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Abstract 

 

Surface temperature control of a thin plate is investigated. Temperature is controlled 

on one side of the plate using the other side temperature measurements. This is a decades-old 

problem, reactivated more recently by the awareness that this is a fractional-order problem 

that justifies the investigation of the use of fractional order calculus. The approach is based on 

a transfer function obtained from the one-dimensional heat conduction equation solution that 

results in a fractional-order s-domain representation. 

Both the inverse problem approach and the fractional controller approach are studied 

here to control the surface temperature, the first one using inverse problem plus a Proportional 

only controller, and the second one using only the fractional controller. 

The direct problem defined as the ratio of the output to the input, while the inverse 

problem defined as the ratio of the input to the output.  transfer functions are obtained and the 

resulting fractional-order transfer functions were approximated using Taylor expansion and 

Zero-Pole expansion. The finite number of terms transfer functions were used to form an open-

loop control scheme and a closed-loop control scheme. Simulation studies were done for both 

control schemes and experiments were carried out for closed-loop control schemes. 

For the fractional controller approach, the fractional controller was designed and used 

in a closed-loop scheme. Simulations were done for fractional-order-integral, fractional-order-

derivative and fractional-integral-derivative controller designs. The experimental study 

focussed on the fractional-order-integral-derivative controller design. 
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 The Fractional-order controller results are compared to integer-order controller’s 

results. The advantages of using fractional order controllers were evaluated. Both Zero-Pole 

and Taylor expansions are used to approximate the plant transfer functions and both 

expansions results are compared. 

The results show that the use of fractional order controller performs better, in particular 

concerning the overshoot. 
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Nomenclature 

L: Plate thickness[m]. 𝐺1: Direct problem transfer function. 𝐺2: Inverse problem transfer function. 𝜃1: The input temperature of the direct problem [0C]. 

 𝜃2: The output temperature of the direct problem [0C]. 

 𝜃2𝑑: The desired temperature [0C]. 𝐺𝑐: The Controller transfer function. 𝑘: The thermal conductivity [ 𝑚2𝑠𝑒𝑐]. 𝐴: The amplitude of input temperature [ 0C].  ∅: The heat flux [W/m2 ]. 𝛼: The thermal diffusivity [ 
𝑊𝑚.𝐾 ]. 𝑠: The complex variable. 𝐴𝑠: The area of the plane isothermal that is considered for the  

x-transfer [m2]. ⍵: The frequency [rad/sec]. 

λ: Fractional integral order. 

μ: Fractional derivative order. 

FOPI: Fractional-order proportional-integral controller. 

FOPD: Fractional-order proportional derivative controller. 

FOPID: Fractional-order proportional integral derivative controller. 

PID: Proportional integral derivative controller. 

Kp: Proportional gain. 

KI: Integral gain. 
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KD: Derivative gain. 

IOPID: Integer order proportional integral derivative controller. 

IHCP: Inverse Heat conduction problem. 

N: Number of terms for the direct problem. 

M: Number of terms for the inverse problem. 

PC: Personal computer. 𝐺𝑑𝑖𝑟 = 𝐺1: Direct problem transfer function. 𝐺𝑖𝑛𝑣 = 𝐺2: Inverse problem transfer function. 
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Chapter One: Problem Description 

1.1 Introduction 

 

The fractional-order systems control became an active research issue recently. To have 

good control of such systems, it needs to be investigated. Thermal systems have been studied 

with the lumped parameter approach for a long time. The investigation of Fractional calculus 

to solve the engineering problem is a recent trend. This is mentioned in a review paper by A. 

Dastjerdi et al. [1] in 2019, “Today, there is a great tendency toward using fractional calculus 

to solve an engineering problem. Control is one of the fields in which fractional calculus has 

attracted a lot of attention.” This encouraged us to do this study, where we introduce two new 

approaches to investigate this kind of problem. The first approach is using an inverse problem 

solution with an integer order controller, and the second approach is the fractional order 

controller.  

Metallic components are widely used in industry, and most of these applications 

involve heat transfer. Consequently, the need exists to have the desired temperature at least on 

one metal surface or sometimes on both faces, but most frequently, we have the heat source 

on one side and we have to achieve a desired temperature on the other side.  Thus, the inverse 

problem must be solved to get a temperature distribution through the plate thickness, as 

appears in Figure 1.  
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                                Input temp.                                   Output temp. 

 

 

                                                     x = 0                       x = L           x 

 

1.2 The Problem 

 

This study involves an estimation of the temperature on one side of a plate from a 

measurement on the other side of the plate, control of the temperature output of a plate after 

heating one side of the plate, and control of the temperature output on the edother side. The 

investigation, using a thin aluminum plate, consists of applying a sinusoidal heat input of 

various  values on one side and evaluating the effect of the frequency on the temperature 

amplitude on the other side. Also, to open-loop control the temperature output to the desired 

value, the study consists of a two-stage problem: the first is the inverse problem where the 

inverse problem defined in s-domain is the ratio of the output divided by the desired input of the direct 

problem, and the second is the direct problem (the direct problem defined here as the division 

of its output by the input) as it appears in Figure 2: 

 

 

Aluminum 

Plate 

Figure 1: Thin plate diagram. 
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  𝜃2𝑑                                                    𝜃1                                          2
          𝜃2                 

 

 

 

Where:  

               𝐺1is the transfer function of the direct problem? 

  𝐺2 is the transfer function of the inverse problem? 

  𝜃1 is the input temperature of the direct problem? 

  𝜃2 is the output temperature of the direct problem? 

  𝜃2𝑑 is the input temperature of the inverse problem? 

 

The direct problem is defined as the ratio of the output temperature 𝜃 2on the non-

heated side to the temperature input 𝜃 1 on the heated side. 

The inverse problem is the inverted direct problem, i.e. the ratio of input temperature 𝜃 1 on the heated side to the output temperature on the non-heated side 𝜃 2. 

In the open-loop control from Figure 2, the desired temperature 𝜃 2𝑑  to the loop is the 

desired value of the output temperature 𝜃 2 on the non-heated side. In Figure 2 are included 

the transfer functions 𝐺1 of the Direct problem and the transfer function 𝐺2  =  𝐺1−1 of the 

Inverse Problem. 

