖ S ‖= supt∈J |S|,

‖ H ‖= supt∈J |H |, ‖ C ‖= supt∈J |C |. If we apply Caputo fractional integral on

equation (6), we have

S(t) − S(0) = CD
α

[

�α −
βα

H S(t)H(t)

N
−

βα
C S(t)C(t)

N
+ γ α

H H(t) + γ α
C C(t) − δα

S S(t)

]

,

H(t) − H(0) = CD
α

[

βα
H S(t)H(t)

N
− γ α

H H(t) − δα
H H(t)

]

,

C(t) − C(0) = CD
α

[

βα
C S(t)C(t)

N
− γ α

C C(t) − δα
C C(t)

]

.

(8)
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Assuming that

K1 = �α −
βα

H S(t)H(t)

N
−

βα
C S(t)C(t)

N
+ γ α

H H(t) + γ α
C C(t) − δα

S S(t),

K2 =
βα

H S(t)H(t)

N
− γ α

H H(t) − δα
H H(t),

K3 =
βα

C S(t)C(t)

N
− γ α

C C(t) − δα
C C(t),

(9)

then the system (8) can be written by means of Caputo operator as follows

S(t) − S(0) = M (α)

∫ t

0

K1(α,	, S(	))

(t − 	)α
d	,

H(t) − H(0) = M (α)

∫ t

0

K2(α,	, H(	))

(t − 	)α
d	,

C(t) − C(0) = M (α)

∫ t

0

K3(α,	, C(	))

(t − 	)α
d	.

(10)

It should be emphasized that K1(S,	), K2(H ,	) and K3(C,	) satisfy the Lipschitz

condition if and only if S(t), H(t) and C(t) have an upper bound. Let S(t) and S∗(t)

be couple functions, then we have

‖ K1(α, t, S(t)) − K1(α, t, S∗(t)) ‖=

∣

∣

∣

∣

∣

∣

∣

∣

(

−
βα

H H(t)

N
−

βα
C C(t)

N

)

(S(t) − S∗(t))

∣

∣

∣

∣

∣

∣

∣

∣

.

(11)

Supposing ν1 :=

∣

∣

∣

∣

∣

∣
−

βα
H H(t)

N
−

βα
C C(t)

N

∣

∣

∣

∣

∣

∣
, we obtain

||K1(α, t, S(t)) − K1(α, t, S∗(t))|| ≤ ν1||S(t) − S∗(t)||, (12)

and in a similar way, it can be obtained

||K2(α, t, H(t)) − K2(α, t, H∗(t))|| ≤ ν2||H(t) − H∗(t)||,

||K3(α, t, C(t)) − K3(α, t, C∗(t))|| ≤ ν3||C(t) − C∗(t)||,
(13)

where ν2 = −
βα

H S(t)

N
− γ α

H − δα
H and ν3 = −

βα
C S(t)

N
− γ α

C − δα
C . So, this indicates that

the Lipschitz condition is satisfied for K1, K2 and K3.
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Recursively, (10) can be expressed as

Sn(t) = M (α)

∫ t

0

K1(α,	, Sn−1(	))

(t − 	)α
d	,

Hn(t) = M (α)

∫ t

0

K2(α,	, Hn−1(	))

(t − 	)α
d	,

Cn(t) = M (α)

∫ t

0

K3(α,	, Cn−1(	))

(t − 	)α
d	,

(14)

associated with the initial conditions S0(t) = S(0), H0(t) = H(0), C0(t) = C(0).

After subtracting the successive terms, we have

�S,n(t) = Sn(t) − Sn−1(t) = M (α)

∫ t

0

K1(α,	, Sn−1(	)) − K1(α,	, Sn−2(	))

(t − 	)α
d	,

�H ,n(t) = Hn(t) − Hn−1(t) = M (α)

∫ t

0

K2(α,	, Hn−1(	)) − K2(α,	, Hn−2(	))

(t − 	)α
d	,

�C,n(t) = Cn(t) − Cn−1(t) = M (α)

∫ t

0

K3(α,	, Cn−1(	)) − K3(α,	, Cn−2(	))

(t − 	)α
d	.

(15)

Considering as follows

Sn(t) =

n
∑

j=0

�S, j (t),

Hn(t) =

n
∑

j=0

�H , j (t),

Cn(t) =

n
∑

j=0

�C, j (t),

(16)

and in addition, by employing the equations (12), (13) and taking into account

�S,n−1(t) = Sn−1(t) − Sn−2(t), �H ,n−1(t) = Hn−1(t) − Hn−2(t), �C,n−1(t) =

Cn−1(t) − Cn−2(t), we can reach

||�S,n(t)|| = M (α)ν1

∫ t

0

||�S,n−1(	)||

(t − 	)α
d	,

||�H ,n(t)|| = M (α)ν2

∫ t

0

||�H ,n−1(	)||

(t − 	)α
d	,

||�C,n(t)|| = M (α)ν3

∫ t

0

||�C,n−1(	)||

(t − 	)α
d	.

