
Research Article
Fractional Modeling of Non-Newtonian Casson Fluid between
Two Parallel Plates

Mubashir Qayyum , Sidra Afzal , and Efaza Ahmad

Department of Sciences and Humanities, National University of Computer and Emerging Sciences-FAST Lahore Campus,
Lahore, Pakistan

Correspondence should be addressed to Mubashir Qayyum; mubashir.qayyum@nu.edu.pk

Received 26 November 2022; Revised 10 February 2023; Accepted 21 February 2023; Published 8 March 2023

Academic Editor: Serkan Araci

Copyright © 2023 Mubashir Qayyum et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this manuscript, fractional modeling of non-Newtonian Casson fuid squeezed between two parallel plates is performed under
the infuence of magneto-hydro-dynamic and Darcian efects. Te Casson fuid model is fractionally transformed through mixed
similarity transformations. As a result, partial diferential equations (PDEs) are transformed to a fractional ordinary diferential
equation (FODE). In the current modeling, the continuity equation is satisfed while the momentum equation of the integral order
Casson fuid is recovered when the fractional parameter is taken as α � 1. Amodifed homotopy perturbation algorithm is used for
the solution and analysis of highly nonlinear and fully fractional ordinary diferential equations. Obtained solutions and errors are
compared with existing integral order results from the literature. Graphical analysis is also performed at normal and radial velocity
components for diferent fuid and fractional parameters. Analysis reveals that a few parameters are showing diferent behavior in
a fractional environment as compared to existing integer-order cases from the literature. Tese fndings afrm the importance of
fractional calculus in terms of more generalized analysis of physical phenomena.

1. Introduction

Scientists and researchers around the globe are recently
more focused on capturing fractional phenomena instead of
integer-order problems. A major reason for considering
fractional environment is to consider a more general
problem with memory efect that is helpful in many engi-
neering and physical issues. In this regard, diferent types of
fractional derivatives are considered in which various ker-
nels are involved. Chu et al. [1] analyzed MHD fow of
a Newtonian fuid containing hybrid nanoparticles through
an ABC fractional model by utilizing the Laplace transform
method. Tey studied temperature and velocity profles for
water, kerosene, and engine oil. Kang et al. investigated [2]
a time-variant trafc fow model in fractional order by using
the modeling principle of the Bass model. Te results of this
fractional model were compared with six other trafcmodels
to check efciency. Yavuz et al. [3] studied fractional second-

grade fuid model by using the classical Caputo fractional
operator. Exact solutions to the problem were computed
through the Laplace transform method. Ferromagnetic fuid
was analyzed by Abro [4] through the fractal-Laplace
transform. A fractal-fractional diferential operator was
used in modeling that was principally focused on power law.
Chen et al. [5] analyzed service of data latency through the
fractional fuid model use network systems with multi-hop.
Rate-type fuid models are presented by Abro and Atangana
[6] using nonlocal diferentiation. Reyaz et al. [7] studied
fractional Casson fuid fow under impact of thermal radi-
ation passing over an oscillating plate. Arif et al. [8] in-
vestigated engine oil characteristics at ramped wall
temperature using a fractional Casson fuid model. Prab-
hakar’s fractional approach on Casson fuid with generalized
Fourier law was studied by Sarwar et al. [9]. Ur Rehman et al.
[10] fractionally analyzed Casson fuid with Fourier and
Fick’s laws. Electro-osmotic fow of a fractal-fractional
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modeled Casson fuid was examined byMurtaza et al. [11] by
using a fnite diference approach for solution purposes.