  

From Figure 2, we get the equation (1.1) as follows: 

 

Inverse Problem 𝐺2 

Direct Problem 𝐺1 

Figure 2: Open loop control block diagram. 
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 𝜃2 =  𝐺2𝐺1 𝜃2𝑑      (1.1) 

 

Equation (1.1) gives us the transfer function relating the desired input to the actual 

output. This open-loop transfer function resulted in a product of inverse problem transfer 

function multiply by the direct problem transfer function. 

 

For the closed-loop case, feedback is added to control the output temperature, using a 

controller 𝐺𝐶, as is shown in Figure 3: 

 

𝜃2𝑑                                                                  𝜃1                                          𝜃2                        

     + 

          - 

 

 

 

The direct problem is defined as the ratio of the output temperature 𝜃 2on the non-

heated side to the temperature input 𝜃 1 on the heated side. 

The inverse problem is the inverted direct problem, i.e. the ratio of input temperature 𝜃 1 on the heated side to the output temperature on the non-heated side 𝜃 2. 

In the closed-loop control from Figure 3, the desired temperature 𝜃 2𝑑  to the loop is the 

desired value of the output temperature 𝜃 2 on the non-heated side. In Figure 3 are included 

Inverse Problem 𝐺2 

Direct Problem 𝐺1 𝐺𝑐 
 

Figure 3: Closed loop control block diagram. 
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the transfer function 𝐺1 of the Direct problem and the transfer function 𝐺2  =  𝐺1−1 of the 

Inverse problem and the transfer function 𝐺𝐶 of the controller. 

 

1.3 Why the Focus is on 1-D Temperature Control 

 

To investigate the controller effect for the heat conduction problems, we need an 

analytical solution for the problem under investigation to obtain the transfer functions for this 

study, and these solutions are mostly available for the 1-D heat conduction equation, while the 

solutions for 2-D and 3-D cases are mostly in numerical form. Also, it is very difficult to see 

the controller effect in the 3-D case; it is easier and clearer in the 1-D case. Most research 

papers were published for the 1-D case. Finally, in this case, the propagation is in a 1-D 

direction, and a semi-infinite body is investigated for this purpose.  

Transfer functions for fractional-order systems have to be approximated by integer-

order equations for actual computations. Taylor series and pole-zero expansions are good 

candidates and are analyzed next. 

 

1.4 Taylor Expansion 

 

The Taylor series expansion for a hyperbolic sine function is [2]:   

 sech(x) = ∑ (Enn! )  xn,        for |x| < 𝜋/2∞n=0       (1.2) 

 

isWhere Euler numbers En  zero for odd-indexed numbers, while even indexed numbers are 

 

E0=1 
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E2=-1 

E4=5 

E6=-61 

E8=1385 

E10=-50521 

E12=2702765 

E14=-199360981 

E16=19391512145 

E18=-2404879675441     etc. 

 

The Taylor series expansion for a hyperbolic cosine is the inverse problem result: 

 cosh(x) =  ∑ ( 1(2n)!)  x2n,     for − ∞ < 𝑥 <  ∞∞n=0          (1.3) 

From the above expansion, we see that there is a limitation of sech(x) to |x| < π/2, 

the alternative form sech(x) =1/cosh(x) is used knowing that there are no domain limitations 

for cosh(x).  

1.5 Zero-Pole Expansion 

The Zero-Pole series expansion for the hyperbolic secant is: 

  

 sech(√𝑥) = 1cosh (√𝑥) ≈ 𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6…(𝑥−𝑝1)(𝑥−𝑝2)(𝑥−𝑝3)(𝑥−𝑝4)(𝑥−𝑝5)(𝑥−𝑝6)…  (1.4) 

Where: 

𝑝𝑘 =  −[(2𝑘 − 1)𝜋2  ]2,     𝑘 = 1,2,3, … 

The Zero-Pole series expansion for hyperbolic cosine is: 

 cosh(√𝑥) ≈ (𝑥− 𝑧1)(𝑥− 𝑧2)(𝑥− 𝑧3)(𝑥− 𝑧4)…𝑧1𝑧2𝑧3𝑧4…   (1.5) 
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Where: 

𝑧𝑘 = −[(2𝑘 − 1)𝜋2  ]2,     𝑘 = 1,2,3, …   
 

 

1.6 Fractional Calculus 

 

The history of fractional calculus started in the 17th century in a letter from L’Hopital 

to Leibniz asking what if the order of the derivative were (0.5); this letter later led to the birth 

of fractional order derivatives and integrals.  To understand and to compute the fractional-

order (FO) derivative and integral better, some definitions are needed. The most important are: 

 

A. Riemann-Liouville definition of FO integration[3]. 

 

The Riemann-Liouville definition of fractional order integration is: 

 

   0𝐷𝑡−∝𝑓(𝑡) = 1Γ(∝) ∫ 𝑓(𝜏)(𝑡−𝜏)1−𝛼𝑡0 𝑑𝜏       (1.6) 

 

where 0 < 𝛼 < 1, and Γ(𝑥) is the Gamma function. Γ(𝑥) = ∫ 𝑒−𝑢𝑢𝑥−1𝑑𝑢∞
0  

When the initial integral limit changes from (0) to (a), the FO definition is generalized 

to the Weyl Definition  

 

   𝑎𝐷𝑡−∝𝑓(𝑡) = 1Γ(∝) ∫ 𝑓(𝜏)(𝑡−𝜏)1−𝛼𝑡𝑎 𝑑𝜏       (1.7) 

 

 

B. Riemann-Liouville definition of FO differentiation[3]. 

The Riemann-Liouville definition of fractional order differentiation is: 
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  0𝐷𝑡𝛼𝑓(𝑡) = 𝑑𝑑𝑡 [ 0𝐷𝑡−(1−𝛼)𝑓(𝑡)]      (1.8) 

 

There are left and right R-L definitions for FO differentiation: 

 

  𝑏𝐷𝑡𝛼𝑓(𝑡) = 1Γ(𝑛−∝) (− 𝑑𝑑𝑡)𝑛 ∫  𝑓(𝜏)𝑡𝑏 (𝑡 − 𝜏)𝑛−𝛼−1𝑑𝜏   (1.9)     

  𝑎𝐷𝑡𝛼𝑓(𝑡) = 1Γ(𝑛−∝) ( 𝑑𝑑𝑡)𝑛 ∫  𝑓(𝜏)𝑡𝑎 (𝑡 − 𝜏)𝑛−𝛼−1𝑑𝜏   (1.10)    