(17)

Now, let us prove the theorem below:
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Theorem 1 The fractional community-acquired and hospital-acquired MRSA model

(6) has a unique solution under the condition that

M (α)

α
rανi < 1, i = 1, 2, 3 (18)

when t ∈ [0, r ].

Proof As shown above, the functions S(t), H(t) and C(t) are bounded and K1, K2,

K3 satisfy the Lipschitz condition. Hence, by means of the recursive principle and

(17), we get

||�S,n(t)|| ≤ ||S0(t)||

(

M (α)

α
rαν1

)n

,

||�H ,n(t)|| ≤ ||H0(t)||

(

M (α)

α
rαν2

)n

,

||�C,n(t)|| ≤ ||C0(t)||

(

M (α)

α
rαν3

)n

.

(19)

So, it can be clearly considered that ||�S,n(t)|| → 0, ||�H ,n(t)|| → 0 and

||�C,n(t)|| → 0 when n → ∞. Additionally, by using the triangle inequality and

the system (19) for any p, we attain

||Sn+p(t) − Sn(t)|| ≤

n+p
∑

j=n+1

k
j
1 =

kn+1
1 − k

n+p+1
1

1 − k1
,

||Hn+p(t) − Hn(t)|| ≤

n+p
∑

j=n+1

k
j
2 =

kn+1
2 − k

n+p+1
2

1 − k2
,

||Cn+p(t) − Cn(t)|| ≤

n+p
∑

j=n+1

k
j
3 =

kn+1
3 − k

n+p+1
3

1 − k3
,

(20)

where ki =
M (α)

α
rανi < 1. Accordingly, Sn , Hn , Cn are Cauchy sequences in B(J ).

For this reason, they are uniformly convergent. Through the limit theorem, it can be

said that the limit of the sequences (14) is the unique solution of the system (6). This

completes the proof. ⊓⊔

3.2 Stability analysis and iterative solutions via Caputo fractional derivative

In this portion, iterative solutions are presented by making use of the Laplace transform

of Caputo fractional derivative. On the other hand, stability criteria for the fractional

MRSA model (6) is given with the help of fixed point theorem. Let (B, ||.||) be a

Banach space and Q∗ be a self-map of B. Also, let us consider the recursive procedure

in the form of the yn+1 = h(Q∗, yn) and G (Q∗) be a fixed point set of non-empty Q∗.
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Here, the sequence yn converges to the point of q∗ ∈ G (Q∗). Moreover, we define

||z∗
n+1 − h(Q∗, z∗

n)|| such that {z∗
n ⊆ B}. The iterative approach, yn+1 = h(Q∗, yn)

is Q∗-stable if limn→∞ cn = 0, that is, limn→∞ c∗
n = p∗. For the sequence zn to be

convergent, it must have an upper limit. If all the conditions mentioned above are met

for yn+1 = Q∗ where n is considered as Picard’s iteration as in [26], then the iteration

is Q∗-stable. So, we can express the theorem below:

Theorem 2 Let (B, ||.||) be a Banach space and Q∗ be a self-map on B, then for all

x, y ∈ B we have

‖Q∗
x − Q

∗
y‖≤ K‖x − Q

∗
x‖+k‖x − y‖ (21)

where K ≥ 0, 0 ≤ k < 1. Assuming Q∗ is Picard Q∗-stable, the recursive formula

can be presented as follows

Sn+1(t) =Sn(t) + L
−1

{

1

sα
L

{

�α −
βα

H Sn(t)Hn(t)

N
−

βα
C Sn(t)Cn(t)

N

+γ α
H Hn(t) + γ α

C Cn(t) − δα
S Sn(t)

}}

,

Hn+1(t) =Hn(t) + L
−1

{

1

sα
L

{

βα
H Sn(t)Hn(t)

N
− γ α

H Hn(t) − δα
H Hn(t)

}}

,

Cn+1(t) =Cn(t) + L
−1

{

1

sα
L

{

βα
C Sn(t)Cn(t)

N
− γ α

C Cn(t) − δα
C Cn(t)

}}

.