Non-Newtonian fuids have many applications in
chemical engineering, mechanical, industrial, and biological
felds due to their visco-elastic properties. Non-Newtonian
fuids do not obey Newton’s law of viscosity and behave
diferently under varying physical conditions. Many re-
searchers have analyzed diferent non-Newtonian fuid
models in the literature. Gireesha et al. [12] studied the two-
phase fow of a Maxwell fuid with a heat source and sink.
Mahanthesh et al. [13] then analyzed the three-dimensional
fow of Maxwell fuid fow impacted by the nonlinear
thermal radiation efect. Krupalakshmi et al. [14] simulated
two-dimensional steady fow of a non-Newtonian fuid over
a heated stretching sheet. Das et al. [15] analyzed fow of an
ethylene glycol-based hybrid nanofuid with special refer-
ence to entropy generation. Te fow of a nanofuid infu-
enced by quadratic radiative heat fux is simulated by
Mahanthesh [16]. Casson fuids possess shear thinning
properties and are hence much useful in manufacturing of
paints, extraction of crude oil, and the food industry. Divya
et al. [17] investigated peristaltic fow in the Casson fuid
model infuenced by a magnetic feld in the radial direction
passing through a nonuniform channel. Termal properties
were studied under convective boundary conditions. Tis
model characterized blood fow through arterial walls. Khan
and Ali [18] gave a theoretical analysis of the classical Graetz
problem for the model of Casson fuid. A built-in technique
called bvp4c was employed to solve the fow problem. El-
Kabeir et al. [19] examined the mixed convective fow of
a Casson nanofuid with partial slip at the boundary. Aneja
et al. [20] studied the fow of Casson fuid through a partially
heated porous square cavity with natural convection. Te
fnite element method was utilized to solve the system of
highly nonlinear coupled equations. Fluid fow and heat
transfer of Casson fuid passing through a partially heated
trapezoidal cavity were scrutinized by Hamid et al. [21]. For
solution purpose, the fnite element method was employed
with the Galerkin optimizer. Rashidi et al. [22] analyzed
blood fow through the Casson fuid model with special
reference to heat and mass transfer. Das et al. [23, 24]
analyzed Casson nanofuid with copper nanoparticles in
a porous microchannel. Vs and Pai [25] studied Casson fuid
fow between two plates with suction and injunction phe-
nomena. Te fow problem is solved by using the homotopy
perturbation technique and compared with a fnite difer-
ence scheme. Hamarsheh et al. [26] simulated the Casson
nanofuid’s natural convective fow over a horizontal cyl-
inder with methanol-base fuid. Alwawi et al. [27] numer-
ically analyzed the heat transfer efects of Casson nanofuid
over a solid sphere. Several other Casson fuid models are
scrutinized by researchers in literature [28–30].

In order to solve governing diferential equations of fow
problems various analytical and semi-numerical approaches
are employed. Due to the highly nonlinear and fractional
nature of the current problem, we apply a hybrid of the
Laplace transform with the homotopy perturbation algo-
rithm. Many fractional problems in various felds of
mathematics and engineering have recently been solved

using this technique due to its efciency in tackling frac-
tional environment. Morales-Delgado et al. [31] used the
Laplace homotopy perturbation technique to solve the
coupled system of the time-fractional Keller–Segal chemo-
taxis model with nonsingular kernel. Qayyum et al. [32]
studied soliton solutions of the Korteweg-de Vries system
with the help of a Laplace transform and homotopy per-
turbation technique. Dispersive long-wave and Hir-
ota–Satsuma KdV systems were solved, and better results
were obtained through LHPM when compared with existing
results in the literature. Coupled Whitham–Broer–Kaup
equations in fractional order were investigated by Non-
laopon et al. [33] withMittag–Lefer and exponential laws in
Caputo sense of fractional derivatives. Te system of partial
diferential equations was solved with the help of the Laplace
transform coupled with the homotopy perturbation method.
Sulaiman et al. [34] studied fractional viscous Burgers’
equations with kernels of Mittag-Lefer type utilizing
Laplace transform with homotopy perturbation technique.
Te uniqueness and existence of the purposed model were
validated and the efect of various parameters on dis-
placement was studied graphically. Ahmad et al. [35] solved
a third order fractional PDE undergoing exponential decay
by utilizing the LHPM scheme to tackle a fractional de-
rivative with Mittag–Lefer type kernel. Shokhanda et al.
[36] analyzed a two-mode fractional Burgers’ equation with
the LHPM technique. Yavuz and Ozdemir [37] used the
inverse Laplace homotopy perturbation scheme to numer-
ically investigate the fractional heat equations. Pandey et al.
[38] computed approximate solutions for the space and time
fractional difusion equation in two dimensions using the
Laplace transform with homotopy perturbation method.
Fang et al. [39] used the same semi-analytical approach to
fnd solutions for the fractionally ordered Camassa–Holm
equation. Pandey et al. [40] applied the Laplace homotopy
perturbation scheme to reaction difusion equations in
fractional order to evaluate the approximate series solution.
Nonlinear time-fractional diferential equations were eval-
uated by Zhang et al. [41] by employing the LHPM algo-
rithm. Tis technique was also utilized by Jalili et al. [42] to
work out the approximate results for a Newtonian fuid
model at fractional order.