 

C. Caputo's definition of FO differentiation[3]. 

The Caputo definition of the fractional order differentiation is: 

 

 

  0𝐶𝐷𝑡𝛼𝑓(𝑡) = 1Γ(1−𝛼) ∫ 𝑓′(𝜏)(𝑡−𝜏)𝛼𝑡0 𝑑𝜏         (1.11) 

 

D. Grunwald-Letnikov definition[3]. 

The Grunwald-Letnikov (G-L) definition introduces a unified definition for both 

fractional integration and differentiation: 

 

  𝑎𝐷𝑡𝛼𝑓(𝑡) = limℎ→0 1ℎ∝ ∑ (−1)𝑗( 𝑗𝛼)𝑓(𝑡 − 𝑗ℎ)[𝑡−𝑎ℎ ]𝑗=0     (1.12) 

 

1.7 Oustaloup approximation 

 

Oustaloup provides a filter approximation to the fractional-order differentiator (𝑠𝛼) as 

follows: 

 𝐺𝑡(𝑠)    =      𝐾 ∏ 𝑠+ 𝜔𝑖′𝑠 +  𝜔𝑖𝑁𝑖=1          (1.13)   

Where 𝑤𝑖′ =   𝜔𝑏𝜔𝑢(2𝑖−1−𝛼)/𝑛
 𝑤𝑖  =  𝜔𝑏𝜔𝑢(2𝑖−1+𝛼)/𝑛  
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𝐾   =      𝜔ℎ𝛼 

𝜔𝑢   =    √𝜔ℎ𝜔𝑏     

N is the order of approximation. 
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Chapter Two: Literature Review 

 

2.1 Introduction 

 

Solving inverse problems are important in industry, science, and engineering 

applications, as they are very common in these fields. To solve temperature control problems, 

we have to first try to determine the methods for solving inverse heat problems for both linear 

and non-linear cases, as follows: 

 Integral equation approach, 

 Integral transform techniques, 

 Series solution approach, 

 Polynomial approach, 

 Hyperbolization of the heat conduction equation, 

 Numerical methods such as finite difference, finite elements, and boundary elements, 

 Space marching techniques together with filtering of the noisy input data, such as the 

mollification method, 

 Iterative filtering techniques, 

 Steady-state techniques, 

 Beck's sequential function specification method, 

 Levenberg-Marquardt method for minimization of the least square norm, 

 Tikhonov's regularization approach, 

 Iterative regularization methods for parameter and function estimations, 
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 Genetic algorithms. 

It is important to know that analytical solutions are only available for linear inverse 

problems; they are not available for most of the non-linear inverse problems cases. 

Having mentioned some of the solution methods for inverse heat problems, we now 

focus our attention on the Inverse Heat Conduction Problem (IHCP), which we will deal with 

through our research. Those types of inverse problems can be classified depending on the 

variable to be estimated: 

IHCP of boundary conditions, 

IHCP of thermophysical properties, 

IHCP of the initial condition, 

IHCP of the source term, 

IHCP of geometric characteristics of a heated body. 

In our research we will focus on the second type, which is the estimation of 

temperature. 

2.2 Reviews of Inverse Problem approach 

 

The effect of heat on any process in the industry, due to power consumption in 

industrial processes, causes a temperature control issue.  That is why surface temperature 

control of a metal part is essential for most industrial processes these days. In this study, we 

focus on solving IHCP due to its importance in industrial applications.    

One of the first solutions for the inverse heat problems was proposed by Stolz [4]. He 

formulated the inverse problem in terms of numerical inversion of the related direct problem. 

The Stolz solution appeared, however, to be unstable in case of small time steps. Miller et al. 

[4] and Tikhonov et al. [5] were the first to introduce regularizer methods[5] [6]. Murio 
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developed a technique, known as Mollification, which was able to smooth the temperature 

estimate at a plate the surface [7]. Beck solved the problem of future time-temperatures in a 

least-square sequential method. His approach stabilizes the inverse problem and allows small 

time steps [8]. 

Scarpa and Milano solved the heat flux at one boundary of a one-dimensional system 

using the Kalman smoothing technique [9]. Yang and Chen developed a direct method to 

estimate the boundary conditions in two-dimensional heat conduction by first discretizing the 

problem using finite difference, then using the least-squares method [10]. Monde used the 

Laplace transform to develop an analytical solution for an inverse heat conduction problem 

knowing the temperature at two points for a finite body or the temperature at one point for a 

semi-finite body [11]. Dul’kin and Garas’ko obtained an analytical solution for a 1-D heat 

conduction problem for a single straight fin [12]. Shenefelt et al. obtained a solution for a 

linear inverse heat conduction problem by directly applying the singular value decomposition 

to the matrix from Duhamel's principle [13]. 

Necsulescu, Woodbury, Özışık, and Beck introduced several solution methods for 

inverse heat conduction problems with different boundary condition types [14][15][16][17]. 

Maillet published a book regarding the use of the Thermal Quadrupoles method to solve the 

heat equation through integral transforms [18]. 

Lüttich et al. solved the linear inverse heat conduction problem for the reconstruction 

of unknown heat flux on the boundary for 2D and 3D problems; their method is based on the 

interpretation of IHCP in a frequency domain [19]. Lu and Tervola have introduced an 

analytical approach of heat conduction in a composite slab when it is exposed to periodic 

temperature changes [20]. Woodfield et al. solved analytically the inverse heat conduction 

problems when it has a given far-field boundary condition using the Laplace transform [21]. 
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Pourgholi and Rostamian provided a numerical solution for the 1D inverse heat conduction 

problems using the Tikhonov regularization method [22]. Feng et al. provided an approach for 

temperature control of functionally graded plates using the inverse solution and the 

proportional-differential controller [23]. Zhou et al. used the Laplace transform technique to 

solve the problem of heat conduction over a finite slab [24]. Feng et al. presented a new method 

for solving the 3D inverse heat conduction problem for the special geometry of a thin sheet. 