(22)

Theorem 3 Let F be a self-map, P > 0, Q > 0 and R > 0 are three different

constants, then

F [Sn(t)] =Sn+1(t) = Sn(t) + L
−1

{

1

sα
L

{

�α −
βα

H Sn(t)Hn(t)

N
−

βα
C Sn(t)Cn(t)

N

+γ α
H Hn(t) + γ α

C Cn(t) − δα
S Sn(t)

}}

,

F [Hn(t)] =Hn+1(t) = Hn(t) + L
−1

{

1

sα
L

{

βα
H Sn(t)Hn(t)

N
− γ α

H Hn(t) − δα
H Hn(t)

}}

,

F [Cn(t)] =Cn+1(t) = Cn(t) + L
−1

{

1

sα
L

{

βα
C Sn(t)Cn(t)

N
− γ α

C Cn(t) − δα
C Cn(t)

}}

,

(23)

which is F -stable in L1(a, b) if the following conditions are satisfied

⎧

⎪

⎨

⎪

⎩

{

1 − βα
H (P + Q) f1(ρ) − βα

C (P + R)g1(ρ) + (γ α
H + γ α

C + δα
S )k1(ρ)

}

< 1,
{

1 − βα
H (P + Q) f2(ρ) − (γ α

H + δα
H )k2(ρ)

}

< 1,
{

1 − βα
C (P + R)g3(ρ) − (γ α

C + δα
C )k3(ρ)

}

< 1.

(24)
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Proof It is clear that F is a fixed point. So, we determine the following iterations for

all (m, n) ∈ N × N.

F (Sn(t)) − F (Sm(t)) =Sn(t) − Sm(t)

+ L
−1

{

1

sα
L

{

�α −
βα

H Sn(t)Hn(t)

N
−

βα
C Sn(t)Cn(t)

N

+γ α
H Hn(t) + γ α

C Cn(t) − δα
S Sn(t)

}}

− L
−1

{

1

sα
L

{

�α −
βα

H Sm(t)Hm(t)

N
−

βα
C Sm(t)Cm(t)

N

+γ α
H Hm(t) + γ α

C Cm(t) − δα
S Sm(t)

}}

,

F (Hn(t)) − F (Hm(t)) =Hn(t) − Hm(t)

+ L
−1

{

1

sα
L

{

βα
H Sn(t)Hn(t)

N
− γ α

H Hn(t) − δα
H Hn(t)

}}

− L
−1

{

1

sα
L

{

βα
H Sm(t)Hm(t)

N
− γ α

H Hm(t) − δα
H Hm(t)

}}

,

F (C(n)(t)) − F (C(m)(t)) =C(n)(t) − C(m)(t)

+ L
−1

{

1

sα
L

{

βα
C Sn(t)Cn(t)

N
− γ α

C Cn(t) − δα
C Cn(t)

}}

− L
−1

{

1

sα
L

{

βα
C Sm(t)Cm(t)

N
− γC Cm(t) − δC Cm(t)

}}

.

(25)

Taking the norm of both sides of the first equation in (25), we have

‖F (Sn(t)) − F (Sm(t))‖=‖Sn(t) − Sm(t)

+ L
−1

{

1

sα
L

{

�α −
βα

H Sn(t)Hn(t)

N
−

βα
C Sn(t)Cn(t)

N

+γ α
H Hn(t) + γ α

C Cn(t) − δα
S Sn(t)

}}

− L
−1

{

1

sα
L

{

�α −
βα

H Sm(t)Hm(t)

N
−

βα
C Sm(t)Cm(t)

N

+γ α
H Hm(t) + γ α

C Cm(t) − δα
S Sm(t)

}}

∥

∥

∥

∥

,

(26)

and if we use the triangular inequality, we can write

‖F (Sn(t)) − F (Sm(t))‖≤‖Sn(t) − Sm(t)‖

+

∥

∥

∥

∥

L
−1

{

1

sα
L

{

�α −
βα

H Sn(t)Hn(t)

N
−

βα
C Sn(t)Cn(t)

N

+γ α
H Hn(t) + γ α

C Cn(t) − δα
S Sn(t)

}}

− L
−1

{

1

sα
L

{

�α −
βα

H Sm(t)Hm(t)

N
−

βα
C Sm(t)Cm(t)

N

+γ α
H Hm(t) + γ α

C Cm(t) − δα
S Sm(t)

}}

∥

∥

∥

∥

.

(27)
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By some necessary simplifications, (27) takes the form of

‖F (Sn(t)) − F (Sm(t))‖≤‖Sn(t) − Sm(t)‖

+ L
−1

{

1

sα
L

{

‖−βα
H

Sn(t)

N
(Hn(t) − Hm(t))‖+‖

− βα
H

Hm

N
(Sn(t) − Sm(t))‖+‖−βα

C

Sn

N
(Cn(t) − Cm(t))‖

+ ‖ − βα
C

Cm

N
(Sn(t) − Sm(t))‖+‖γ α

H (Hn(t) − Hm(t))‖+‖γ α
C (Cn(t)

− Cm(t))‖+‖ − δα
S (Sn(t) − Sm(t))‖

}}

.