Tis study focuses on fractional modeling and simula-
tion of an unsteady Casson fuid model squeezed between
two plates under magneto-hydro-dynamic efect and po-
rosity. A literature review reveals that the unsteady Casson
fuid fow has not been modeled in a fractional environment
and thoroughly analyzed along with error analysis and
solution validation. In this regard, the unsteady Casson fuid
model is fractionally transformed into a more general and
comprehensive fuid model in fractional order.Tis complex
model is solved by utilizing the modifed homotopy per-
turbation technique. Residual errors are computed and
compared with existing results in the literature. Graphical
analysis is done to analyze the behavior of fuid fow with
varying fuid parameters. Tis study is divided into the
following sections. Section 1.1 provides basic defnitions,
Section 2 presents problem formulation and mathematical
modeling, methodology used to solve the fow problem is
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given in Section 3, results are discussed in Section 4 and
fnally, conclusions are made in Section 5.

1.1. Preliminaries

Defnition 1. Te Caputo fractional derivative Dα of
a function V(u) can be expressed as follows [43]:

D
α
V(u){ } �

1
Γ(r − α)

􏽚
u

0
(u − τ)

r− α− 1
V

(r)
(u)dτ, r − 1< α≤ r. (1)

Defnition 2. Te Laplace transform L of Caputo’s fractional
derivative Dα is as follows [44]:

L D
α
V(u)􏼈 􏼉 � s

α
L V(u){ } − 􏽘

k− 1

n�0
s
α− n− 1

V
(n)

(0), r − 1< α≤ r. (2)

2. Mathematical Formulation of Fractional
Casson Fluid

A detailed modeling and mathematical formulation of non-
Newtonian fractional Casson fuid is given in the
following steps.

2.1. Fluid Model. Consider an incompressible fow of
a Casson fuid passing between two plates that are h(t)

distance apart in the z-direction. We defne
h(t) � ± L(1 − ct)1/2, where c represents squeezing motion
of both plates and L is the initial gap among the plates.
Squeezing motion of plates is characterized by c> 0 whereas
plates recede when c< 0. Major fow assumptions are as
follows:

(i) Fluid is at rest at time t � 0 between two plates
distance h(t) apart.

(ii) Fluid motion is caused by squeezing/receding
motion between two plates at t> 0.

(iii) Magneto-hydro-dynamic efect acts perpendicular
to the axis y � 0 along with Darcian efects.

(iv) Te stress tensor of incompressible Casson fuid is
given as follows [28–30].

τij �

2 μB +
Py

2πc

􏼢 􏼣eij, π > πc,

2 μB +
Py

2πc

􏼢 􏼣eij, πc > π.
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⎪⎪⎪⎪⎪⎪⎩

(3)

Te governing equations of fow characterized by the
mentioned assumptions are as follows [45]:
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Journal of Mathematics 3



Tis fow problem is subject to the following boundary
conditions:

u � 0

v � vw �
dh

dt

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

at y � h(t),

zv

zy
� 0

v � 0

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

at y � 0.