They simplified the equation from 3D to 1D using modal expansion then used the Laplace 

transform to determine the front surface temperature and heat flux in terms of those on the 

back surface [25]. Zhou et al. proposed a new method to recover the front surface temperature 

of a finite slab using fine grids based on the back surface temperature measured with coarse 

grids for 3D inverse heat conduction problems [26]. Pailhes et al. proposed a new method 

based on the thermal quadrupoles method for heat transfer modelling in a multilayered slab; 

they used a new formulation based on an exponential function with a negative argument, while 

the classical Quadrupole method used hyperbolic functions [27]. Krapez and Dohou proposed 

an extension to the thermal quadrupole method, which allows computing temperature and heat 

fluxes anywhere inside a multilayer material [28]. Najafi et al. estimated the multiple unknown 

heat flux at the boundary, using the temperature measurements at the other side of the 2D 

plate, applying Tikhonov regularization to overcome the ill-posedness of the problem [29]. 

Kukla and Siedlecka used the Laplace transform for solving the problem of fractional heat 

conduction in a two-layered slab [30]. Fan et al. obtained the temperature distribution on one 

surface of a flat plate by solving the inverse problem based on the temperature measurement 

on the opposite surface of the plate; a modified one-dimensional correction and the finite 

volume methods were used for both the two- and three-dimensional inverse problems [31]. 

Feng et al. solved the heat conduction problem for a finite slab using the Laplace transform. 
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A transfer functions link for the temperature and heat flux on the two surfaces of a slab was 

obtained. These relationships can be used to calculate the front surface heat input (temperature 

and heat flux) from the back surface measurements (temperature and/or heat flux) when the 

front surface measurements are not feasible [32]. 

The solution of the inverse one-dimensional heat conduction problem was presented 

by Danaila and Chira; they aim to estimate the right-side unsteady boundary condition. They 

used two techniques to do this estimation: first, conjugate the gradient method with an adjoint 

problem for the gradient function estimation and second, Tikhonov regularization for 

Hyperbolization of the heat conduction equation. Both approaches were tested, and the inverse 

problem was solved for different boundary condition function forms. They include functions 

containing sharp corners; the mathematical and numerical formulations are presented [33].  

 

  The inverse problem in a rectangle was considered by Ivanchov and Kinash: the heat-

conduction equation with an unknown coefficient as a function of time and space variables. 

They used the Green function to reduce the problem to one equation. Schauder’s theorem was 

used to prove the existence of the solution to this equation, and Volterra integral equations 

theory was used to prove the uniqueness of the solution [34]. Chen et al. used the one-

dimensional inverse heat conduction problem to estimate the surface temperature; they used a 

nonlinear calibration integral equation method.  The parameter-free nature of the nonlinear 

calibration method permits them to introduce the first kind of Volterra integral equation 

containing the thermophysical properties as a function of temperature. They proposed a 

temperature-dependent property transform, represented by a Chebyshev expansion to linearize 

the nonlinear heat equation. The expansion coefficients were estimated using two tests: the 

time-sequential investigation and the balance verification. The future-time method is used to 
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regularize the ill-posed problem, and the optimal regularization parameter was estimated using 

a phase plane and the cross-correlation phase plane analysis. Numerical simulation provides 

encouraging results for surface temperature predictions [35].  

Chang et al., in their review paper on the computation methods used for the inverse 

heat conduction problems, divided them into two major solving categories: mesh methods and 

the meshless algorithms. Finite difference discretization methods are the famous mesh 

methods, while the Tikhonov regularization method and the Singular value decomposition 

(SVD) are good examples of the meshless algorithms. Based on their literature studies, they 

realized that the development of meshless methods is the trend [36].    

 

2.3 Reviews of Fractional controller approach 

 

Recently, fractional order controllers have been put in use to obtain better performance 

of the system. 

 Gebhart presented a heat conduction model for both steady-state and unsteady-state 

using periodic boundary conditions [37]. Ogata et al. provided the phase angle and the 

magnitude of transfer functions of a different order [38].  Maillet et al. presented several 

solution methods for inverse heat transfer problems [39]. Monje et al. formulated detailed 

methods for the design of FOPI, FOPD, and FOPID controllers [40]. The heat flux and the 

temperature control on a front surface were estimated using the measurement on the back 

surface of a finite slab, which is a standard problem, was estimated. The Laplace transform 

was used to get a solution of the resulting heat conduction equation to obtain the transfer 

functions and then was expanded using Zero-Pole expansion [23].  
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Shekher et al. designed a controller for gain and phase margin criteria to satisfy the 

robustness property for a PID controller for the case of a ceramic infrared heater [41]. Zheng 

et al. proposed a detailed design of fractional order PID (FOPID) controller, and the 

parameters of the controller were obtained according to the model characteristics and design 

specifications [42]. Cokmez et al. proposed a detailed fractional order PI controller design 

algorithm based on control error optimized using ITSE criteria; the fractional order of 

integration fraction will vary according to the sign of the control error [43]. Li, Chen, and Lou 

proposed a new tuning method of typical classes of second-order systems, which can ensure 

given gain crossover frequency and phase margin [44] [45]. Batlle et al. proposed the Smith 

predictor combined with a fractional order controller to control the temperature of a steel slab 

reheating furnace; they introduced simulation results for a fractional order proportional-

integral controller [46]. 

 Muresan et al. introduced an approach to design a fractional order PI controller to 

control a DC motor speed, and experimental results proved the efficiency of using such a 

controller [47]. Flores et al. proposed a fractional order controller that can deal with non-

modeled dynamics for a cooperative cruise control [48]. Tan et al. used interactive tools like 

Matlab and Labiew to teach fractional order control methods and how they can be introduced 

in a classical control course [49]. Maurya and Bhandari proposed a hybrid fractional order 

PID controller tuned using the Ziegler-Nichols and Astrom-Hagglund methods; the 

parameters of the FOPID used were proportional constant and integral constant from Ziegler-

Nichols and derivative constant from the Astrom-Hagglund method. To obtain solutions for 

the fractional-order of the integral term and derivative term, two non-linear equations are 

obtained and solved [50]. 
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Saptarshi et al. examined time and frequency domain tuning strategies for a fractional 

PID controller to handle higher-order processes. They used reduced parameter modeling [51]. 

Jesus Isabel and Machado Tenreiro studied the heat diffusion systems based on the fractional 

calculus concept; several control strategies were investigated and compared [52]. Rapaic and 

Jelicic presented a generalized fractional-order heat conduction equation solution procedure 

in which the first step is to represent the fractional distributed parameter model by an 

equivalent system of fractional-order ordinary differential equations; they then obtained a 

classical, infinite-dimensional state-space form through suitable transformation to avoid the 

necessity of solving Euler-Lagrange equations [53].  