(28)

Owing to the same behavior of functions inside the system handled, it can be assumed

that

‖Hn(t) − Hm(t)‖∼= ‖Sn(t) − Sm(t)‖

‖Cn(t) − Cm(t)‖∼= ‖Sn(t) − Sm(t)‖.
(29)

Substituting (29) into the relation (28), we reach

‖F (Sn(t)) − F (Sm(t))‖≤ ‖Sn(t) − Sm(t)‖

+ L
−1

{

1

sα
L

{

‖−βα
H

Sn(t)

N
(Sn(t) − Sm(t))‖+‖−βα

H

Hm(t)

N
(Sn(t) − Sm(t))‖+

‖−βα
C

Sn(t)

N
(Sn(t) − Sm(t))‖ + ‖ − βα

C

Cm(t)

N
(Sn(t) − Sm(t))‖

+ ‖γ α
H (Hn(t) − Hm(t))‖+‖γ α

C (Cn(t) − Cm(t))‖+‖ − δα
S (Sn(t) − Sm)(t)‖

}}

.

(30)

Because the sequences Sn(t), Hm(t) and Cm(t) are convergent and bounded, there

exist three different constants P > 0, Q > 0 and R > 0 for all t . Hence, we have

‖Sn(t)‖< P, ‖Hm(t)‖< Q, ‖Cm(t)‖< R, (m, n) ∈ N × N. (31)

By the relations (30) and (31), one can attain

‖F (Sn(t)) − F (Sm(t))‖

≤

[

1 − βα
H (P + Q) f1(ρ) − βα

C (P + R)g1(ρ) + (γ α
H + γ α

C + δα
S )k1(ρ)

]

‖(Sn(t) − Sm(t))‖,

(32)

where f1, g1 and k1 are the functions obtained by the inverse Laplace transform in

(30). In a similar manner, we reach

‖F (Hn(t)) − F (Hm(t))‖≤ [1 − βα
H (P + Q) f2(ρ) − (γ α

H + δα
H )k2(ρ)]‖Hn(t) − Hm(t)‖,

(33)
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and

‖F (Cn(t)) − F (Cm(t))‖≤ [1 − βα
C (P + R)g3(ρ) − (γ α

C + δα
C )k3(ρ)]‖Cn(t) − Cm(t)‖,

(34)

where the condition (24) is satisfied. Therefore, it can be said that F has a fixed-point.

In order to prove that F satisfies the conditions of Theorem 3.3, we presume that (33)

and (34) hold and also the following expressions are valid

k = (0, 0, 0), K =

⎧

⎪

⎨

⎪

⎩

{

1 − βα
H (P + Q) f1(ρ) − βα

C (P + R)g1(ρ) + (γ α
H + γ α

C + δα
S )k1(ρ)

}

< 1,
{

1 − βα
H (P + Q) f2(ρ) − (γ α

H + δα
H )k2(ρ)

}

< 1,
{

1 − βα
C (P + R)g3(ρ) − (γ α

C + δα
C )k3(ρ)

}

< 1.

(35)

So, the desired result is obtained. ⊓⊔

3.3 The positiveness of solutions for MRSAmodel

We wish to determine the invariant region and showing that all solutions of the frac-

tional differential equations system (6) are positive for all t ≥ 0. The main purpose is

to furnish the feasibility of the solutions for the model investigated looking at whether

they enter the invariant region ϒ . Benefiting from the Caputo fractional operator’s

advantages, we assume that

ϒ = (S, H , C) ∈ R
3
+, R

3
+ = {n ∈ R

3
+ : n ≥ 0} (36)

be any solution of the model (6) having non-negative initial conditions. Additionally,

we have n = (S(t), H(t), C(t))T .

We must also demonstrate that the vector field points to R
3
+ upon each hyperplane

which is bounded by the non-negative hyperoctant. We can write

CD
α S(t) = �α + γ α

H H(t) + γ α
C C(t) ≥ 0,

CD
α H(t) =

βα
H S(t)H(t)

N
≥ 0,

CD
αC(t) =

βα
C S(t)C(t)

N
≥ 0.

(37)

Hence, the convenient region can be stated as

ϒ = {(S, H , C) : S ≥ 0, H ≥ 0, C ≥ 0,N ≤ 1}. (38)

Therefore, the underlying model is biologically appropriate and mathematically well-

posed in the region ϒ when t > 0. Besides, this region is positively invariant, that is,

solutions of the system (6) are positive for all t .
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3.4 Disease-free equilibrium point (DFE)

To verify the existence of the equilibrium points, let us assume that E(S∗, H∗, C∗)

be the equilibrium points of the model (6). The equilibrium points can be obtained by

setting the right-hand side of the differential equations in (6) equal to zero. That is to

say

�α −
βα

H S(t)H(t)

N
−

βα
C S(t)C(t)

N
+ γ α

H H(t) + γ α
C C(t) − δα

S S(t) = 0,

βα
H S(t)H(t)

N
− γ α

H H(t) − δα
H H(t) = 0,

βα
C S(t)C(t)

N
− γ α

C C(t) − δα
C C(t) = 0.