(7)

Now, we introduce a vorticity function ω as follows:

ω �
zv

zx
−

zu

zy
􏼠 􏼡. (8)

Final velocity equation is obtained by using equations (5)
and (6) in equation (8), which is given as follows:

zω
zt

+ u
zω
zx

+ v
zω
zy

� ] 1 +
1
β
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z
2ω

zx
2 +

z
2ω
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σB
2

ρ
zu

zy
−
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ω. (9)

2.2. Similarity Transformations. Te similarity transforms
for unsteady squeezing fow of fractional Casson fuid are as
follows [45, 46]:

η �
y

L(1 − ct)
1/2,

u �
cx

2(1 − ct)
U
′
(η),

v �
− Lc

2(1 − ct)
1/2 U(η),

(10)

and

ψ(x, y, t, η(y, t)) �
cLxU ηα( 􏼁

2
�����
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􏽰 ,

ηα(y, t) �
y
α

LΓ(α + 1)
�����
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􏽰 ,
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�
αcxy

α− 1
U

α ηα( 􏼁

2Γ(α + 1)(1 − ct)
,

ψx � v �
− cLU ηα( 􏼁

2
�����
1 − ct

􏽰 ,

(11)

where α is the fractional parameter such that 0< α≤ 1.

2.3. Nondimensionalization in Fractional Environment

2.3.1. Continuity Equation. By introducing equation (11) in
equation (4), we check that fractional transform satisfes the
continuity equation identically.

2.3.2. Momentum Equation. Te momentum equation in
equation (9) is fractionally nondimensionalized by using
equation (11) as follows:
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where the dimensionless quantities are defned as follows:

Sq �
cL

2

2]
,

M �
L
2σB

2

ρ]
,

Mt � M(1 − ct),

κ �
]

kc
,

κt � κ(1 − ct),

(13)

where squeeze number Sq< 0 implies squeezing and Sq> 0
corresponds to receding motion of the plates. Obtained

momentum equation (12) is subject to following non-
dimensional boundary conditions after using equation (10)
in equation (7)

U(0) � 0,

U
″
(0) � 0,

U(1) � 1,

U
′
(1) � 0.

(14)

2.4. Model Verifcation. To verify the fully fractional de-
velopedmodel, we put α � 1 in equation (12) and recover the
following momentum equation derived in [45, 47].

MgtU
(2)

− MptU
(2)

+ Sq UU
(3)

− ηU
(3)

− 3U
(2)

− U
(2)

U
′

􏼒 􏼓 +
1
β

+ 1􏼠 􏼡U
(4)

. (15)

2.5. Skin Friction. Te coefcient of skin friction is as
follows:

Cf �
]
]2w

1 +
1
β

􏼠 􏼡
zu

zy
|y�h(t), (16)

and after applying similarity transforms from equation (10)
in above equation, we obtain dimensionless skin friction as
follows:

L
2

x
2
(1 − ct)

RexCf � 1 +
1
β

􏼠 􏼡U
″
(1), (17)

where Rex is the local Reynolds number
[Rex � 2L]2w/]x(1 − ct)1/2].

3. Proposed Methodology for Fractional-
Order Problem

To demonstrate the basic concept of modifed homotopy
perturbation algorithm [32], we frstly develop a homotopy
as follows:

L D
α
P[V]{ } + D

α
Q[V]{ } − I(u)􏼈 􏼉 � 0, r − 1< α≤ r, (18)

where P and Q represent the linear and nonlinear parts of
the function V(u), respectively. Dα is the fractional dif-
ferential operator andI (u) is some known function. In case
of mth order boundary value problems, dummy initial
conditions are used to initialize the solution process.

In the next step, we construct a homotopy of given
equation after applying defnition of Laplace transform as
follows:

H � (1 − q) L V(u){ } − V0( 􏼁 + q L V(u) −
1
s
α􏼒 􏼓 􏽘

r− 1

n�0
s
α− n− 1

V
(n)

(0) +
1
s
α􏼒 􏼓L D

α
Q[V]{ } − I(u)􏼈 􏼉

⎧⎨

⎩
⎞⎠,⎛⎝ (19)

whereV0 is the initial guess. Expansion ofV(u) in terms of
power series gives the following equation:

V(u) � 􏽘
∞

i�0
q

i
Vi. (20)

Substituting equation (20) in equation (19) and then
comparing similar coefcients of q leads us to diferent order
problems.