El-khazali introduced a new design method for both fractional proportional-derivative 

and fractional proportional-integral-derivative controllers; these were done using a biquadratic 

approximation to introduce a new structure of finite-order fractional-order PID controllers 

[54]. Zheng et al. proposed a control strategy based on analytical calculation and a differential 

evolution algorithm for a permanent magnet motor; the frequency-domain specifications 

guarantee the system stability and the system robustness while the time-domain specifications 

ensure the desired step response, constrained overshoot, and proper power consumption [55]. 

 Tavakoli-Kakhki and Haeri used the fractionalized differentiating method to reduce 

fractional-order models’ complexity. The main advantages of this method are simplicity and 

guaranteed stability of a specific class of fractional-order models. In simplifying the 

complicated fractional controller to a fractional order PID controller, the reduction proposed 

tuning rules for parameter adjustment [56].  Jesus et al. studied heat diffusion systems based 

on concepts of fractional calculus, and several control methodologies were investigated. The 

Smith predictor structure was adopted for its better control of systems developments [57]. 

Mehra et al. studied a DC motor speed control using fractional order control, the FOPID 
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parameters were optimally obtained using a genetic algorithm, and the integral of the absolute 

error (IAE) was chosen for optimization. They showed that a FOPID controller performs better 

than an IOPID [58]. 

 

   Ranjan et al. used the method of dominant pole placement, and the settling time and 

peak overshoot were used as the performance specifications, where constraints have been put 

on the complementary sensitivity function to handle the high-frequency noise rejection. Then, 

they extended the method for a fractional-order system and fractional order controller. Since 

there is no direct method for dominant poles for fractional-order systems, they started the 

method with the assumption of dominant poles [59].  Al-Saggaf et al. used Bede’s ideal 

transfer function as a reference model to investigate fractional-order controller designs for 

integer-order first order plus time delay systems; based on this, they proposed a new structure 

of the fractional-order controller. They used the internal model control principle in designing 

the controller [60]. Bongulwar and Patre designed a Fractional Order Proportional Integral 

Derivative Controller (FOPID) for a first non-integer order plus a time-delay system; the 

model for the system was obtained from a reduced higher-order continuous-time model.  The 

stability boundary locus method was used for designing the controller; the method satisfies 

frequency domain specifications, phase margin, and gain crossover frequency.  They achieved 

a flat phase condition by designing a robust control system to work against gain variations 

[61].  

 

 Mettu et al. designed a Fractional Order Proportional Integral Derivative (FOPID) 

controller to control the liquid level of a spherical tank; the tank was modeled as a fractional-

order system. They designed the controller following a set of imposed tuning constraints to 
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guarantee the desired control performance and robustness to the loop gain variations. They 

showed that the fractional-order controller improved the performance compared with an 

integer order controller [62]. Jesus et al. studied heat diffusion systems described by the 

fractional operator (s0.5); a nonlinear controller with the fractional order model was 

investigated, and the tuning follows the optimization of performance control indices [63]. 

Viola et al. proposed a new method, the quantitative robustness evaluation of PID controllers 

employed in a DC motor. Robustness analyses were done for a fractional order proportional 

integral and derivative controller (FOPID), Integer Order Proportional Integral and Derivative 

controller (IOPID), and the Skogestad Internal Model Control controller (SIMC) PID 

controller to control the speed of a motor-generator set. A factorial experimental design 23 is 

used as a tool for the robustness analysis [64].  

 

Edet and Katebi designed a fractional order PID controller, tuned based on the 

frequency domain design method. They developed a new algorithm to tune the FOPID 

controller based on a single frequency point. Controller parameters were calculated from 

critical measurements to meet the design specifications [65]. Caponetto et al. proposed a new 

procedure to define the fractional order PID controller parameters to stabilize a first-order 

plant plus time delay. The procedure is done using the Hermite–Biehler theorem applied for 

the quasipolynomials in the field of fractional-order systems [66]. Dormido et al. presented 

two interactive tools for the design of the Fractional Order Proportional Integral Derivative 

(FOPID) controller. The time and frequency domain design of the FOPID controller was 

presented in tool one, while the second tool allows the user to automatically determine the 

controller parameters by imposing a loop shaping technique. The current technique, which is 

a computer-aided control system design tool believed to be very useful from an educational 
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point of view leads to the widespread use of FOPID controllers in the industry [67]. Zhang et 

al. transformed the FOPID controller adjustment problem to a nonconvex optimization 

problem. A new State Transition Algorithm (STA) was introduced to select the optimal 

controller parameters.  They found that the Integral Time of Absolute Error (ITAE) has 

excellent tracking performance compared to other objective criteria; different objective 

criteria and sample sizes were studied to see the effect on the performance of FOPID controller 

design [68]. 

 

Temperature control of a slab of the long rod was investigated under given boundary 

conditions by Vajta, and the distributed parameter process model was described. An internal 

model controller (IMC) scheme was introduced based on an exact process model; this scheme 

leads to a fractional order controller which was tuned by minimizing the infinity norm of the 

robust performance index [69]. The fractional proportional-integral controller design for a 

closed-loop system plant with time was studied by Yüce and Tan. They used a relay autotuning 

test to find the ultimate frequency to estimate the PI controller parameters in the Ziegler-

Nichols method. The estimated parameters that are used in the FOPI controller and the step 

response of the closed-loop were examined for various values of the fractional integrator order. 

The fractional-order was chosen from the resulting response based on desired specifications 

[70]. The direct fractional-order closed-loop bias-eliminated least square method was used for 

process model identification. The fractional-order controller is designed to improve robustness 

using the numerical optimization of frequency-domain criteria [71]. A fractional-order PI 

controller was designed to control the integration process with time delay for a specified gain 

and phase margin. The stability regions were obtained by assuming the value of integral 
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fractional-order to be between 0.1 and 0.7 using Real Root Boundary and Complex root 

Boundary [72].   