(39)

If the disease does not exist (H∗ = 0, C∗ = 0), the system (39) reduces to �α −δα
S S =

0. After solving, we have S∗ = �α

δα
S

. Thus, one can attain

E
0 = (S∗, H∗, C∗) =

(

�α

δα
S

, 0, 0

)

. (40)

This represents the disease-free equilibrium point which means there is no infection

[25].

3.5 Reproduction number

The basic reproduction number denoted by R0 = ρ(FV −1) where ρ(.) stands for

the spectral radius of the matrix FV −1 can be obtained by the next-generation matrix

approach [31]. The matrix F of transmission and matrix V of transformation for our

fractional model (6) are presented by

F =

[

βα
H S

N
0

0
βα

C S

N

]

(41)

and

V =

[

γ α
H + δα

H 0

0 γ α
C + δα

C

]

. (42)

So, we can attain the reproduction ratio for both HA-MRSA and CA-MRSA respec-

tively, as follows

R
H
0 =

�αβα
H

δα
S N (γ α

H + δα
H )

, R
C
0 =

�αβα
C

δα
S N (γ α

C + δα
C )

. (43)
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Table 1 Sensitivity indices of the reproduction number R0 against mentioned parameters

Parameter S.Index Value Parameter S.Index Value

� S� 0.999 N SN −0.999

γH SγH
−0.416 δS SδS

−1.000

δH SδH
−0.583 βH SβH

0.999

It can be expressed that when both RH
0 < 1 and RC

0 < 1, the disease-free equi-

librium E
0
SC = (C, H) = (0, 0) for the single-colonization fractional model (6) is

globally asymptotically stable. Moreover, if 1 < RC
0 < RH

0 , then the boundary

equilibrium EH : (C, H) =

(

0,N

(

1 − 1

RH
0

))

is stable and EC : (C, H) =

(

N

(

1 − 1

RC
0

)

, 0

)

is unstable. Similarly, if 1 < RH
0 < RC

0 , EC is stable and EH

is unstable [25].

3.6 Sensitivity analysis

The sensitivity analysis of R0 has drawn a lot of attention in various scientific areas.

As the parameters of a dynamical model are estimated, it is possible to have some

uncertainty about their values employed to draw conclusions about the system studied.

To decrease the spread of the infectious disease, it can be performed the sensitivity

analysis by determining the parameters. Sensitivity analysis is an important part of the

disease model analysis although computation of it can become exhaustive for complex

dynamical systems. For this reason, it is very important to evaluate the effects of each

parameter on the spread of the disease and therefore finds the parameters that have the

most important effect on the reduction and spread of the outbreak. To this end, we carry

out the sensitivity analysis with the help of the sensitivity index for the parameters of

the underlying model. This technique helps to measure the most sensitive parameters

inside the system for the reproduction number R0. The following formula is used to

calculate the sensitivity index of the reproduction number R0 of the model (6) presented

by the Caputo derivative.

Sω =
ω

|R0|
×

∂ R0

∂ω
. (44)

Three methods are normally used to calculate the sensitivity indices, (i) by direct dif-

ferentiation, (ii) by a Latin hypercube sampling method (iii) by the linearizing system

under consideration, and then solving the obtain set of linear algebraic equations. We

will apply the direct differentiation method as it gives analytical expressions for the

indices. The indices not only show us the influence of various aspects associated with

the spreading of infectious disease but also give us important information regarding

the comparative change between R0 and different parameter. Consequently, it helps

in developing control strategies. Table 1 shows that the parameters � and βH have a
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Fig. 2 R0 versus sensitive parameters δH and βH

positive influence on the reproduction number R0, which describes that the growth or

decay of these parameters say by 10 percent will increase or decrease the reproduction

number by 9.99 percent and 9.99 percent, respectively. But on the other hand, the index

for parameters δS , N , γH , and δH illustrates that increasing their values by 10 percent

will decrease the values of reproduction number R0 by 10.0 percent, 9.99 percent,

4.16 percent, and 5.83 percent respectively. On the other hand, sensitivity analysis of

different parameters is carried out in Figs. 1, 2, 3, 4, 5 and 6.