Problem at i-th order qi is given as follows:
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L Vi(u)􏼈 􏼉 +
1
s
α􏼒 􏼓 s

α
L Q Vi− 1􏼂 􏼃􏼈 􏼉 − 􏽘

r− 1

n�0
s
α− n− 1

V
(n)
i− 1(0)⎛⎝ ⎞⎠ � 0. (21)

Operating Laplace transform inverse gives the following
equation:

Vi(u) + L
− 1 1

s
α􏼒 􏼓 s

α
L Q Vi− 1􏼂 􏼃􏼈 􏼉 − 􏽘

r− 1

n�0
s
α− n− 1

V
(n)
i− 1(0)⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭ � 0. (22)

Hence, the approximate solution of the fractional,
nonlinear diferential equation is as follows:

􏽥V � lim
q⟶1

V

� 􏽘

∞

i�0
Vi(u).

(23)

In case BVPs, right side boundary conditions will be used
to fnd optimal values of dummies constants of initial
conditions. Residual errors of concerned fractional difer-
ential equation can be found by

Res � D
α
P[ 􏽥V]􏽮 􏽯 + D

α
Q[ 􏽥V]􏽮 􏽯 − I(u). (24)

4. Results and Discussion

In this section, initial numerical analysis at diferent values
of fuid parameters is performed to check the efciency and
validity of the proposed approach in the case of unsteady
squeezing of Casson fuid in fractional space. In next phase,
the efects of diferent parameters on the normal and radial
velocity are analyzed graphically. Our discussion of results is
based on fractional and fuid parameters in the following
subsections.

4.1. Error Analysis andNumerical Validation. Tables 1 and 2
show numerical validation and efciency of the proposed
methodology (modifed homotopy perturbation algorithm)
by comparing it with HPM and RK4 in the case of an
unsteady squeezing fow of Casson fuid at α � 1. In Table 1,
residual error through modifed HPM method varying be-
tween (0, χ × 10− 14). Similarly, Table 2 shows comparison of
modifed HPM results with HPM and RK4 at diferent values
of non-Newtonian parameter β. In this case, modifed HPM
errors are varying in range (0, χ × 10− 12). Analysis of these
tables shows that the current results obtained through the
proposed methodology are better as compared to HPM and
RK4. Tis analysis provides frm evidence for the validation
and stability of the proposed methodology in the
current study.

4.2. Normal Velocity Profle. Figures 1(a)–1(f) depict be-
havior of normal fuid velocity for increasing values of the
fuid parameter β, the fractional parameter α, the squeeze
number Sq, an unsteady magnetic Mt, and porosity κt

parameters. In Figure 1(a), with an increase in the fuid
parameter β normal velocity shows diferent behavior about
point η � 0.45. For η< 0.45, normal velocity increases with
increasing fuid parameter, while decrease in fuid velocity in
normal direction is observed for η> 0.45. Fractional pa-
rameter α is varied between (0, 1) in Figure 1(b). Normal
fuid velocity increases with increasing fractional parameter
when 0.3< η< 0.8 and it decreases otherwise. For squeezing
motion of plates, i.e., Sq< 0 in Figure 1(c) velocity in normal
direction decreases for η< 0.425 and increases when
η> 0.425. Contrasting behavior of velocity is observed in
Figure 1(d) for receding motion between the two plates. Te
magnetic parameter Mt decreases normal fuid velocity for
η< 0.5 due to dominant Lorentz-like drag force on fuid
fow.Tis drag force does not remain dominant after η � 0.5
and hence velocity starts to increase in normal direction (see
Figure 1(e)). Opposite behavior in case of higher porosity
parameter κt is observed in Figure 1(f ) about η � 0.5.