 

Yin et al. designed the sliding mode control method to control chaos in a class of 

fractional-order chaotic systems. Based on the used method, the state of the fractional-order 

systems have been stabilized [73]. Different types of controller designs, implementation, and 

robustness analysis were introduced by Viola and Angel to control the speed of a motor-

generator system. The controllers used are the PID, FOPID, and Skogestad internal model 

control (SIMC) PID. The MATLAB STATEFLOW toolbox used to implement the system, 

and the factorial experimental design was used for robustness analysis. Results show that the 

fractional-order PID controller has better stability and robustness performance [74]. A new 

version of the particle swarm optimization was introduced by Aghababa. He introduced two 

modifications to improve the performance of the algorithm. The two modifications make it 

simple to implement, fast, and reliable; he applied the modified approach to design optimal 

fractional order PID controllers for some benchmark transfer functions. The modified 

approach was applied to tune the parameters of a FOPID controller for a five-bar linkage robot. 

Simulations reveal that the modified approach can optimally tune the FOPID controllers [75]. 

A fractional order PID controller is used based on the Gases Brownian Motion Optimization 

algorithm to control load-frequency in the power system; the order of derivation and 

integration was determined by the designer. This algorithm was introduced as a search method 

with suitable accuracy and convergence rate; the computations will be higher than the 

conventional controllers due to the complex design procedure. The proposed controller 

performance is verified by comparing it with the PI controller and GBMO based fuzzy 

controller  [76].  
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Ouhsaine et al. used the fractional-order differentiator for a result of dynamics thermal 

modeling; they tried to provide the possibility to model the system in state-space form. To do 

that, they characterized the system by heterogeneous media due to multilayers that can be 

described by fractional order partial differential equations. Their objective was to introduce a 

new mathematical model for the “hybrid PVT” system and their fractional-order observers in 

the time domain. They considered modelling of heat conduction with time-fractional order 

derivative; the asymptotic stability of the estimations error following the fractional-order value 

(α= 0.5) is investigated [77]. Bongulwar and Patre presented a robust stabilizing method for 

the controller design of global power control of a Pressurized Heavy Water Reactor (PHWR). 

They used a Fractional Order Proportional Integral Derivative (PI λD μ) controller and applied 

the method to design a controller for a One Non-Integer Order Plus Time Delay (NIOPTD-I) 

plant, which satisfies design specifications such as phase margin and gain crossover frequency. 

By satisfying a flat phase condition at gain crossover frequency in which phase is almost 

constant, the robust performance was obtained, and the designed controller provides active 

step-back control to the insertion of the rod without undershooting for a wide range of gain 

variations [78]. Swain et al. introduced a design of One Degree of Freedom (1-DOF) and Two 

Degrees of Freedom (2-DOF) Fractional Order PID (FOPID) controllers for a magnetic 

levitation (Maglev) plant. The number of feed-forward control loops in a closed-loop system 

represents the degree of freedom. They formulated an optimization problem with a cost 

function obtained from the characteristic equation of the closed-loop system at the dominant 

poles. The controller parameters were obtained through nonlinear interior-point optimization 

using MatlabTM. They showed that the closed-loop response of the 2-DOF FOPID controller 

has a good response and robustness compared to an integer order controller [79]. 
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Gherfi et al. introduced a design approach for a proportional integral-fractional filter 

controller for a first-order plus time delay (FOPTD) system. The controller design method 

used depends on the transfer function of the overall closed-loop system, which is equivalent 

to the transfer function of the general fractional Bagley–Torvik reference model. They derived 

the tuning parameters of the proportional integral-fractional filter controller analytically from 

the FOPTD process model and the general fractional Bagley–Torvik reference model 

parameters [80]. The fractional-order proportional integral derivative controller optimal 

design was proposed for a system with a time delay. The proposed design method was called 

IWLQR, in which Invasive Weed Optimization (IWO) and Linear Quadratic Regulator (LQR) 

are joined together. The fractional-order proportional integral derivative (FOPID) regulator is 

modified to a high order time-delay scheme. The proposed methodology tune the gain of the 

FOPID controller using LQR theory with the assistance of the IWO technique. The main 

advantage of this technique is to reduce the fault in a PID controller among the higher-order 

time delay by the aid of the increased limits of the regulator [81]. Zhan and Ma studied the 

stabilization problem of singular fractional-order linear systems based on a new admissible 

condition; they used a fractional order of 0 < α < 1. They presented a new sufficient and 

necessary condition that guarantees that the closed-loop system is admissible, then the pseudo-

state and static output feedback controllers design was obtained  [82].    

   

Maddahi et al. introduced a fractional order proportional integral derivative (FOPID) 

controller design procedure for the position control of hydraulic actuators; to do that, they used 

the Oustaloup recursive method. They tuned the controller parameters experimentally using 

the Iterative Feedback Tuning (IFT) technique. The quality of the proposed controller is tested 
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by comparing the experimental results with those from a quantitative feedback theory (QFT) 

based controller. The comparisons show that the FOPID controller produces better results in 

settling time [83].  Chevalier et al. proposed a new reduced-parameters method for fractional 

order proportional integral derivative (FOPID) controller parameters tuning based on reducing 

the controller parameters from five to three. The idea of reducing parameters depends on using 

coincident zeros in the controller. The proposed methods were compared with the CRONE 

controller; the comparison shows that the proposed method gives a fractional performance 

similar to other methods, which make it easier to tune the controller due to reduced tuned 

parameters, which will lead to the wide use of fractional controllers in the industry [84].  Jain 

et al. presented a two degree of freedom fractional order integral (FOPI) controller for the 

temperature control of a real-time Heat Flow Experiment (HFE); using the fractional calculus 

and the two degrees of freedom to PI controller enhances its flexibility. They used an algorithm 

called a Water Cycle Algorithm (WCA), which leads to a WCA tuned two degrees of freedom 

fractional order PI (W2FPI) controller that is shown to be an effective controller tuning 

technique. The convergence analysis of this technique justifies its effectiveness with respect 

to other optimizers [85].  Liu et al. proposed a numerical inverse Laplace transform algorithm 

for an oscillatory fractional-order time-delay system. They used the ITAE as an objective 

function to search for the optimal controller parameters. They performed step unit tracking 

and load-disturbance response simulations for the proposed optimal (𝑃𝐼𝜆𝐷𝜇) controller and the 

optimal PID controller for three typical kinds of fractional time-delay systems. The results 

show that the closed-loop system with a FOPID controller has faster and smoother time 

responses and robustness [86]. 
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Fractional order systems controlled by a fractional order proportional integral 

differentiation (FOPID) controller tuning method was introduced by Chunyang et al. The 

method introduced depends on the phase margin, crossover frequency, and robustness 

specifications of the system. They used their method to design a FOPI controller and a FOPID 

controller. The resulting controllers show good performance but the FOPID controller was 

better [87]. Elmetennani et al. studied the performance of a fractional-order proportional 

integral derivative (FOPID) controller designed for parabolic distributed solar collectors. They 

proposed a FOPID controller for the current system due to its tuning flexibility. The controller 

parameters were obtained by solving a nonlinear optimization problem based on robustness 

design specifications. The controller was then tested in a closed-loop under different working 

conditions, and the results show robustness, tracking precision, and time response [88]. The 

stability control problem for a rotary inverted pendulum was investigated by Wang et al., using 

two closed-loop schemes in which the first is the controller in the feed-forward loop and the 

second is the controller in the feedback loop. The inverted pendulum was modeled using the 