123



772 B. Acay et al.

0

1

1

2

1

3

10-3

R
0

4

0.8

S

0.5

5

0.6

H

6

0.4
0.2

0 0

Fig. 3 R0 versus sensitive parameters δS and βH

1

2

4

1

6

10-3

R
0

8

0.8

H

0.5

10

0.6

H

12

0.4
0.2

0 0

Fig. 4 R0 versus sensitive parameters γH and δH

4 Discussions

In this section, we present the solution for the system (6) employing the Laplace-

Adomian decomposition method (LADM). The fractional-order shows the realistic

decline behavior of infection of disease. Therefore, here, the advantage of the fractional

model is shown by the method of LADM on the various graphs. Let us take into account
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the following fractional system

CD
α S(t) = �α −

βα
H S(t)H(t)

N
−

βα
C S(t)C(t)

N
+ γ α

H H(t) + γ α
C C(t) − δα

S S(t),

CD
α H(t) =

βα
H S(t)H(t)

N
− γ α

H H(t) − δα
H H(t),

CD
αC(t) =

βα
C S(t)C(t)

N
− γ α

C C(t) − δα
C C(t).

(45)
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with the initial conditions S(0) = n1, H(0) = n2, C(0) = n3. Applying Laplace

transform to both sides of the system (45), we have

L {CDα S(t)} = L {�α −
βα

H S(t)H(t)

N
−

βα
C S(t)C(t)

N
+ γ α

H H(t) + γ α
C C(t) − δα

S S(t)},

L {CDα H(t)} = L {
βα

H S(t)H(t)

N
− γ α

H H(t) − δα
H H(t)},

L {CDαC(t)} = L {
βα

C S(t)C(t)

N
− γ α

C C(t) − δα
C C(t)}.

(46)

By the definition of Caputo Laplace transform, it can be written

sα
L {S(t)} − sα−1S(0) = L {�α −

βα
H S(t)H(t)

N
−

βα
C S(t)C(t)

N
+ γ α

H H(t) + γ α
C C(t) − δα

S S(t)},

sα
L {H(t)} − sα−1 H(0) = L {

βα
H S(t)H(t)

N
− γ α

H H(t) − δα
H H(t)},

sα
L {C(t)} − sα−1C(0) = L {

βα
C S(t)C(t)

N
− γ α

C C(t) − δα
C C(t)},

(47)

and so we reach

L {S(t)} =
n1
s

+ 1
sα L {�α −

βα
H S(t)H(t)

N
−

βα
C S(t)C(t)

N
+ γ α

H H(t) + γ α
C C(t) − δα

S S(t)},

L {H(t)} =
n2
s

+ 1
sα L {

βα
H S(t)H(t)

N
− γ α

H H(t) − δα
H H(t)},

L {C(t)} =
n3
s

+ 1
sα L {

βα
C S(t)C(t)

N
− γ α

C C(t) − δα
C C(t)}.

(48)

Let us assume that the solution S(t), H(t) and C(t) is in the form of infinite series as

follows

S(t) =

∞
∑

n=0

Sn, H(t) =

∞
∑

n=0

Hn, C(t) =

∞
∑

n=0

Cn . (49)

The non-linear terms SH and SC involved in the system (45) are decomposed by

Adomian polynomial as below

SH =

∞
∑

n=0

An, SC =

∞
∑

n=0

Bn, (50)

where An and Bn are Adomian polynomials. They are given by

An =
1

Ŵ(n + 1)

dn

dλn

[ n
∑

k=0

λk Sk

n
∑

k=0

λk H k

]
∣

∣

∣

∣

λ=0

,

Bn =
1

Ŵ(n + 1)

dn

dλn

[ n
∑

k=0

λk Sk

n
∑

k=0

λkCk

]
∣

∣

∣

∣

λ=0

. (51)
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The first six polynomials are as follows

A0 = S0 H0,

A1 = S0 H1 + H0S1,

A2 = S0 H2 + S1 H1 + S2 H0,

A3 = S0 H3 + S1 H2 + S2 H1 + S3 H0,

A4 = S0 H4 + S1 H3 + S2 H2 + S3 H1 + S4 H0,

A5 = S0 H5 + S1 H4 + S2 H3 + S3 H2 + S4 H1 + S5 H0. (52)

and

B0 = S0C0,

B1 = S0C1 + C0S1,

B2 = S0C2 + S1C1 + S2C0,

B3 = S0C3 + S1C2 + S2C1 + S3C0,

B4 = S0C4 + S1C3 + S2C2 + S3C1 + S4C0,

B5 = S0C5 + S1C4 + S2C3 + S3C2 + S4C1 + S5C0. (53)

Utilizing the (52) and (53), one can attain

L {S0} =
n1
s

,L {H0} =
n2
s

,L {C0} =
n3
s

, (54)