4.3. Radial Velocity Profle. Figures 2(a)–2(f) present sim-
ulations of radial velocity profle for fuid parameter β,
fractional parameter α, squeeze number Sq, unsteady
magnetic Mt and porosity κt parameters.Te velocity profle
in radial direction shows increasing behavior in contrast to
the normal velocity of the fuid. Radial velocity gradually
increases with elevated non-Newtonian parameter β in
Figure 2(a). Te fractional parameter α decreases fuid ve-
locity in radial direction as seen in Figure 2(b). For squeeze
number Sq< 0, i.e., when the plates are moving closer, ve-
locity in radial direction decreases as observed in Figure 2(c).
In contrast, radial velocity increases in the case of receding
plates in Figure 2(d) as more space for fuid motion along the
radius develops when plates aremoving apart. An increase in
the magnetic parameter Mt decreases radial velocity (see
Figure 2(e)) due to a dominant drag force throughout the
domain. In Figure 2(f) increase in fuid velocity is observed
for higher values of the porosity parameter κt. Te velocity
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Table 1: Comparison of modifed HPM results with RK4 and HPM for diferent Sq when α � 1, Mt � 0.5 � κt, and β � 0.05.

Parameters η Solution
Residual error

Modifed HPM RK4 [45] HPM [45]

Sq � − 0.2

0.1 0.149441 8.67 × 10− 19 6.59 × 10− 9 9.93 × 10− 11

0.3 0.436351 0 2.71 × 10− 10 5.16 × 10− 10

0.5 0.687329 2.78 × 10− 17 2.41 × 10− 10 5.33 × 10− 10

0.7 0.878387 2.08 × 10− 16 5.29 × 10− 10 1.53 × 10− 9

0.9 0.985479 2.87 × 10− 15 1.08 × 10− 8 1.17 × 10− 9

Sq � − 0.4

0.1 0.1495 8.67 × 10− 19 3.68 × 10− 8 5.03 × 10− 11

0.3 0.436497 0 2.33 × 10− 9 1.52 × 10− 10

0.5 0.687493 2.30 × 10− 17 5.65 × 10− 12 5.45 × 10− 10

0.7 0.878491 2.65 × 10− 16 1.86 × 10− 9 2.09 × 10− 9

0.9 0.985498 1.76 × 10− 15 2.54 × 10− 8 1.81 × 10− 9

Sq � − 0.6

0.1 0.149558 6.94 × 10− 18 8.03 × 10− 8 1.24 × 10− 8

0.3 0.436644 1.39 × 10− 17 5.07 × 10− 9 3.79 × 10− 8

0.5 0.687657 1.53 × 10− 16 3.17 × 10− 10 7.21 × 10− 8

0.7 0.878596 4.75 × 10− 15 4.49 × 10− 9 1.42 × 10− 7

0.9 0.985516 5.06 × 10− 14 6.40 × 10− 8 3.01 × 10− 7

Table 2: Comparison of modifed HPM results with RK4 and HPM for diferent values of β when α � 1, Mt � 0.5 � κt, and β � 0.05.

Parameters η Solution
Residual error

Modifed HPM RK4 [45] HPM [45]