Euler-Lagrange equation, and the fractional order controller is designed based on the Bode 

ideal transfer function. The resulting fractional order controller and the IOPD controller were 

compared based on the Quanser company loop simulation experiment platform. The results 

show that the FOPID controller is better than the FOPD and IOPD controllers [89]. Machado 

et al. used fractional calculus in the study of dynamic systems; using fractional calculus has 

been investigated in different fields like controller tuning, legged robots, redundant robots, 

and heat diffusion. They published the paper to simulate the use of fractional calculus and 

contribute toward research in the field of fractional calculus. Still in a preliminary stage, they 

believe their paper shows the advantages of using fractional calculus for dynamic systems  

[90].    
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Shah and Agashe introduced a review paper for FOPID controllers; in their review, 

they talk about almost all progress since it was used in a control system. First, they start the 

review by introducing the fractional calculus history: “in a letter dated September 30,  1695, 

L’Hopital wrote to Leibniz asking him for a particular notation that he had used in his 

publication for the n-th derivative of a function in the case when n = 1 / 2. Leibniz’s response 

was, “this will be equal to 𝒅𝟎.𝟓𝒙𝒅𝒕𝟎.𝟓  an apparent paradox from which one day useful 

consequences will be drawn”; with these words, fractional calculus was born.” Then, they 

proceed by naming different definitions used for fractional calculus, such as Grunwald-

Letnikov definition, Riemann-Liouville definition, and M. Caputo definition, and they stated 

that Caputo definition is more relevant in the case of engineering applications over all other 

definitions.  They mention why the FOPID works better than a conventional controller by 

stating the following: 

1- Five designing criteria can be achieved due to the five parameters of a FOPID 

controller.  

2- The damping property can be attained easily using a FOPID controller.  

3- A fractional-order controller gives better results in higher-order systems.  

4- A fractional-order controller gives better results for long time-delay systems.  

5- A fractional-order controller is more robust and stable.  

6- A fractional-order controller performs better with nonlinear systems.  

7- A fractional-order controller achieves a better response for a non-minimum 

phase system. 
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8-  Non-linear systems are linearized for different operating points and controllers 

are designed for different operating points, while one fractional PID controller is mostly 

sufficient for a non-linear system.  

 

Bode was the first to use fractional calculus in control systems in 1945. In 1958, Tustin 

proposed a design for position control of massive objects using a fractional-order control. 

Fractional-order controllers were first used to control dynamic systems beginning with 

Oustaloup, who developed the so-called CRONE (Non-integer-order Robust Control) 

controller for easy application. Machado introduced a time-domain algorithm to implement 

the fractional-order controller; the approach was found suitable for digital implementations 

and Z-transform analysis in 1995, and 1997. The fractional-order first report published in 1994 

by Podlubny showed that the fractional-order controller is a suitable way to control fractional-

order systems. Petras investigated the stability of the fractional LTI system based on the 

Riemann surface. “The fractional-order PDμ controller stability was carried out for the range 

of differentiation between 0 and 2 in for delay systems. The stability was calculated based on 

poles located on quasi-polynomial on the right hand of the s-plane and D-partition 

characterization of stability boundaries. They concluded that for μ> 1, the system would be 

more unstable than μ< = 1 in most of the cases.” Four representations of fractional order 

controllers were presented in 2002 by Xue and Chen. These are the Tilted Proportional and 

Integral controller, CRONE controller, Fractional order PID controller, and fractional lead-lag 

compensator. In 2004, Agrawal introduced a new solution scheme for a class of fractional 

optimal control problems. Barbosa et al. designed a fractional order PID controller for 

nonlinear systems. They used the discrete-time approximation to implement the fractional 

order controller. In 2011, Merrikh-Bayat and Mirebrahimi introduced a nonlinear version of 
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the fractional-order PID controller. The showed a controller can improve the tracking 

properties for a feedback system. A sliding mode controller (SMC) was designed using a 

fractional PID controller; it was shown that SMC using fractional PID controllers were less 

sensitive to step disturbance. Cao designed in 2006 a fractional order controller using the 

Particle Swarm Optimization method; the results were compared with an optimization 

approach, and they claimed that the PSO method provides a better solution and faster search 

speed. Monje et al. published a well presented and practical book in 2010 that provides the 

current knowledge regarding fractional-order control. The book provides the necessary tools 

to understand the use of fractional calculus in control, and it focuses on the most requirements 

to understand and design fractional-order controllers. The controller design in this thesis was 

developed following the approach presented in this book. 

 

Fractional order controller tuning is always hard to achieve due to the need to tune five 

parameters. Valerio and Costa divided tuning methods into rule-based methods like the 

Ziegler-Nichols method, analytical methods like the frequency domain method, and numerical 

methods like the genetic algorithm and the PSO algorithm. Simulations and implementation 

of fractional order systems become easier through the many tools available like Ninteger by 

Valerio and Costa, FOPID toolbox by Lachhab et al., FOMCON toolbox by Tepljakov et al., 

Sysquake interactive software tool by Pisoni et al, CRONE by Oustaloup et al., and FOTF 

toolbox by Xue et al. In the end, it was clear that a fractional order controller achieved a better 

robust performance [91].   
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Junyi and Binggang presented a fractional-order control strategy for a pneumatic 

position servosystem. They were the first to investigate this problem by expressing the relation 

between the pressure in the cylinder and the mass flow rate into the cylinder. The dynamic 

model was established, and the fractional-order proportional integral derivative controller was 

designed. Due to detailed modeling of the current system, they obtained the controller 

parameters by a trial and error method based on experiments [92]. Kumar et al. used a 

comparison between a PID controller and a FOPID controller to control a DC servo motor 

based on different tuning techniques. The comparison showed that FOPID is always better in 

all criteria like the rise time, settling time, and peak overshoot. They found that a genetic 

algorithm gives the best FOPID controller results compared to other methods like FMINCON. 