L {S1} = (�α −
βα

H A0

N
−

βα
C B0

N
+ γ α

H H0 + γ α
C C0 − δα

S S0)
1

sα+1 ,

L {H1} = (
βα

H A0

N
− γ α

H H0 − δα
H H0)

1
sα+1 ,

L {C1} = (
βα

C B0

N
− γ α

C C0 − δα
C C0)

1
sα+1 ,

(55)

and

L {S2} = (−
βH A1

N
−

βC B1

N
+ γH H1 + γC C1 − δS S1)

1
sα+1 ,

L {H2} = (
βH A1

N
− γH H1 − δH H1)

1
sα+1 ,

L {C2} = (
βC B1

N
− γC C1 − δC C1)

1
sα+1 ,

(56)
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by continuing in a similar manner, we get

L {Sn+1} = (−
βα

H An

N
−

βα
C Bn

N
+ γ α

H Hn + γ α
C Cn − δα

S Sn) 1
sα+1 ,

L {Hn+1} = (
βα

H An

N
− γ α

H Hn − δα
H Hn) 1

sα+1 ,

L {Cn+1} = (
βα

C Bn

N
− γ α

C Cn − δα
C Cn)

1
sα+1 .

(57)

Now applying inverse Laplace transformation on system (54), (55) and (56) we get

S0 = n1, H0 = n2, C0 = n3, (58)

S1 = (�α −
βα

H n1n2

N
−

βα
C n1n3

N
+ γ α

H n2 + γ α
C n3 − δα

S n1)
tα

Ŵ(α+1)
,

H1 = (
βα

H n1n2

N
− γ α

H n2 − δα
H n2)

tα

Ŵ(α+1)
,

C1 = (
βα

C n1n3

N
− γ α

C n3 − δα
C n3)

tα

Ŵ(α+1)
.

(59)

and

S2 =

[

− (
βα

H n2

N
+

βα
C n3

N
+ δα

S )(�α −
βα

H n1n2

N
−

βα
C n1n3

N
+ γ α

H n2 + γ α
C n3 − δα

S n1)

+(γ α
H −

βα
H n1

N
)(

βα
H n1n2

N
− γ α

H n2 − δα
H n2)

+(γ α
C −

βα
C n1

N
)(

βα
C n1n3

N
− γ α

C n3 − δα
C n3)

]

t2α

Ŵ(2α + 1)
,

H2 =

[

(
βα

H n1

N
− γ α

H − δα
H )(

βα
H n1n2

N
− γ α

H n2 − δα
H n2)

+
βα

H n2

N
(�α −

βα
H n1n2

N
−

βα
C n1n3

N
+ γ α

H n2 + γ α
C n3 − δα

S n1)

]

t2α

Ŵ(2α + 1)
,

C2 =

[

(
βα

C n1

N
− γ α

C − δα
C )(

βα
C n1n3

N
− γ α

C n3 − δα
C n3)

+
βα

C n3

N
(�α −

βα
H n1n2

N
−

βα
C n1n3

N
+ γ α

H n2 + γ α
C n3 − δα

S n1)

]

t2α

Ŵ(2α + 1)
. (60)

By using the parameter values in Table 2 when n1 = 90, n2 = 80 and n3 = 80, the

solution for three terms can be given by

S(t) = 90 − 17.299
tα

Ŵ(α + 1)
+ 6.2467

t2α

Ŵ(2α + 1)
,

H(t) = 80 − 16.8
tα

Ŵ(α + 1)
+ 2.144

t2α

Ŵ(2α + 1)
,
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Table 2 Parameter values for the transmission dynamics of CA-MRSA and HA-MRSA obtained from the

Beth Israel Deaconess Medical Center

Parameter Symbol Baseline Value Source

Total number of patients N 400 [9]

Length of stay

Susceptible 1/δS 5 days [9]

Colonized CA-MRSA 1/δC 7 days [9]

Colonized HA-MRSA 1/δH 5 days [9]

Transmission rate per susceptible individuals to

Colonized CA-MRSA per colonized CA-MRSA βC 0.45 per day [9]

Colonized HA-MRSA per colonized HA-MRSA βH 0.4 per day [9]

Decolonization rate per colonized patient per day per length of stay

CA-MRSA γC 0.1 per day [9]

HA-MRSA γH 0.1 per day [9]

C(t) = 80 − 11.26
tα

Ŵ(α + 1)
+ 0.497

t2α

Ŵ(2α + 1)
. (61)

In particular case let α = 1, so the solution after three terms is as below

S(t) = 90 − 17.299t + 6.2467t2,

H(t) = 80 − 16.8t + 2.144t2,

C(t) = 80 − 11.26t + +0.497t2. (62)