β � 0.01

0.1 0.149488 2.17 × 10− 19 8.33 × 10− 9 8.92 × 10− 13

0.3 0.436469 8.67 × 10− 19 2.87 × 10− 9 4.63 × 10− 12

0.5 0.687464 2.60 × 10− 18 2.45 × 10− 9 4.79 × 10− 12

0.7 0.878477 3.47 × 10− 18 1.89 × 10− 9 1.37 × 10− 11

0.9 0.985496 3.47 × 10− 18 2.78 × 10− 8 1.05 × 10− 11

β � 0.1

0.1 0.149388 6.94 × 10− 18 1.83 × 10− 8 6.91 × 10− 10

0.3 0.436215 6.94 × 10− 18 1.08 × 10− 9 3.59 × 10− 9

0.5 0.687173 2.78 × 10− 16 2.80 × 10− 11 3.71 × 10− 9

0.7 0.878285 9.80 × 10− 15 8.24 × 10− 10 1.06 × 10− 8

0.9 0.985461 1.38 × 10− 13 1.16 × 10− 8 8.20 × 10− 9

β � 0.2

0.1 0.149295 3.47 × 10− 18 3.03 × 10− 8 4.25 × 10− 9

0.3 0.435977 0 2.07 × 10− 9 2.21 × 10− 8

0.5 0.686901 9.84 × 10− 15 1.63 × 10− 10 2.28 × 10− 8

0.7 0.878105 3.71 × 10− 13 1.87 × 10− 9 6.57 × 10− 8

0.9 0.985428 5.22 × 10− 12 2.73 × 10− 8 5.05 × 10− 8
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Figure 1: Efect of diferent parameters on normal velocity at α � 0.85.
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boundary layer is enhanced with higher values of κt due to
which resistance among fuid layers decreases causing an
increase in fuid velocity along radial direction.

4.4. Skin Friction. Skin friction at the wall y � h(t) is
simulated numerically in Table 3 against the fractional pa-
rameter α, fuid parameter β, squeeze number Sq, magnetic
parameter Mt, and porosity parameter κt. It is observed that
increase in α and Mt increases the skin friction at the
boundary. Moreover, an increase in β, Sq, and κt decreases
the skin friction of fractional Casson fuid.

5. Conclusions

Te objective of the current manuscript is fractional mod-
eling and simulation of the unsteady squeezing fow of
Casson fuid. Te incompressible Casson fuid is considered
to have MHD and Darcian efects in a fully fractional en-
vironment. Te obtained model is validated by recovering
the ODE of integer-order at α � 1. In current modeling, the
obtained equations are fractionally transformed, and solved
through modifed homotopy perturbation algorithm. An
error analysis is performed for checking the convergence
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Figure 2: Efect of diferent parameters on radial velocity at α � 0.85.

Table 3: Numerical values of skin friction for diferent values of
α, β, Sq, Mt and κt.

α β Sq Mt κt (1 + 1/β)U″(1)

0.65 2.0 0.70 0.80 1.50 − 4.031
0.72 − 4.413
0.85 − 4.818
0.95 − 4.852
0.80 0.90 − 6.618

1.30 − 5.539
2.40 − 4.426
3.00 − 4.162
1.00 0.34 − 6.286

0.98 − 6.253
1.56 − 6.223
2.50 − 6.175
0.70 0.50 − 6.263

0.90 − 6.269
1.50 − 6.279
2.00 − 6.292
1.10 0.20 − 6.293

0.87 − 6.282
1.60 − 6.271
2.80 − 6.252
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and validity of the applied methodology. It is noted that the
solutions are improved using modifed HPM as compared to
existing results in the literature. Te key fndings of this
study are as follows:

(i) Radial velocity increases throughout the domain in
contrast to normal fuid velocity.

(ii) Decrease in radial velocity is observed against in-
creasing Mt, Sq< 0 and α whereas radial velocity
increases in case of higher κt, β and Sq> 0.

(iii) Velocity in normal direction shows similar behavior
as radial velocity for η< χ and inverse behavior is
observed when η> χ.

(iv) Furthermore, the squeeze number and porosity
parameter present opposite behavior in fractional
enthronement when compared with the existing
integer-order model given in [45].

Tis study provides the basis for fractional modeling of
the unsteady squeezed fow of Casson fuid in particular and
non-Newtonian fuid in general. Te steps presented in
current modeling can be extended to diferent non-
Newtonian fuid models like Maxwell, Carreau, and Sut-
terby fuids under various boundary conditions.

Nomenclature

(x, y): Spatial coordinates (m)

t: Temporal coordinate (s)
(u, v): Velocities in x and y directions (ms− 1)

τ: Extra stress tensor (kgm− 1s2)
ei,j: Rate of deformation
L: Initial gap between plates (m)

c: Constant quantity (s− 1)

μ: Dynamic viscosity (kgm− 1s− 1)

Py: Yield stress (Pa)

ρ: Density (kgm− 3)

B: Magnetic feld strength (Am− 1)

β: Casson fuid parameter
σ: Electric conductivity (Sm− 1)

]: Kinematic viscosity (m2s− 1)

k: Porosity rate (m2).
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All the data are available within manuscript.
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