For analysis purposes in the present work, the values of the parameters are obtained

from the Beth Israel Deaconess Medical Center and values of the fractional-order

parameter α are chosen differently as can be seen in the figures. Initial conditions

are given for obtaining the solutions of fractional-order staph infection model (6)

as [90, 80, 80]. The behavior of susceptible patients who are not colonized with HA-

MRSA or CA-MRSA S(t) can be seen in Figs. 7, 8. Patients colonized with HA-MRSA

H(t) and patients colonized with CA-MRSA C(t) can be seen in Figs. 9, 10, 11, 12,

respectively. Also, the behavior of the solution curves of all three classes can be

observed together in Fig. 13 when arbitrary order α = 0.8. Figures 7, 8, 9, 10, 11,

12 are depicted with the varying values of the fractional-order α. The fractional and

classical solution curves are shown separately for α = 1, 0.9, 0.8, 0.7, 0.6 and α =

1, 0.98, 0.96, 0.94. In this way, it can be understood that as the α values approach 1,

the solution curves approach the classical solution. It should be noted that the classical

solution is represented by α = 1. For susceptible patients who are not colonized with

HA-MRSA or CA-MRSA S(t), from Figs. 7 and 8, one can see that such choices

of values α indicate the decreasing rate for decreasing values of the fractional-order

α. When susceptible subclass S(t) decrease as in Figs. 7 and 8, the danger in the

hospital will also get decreased due to the potential decrease in the infectious classes

H(t) and C(t). As clearly seen, the choices of arbitrary order α can bring about a
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Fig. 7 Comparison of Caputo and classical derivative for susceptible class S(t)
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Fig. 8 Comparison of Caputo and classical derivative for susceptible class S(t)

strongly decreasing rate in S(t), which can be superb and better for the individuals in

the hospital. For the patients colonized with HA-MRSA H(t), Figs. 9 and 10 affirm a

decreasing rate with a slight form of the increasing rate as the α values keep varying

lower. On the other hand, Figs. 11 and 12 for the patients colonized with CA-MRSA

behaves similarly. This is a well-motivated impact as the number of H(t) and C(t)
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Fig. 9 Comparison of Caputo and classical derivative for HA-MRSA class H(t)
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Fig. 10 Comparison of Caputo and classical derivative for HA-MRSA class H(t)

get decreased vehemently with the decrease of the susceptible class S(t). Also, this

is a realistic situation which suggests that if the S(t) decreases then its density would

decrease and consequently the infected classes H(t) and C(t) would reduce at the

speedier rate for smaller values of the fractional-order α. Further observations affirm

that for smaller values of α, the stability for S(t), H(t) and C(t) does not take long

duration as it does for α → 1.
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Fig. 11 Comparison of Caputo and classical derivative for CA-MRSA class C(t)

0 0.5 1 1.5 2 2.5 3

t

45

50

55

60

65

70

75

80

C
(t
)

=1

=0.98

=0.96

=0.94

=0.92

Fig. 12 Comparison of Caputo and classical derivative for CA-MRSA class C(t)

5 Concluding remarks

Some important conclusions that can be drawn from this study can be listed as follows:

• The governing model has been proposed for the very first time under Caputo

fractional operator. This fractional model (6) analyzes community-acquired and
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Fig. 13 Comparison with Caputo derivative for S(t), H(t) and C(t) when α = 0.8

hospital-acquired methicillin-resistant Staphylococcus aures which when assum-

ing different values of the fractional-order α allowed us to observe the behavior

of the solution curves in detail.

• The key explanation for advantages of the non-local fractional derivatives is owing

to the presence of many orders of freedom for the operators which is not possible

in the classical case.

• The current research is crucial since the model under consideration is of a non-

linear type.

• By employing the concept of fixed point theory, the existence and uniqueness of

solutions have been achieved by Caputo fractional derivative.

• Furthermore, the iterative solutions have been shown by utilizing the Laplace trans-

form of Caputo fractional derivative. Also, the stability criteria for the fractional

model (6) has also been presented by using the fixed point theorem.

• On the other hand, the sensitivity analysis of the basic reproduction number of the

aforementioned model has been carried out in order to determine the parameters

that have the most crucial effect on the spread of the disease.

• With the help of an efficient method of LADM, the numerical characteristics of

the fractional model (6) have been depicted by the parameter values obtained from

the Beth Israel Deaconess Medical Center.

• Multifarious graphical diagrams in this study suggest that the introduced fractional

model is sufficiently capable to the entire system.

• Generally, it can be expressed that fractional models are thus not only an important

tool for a more advantageous representation of the behavior of physical organisms

and epidemiology but also capable of better prediction for ecosystems.
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• It should be noted that the main goal of the present work is to employ the LADM

and see its effectiveness on the model under consideration. However, as a future

direction, the proposed model can be analyzed by utilizing some other useful

numerical methods and compared with each other.
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