They also show that simulated annealing produces better results than a PID controller but still 

worse than a genetic algorithm. However, since the simulated annealing takes a large number 

of iterations and more time to converge, it is better to use a genetic algorithm [93]. Panteleev 

et al. proposed an average optimal FOPID controller parametric design method; the method 

starts over a given system initial state and a given input signal. They formulate the problem as 

a multidimensional optimization problem with object function J(Kp, KI, KD, α, β). They 

suggested a solution approach that minimizes the function J; the solution approach was 

implemented in the C language, and the design approach has been applied for pitch control of 

an aircraft in the horizontal flight mode [94]. Ranjbaran and Tabatabaei introduced a 

generalized Bode’s integrals-based PID controller to design FOPI, FOPD, and FOPID 

controllers. They used the gain crossover frequency, the phase margin, the Nyquist plot slope 

adjustment, the measurement noise rejection, and minimizing an ITAE as the design 

conditions. They showed that the proposed controller provides better results compared with 

the ordinary Bode’s integral method [95]. Tang et al. proposed a Fractional Sliding Mode 
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Controller (FOSMC) to regulate the slip to the desired value; the proposed method used the 

sliding mode controller and the fractional-order dynamics; the FOPD sliding surface is 

adopted. They proposed this approach to deal with the Antilock braking system (ABS) 

nonlinearity. Results show that the FOSMC tracks the desired slip faster than the integer 

controller [96]. 

 The current investigated problem starts as a theoretical investigation of new control 

approaches to a problem that was previously investigated at a preliminary level in current 

publications. Our contribution focuses on how to control the surface temperature of a semi-

infinite thin plate exposed to periodic heating at the other surface. To do this, we will use the 

inverse problem approach and the fractional-order controller approach. We will use this to 

form closed-loop control and open-loop control schemes used for surface temperature control. 

The fractional-order controller will be designed and experimentally verified. Also, the inverse 

problem approach with a proportional only controller will be studied and verified 

experimentally. This problem became to be of interest recently due to a fractional order plant 

resulting from solving the one-dimensional heat conduction equation.  
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Chapter Three: Problem Formulation 

 

In this chapter, we will focus on the problem formulations, and the problem starts. 

3.1 Introduction 

 

Temperature control is necessary for numerous industrial applications. Industrial 

installations are normally very complex, and novel temperature control solutions have to be 

first tested on simpler structures. This motivates our research to find suitable solutions for the 

problem of closed-loop control and open-loop control of a one-dimensional thin plate using 

the Laplace transform. 

 

 3.2 Single Layer  

 

This section will focus on the types of expansions used and what are the formulas used. 

3.2.1 Zero-Pole Expansion 

 

The heat equation for a finite plate of a single layer can be written as a 1D heat 

conduction equation: 

 
𝜕2𝑇𝜕𝑥2   =   1∝ 𝜕𝑇𝜕𝑡        (3.1) 

 Where heat flux ∅ is: 

 ∅ =  −𝑘 𝜕𝑇𝜕𝑥        (3.2) 

The Boundary conditions for sinusoidal temperature on sides 1 and 2 are represented 

by   𝜃 𝑎𝑛𝑑 ∅  where: 
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 𝜃1(0, 𝑡) = 𝐴 𝑠𝑖𝑛⍵𝑡             𝜃2(𝐿, 𝑡) = 𝑓𝑟𝑒𝑒        (3.3) 

 

 ∅1(0, 𝑡) =  𝑓𝑟𝑒𝑒                        ∅2(𝐿, 𝑡) =  0        (3.4) 

 

 

Figure 4: Single layer material description. 

 

The direct and inverse problem solutions were obtained as presented in references [13] 

[16][17]. 

In the complex domain: 

 
𝜕2𝜃𝜕𝑧2    =    𝑠𝛼  𝜃(𝑧, 𝑠)     (3.5) 

With the boundary conditions: 

 𝜃1(0, 𝑠) = 𝐴 𝑤𝑠2+𝑤2              𝜃2(𝐿, 𝑠) = 𝑓𝑟𝑒𝑒 (3.6) 

 

 ∅1(0, 𝑠) =  𝑓𝑟𝑒𝑒                        ∅2(𝐿, 𝑠) =  0  (3.7) 

 

The case in Figure 4 can be modeled using the Quadrupole approach as follows [18]: 
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 (𝜃1∅1)  =  𝑀 (𝜃2∅2)            (3.8) 

Where: 

 𝑀 =   [𝐴 𝐵𝐶 𝐷]           (3.9) 

And:  𝐴 =  𝐷 = cosh(𝐾(𝑠)𝐿);      𝐵 =  1𝑘∗𝐾∗𝐴𝑠 sinh(𝐾(𝑠) 𝐿) 

𝐶 = (𝐾 ∗ 𝑘 ∗ 𝐴𝑠)sinh (𝐾(𝑠)𝐿);     𝐾(𝑠) =  √𝑠∝      𝐴𝑠 : The area of the plane isothermal surface that is considered for the x-transfer.   

From equations (3-8) and (3-9) we get: 

 

 𝜃1 = 𝐴 ∗ 𝜃2 + 𝐵 ∗ ∅2             (3.10) 

Applying the boundary conditions, we get: 

 
𝜃2𝜃1  =  1𝐴  =  1cosh (𝐾(𝑠)𝐿) =  𝐺1       (3.11)  

This is the Direct Problem Transfer Function. 

The transfer function of the inverse problem is: 

 G2 = 1G1 =  cosh (K(s)L)              (3.12)         

Equation (3-5) has the solution for the position variable z: 

 θ(z, s) = A1cosh(K(s)z) + A2sinh(K(s)z)    (3.13) 

The heat flux is given by  

 

 ∅(z, s) =  −ks dθ   dz         (3.14) 

Where 

 

 K ( s) = √ sα               (3.15) 
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Applying the boundary conditions: 

 

 A1 = A ⍵S2+⍵2  ,        A2 = −A ⍵S2+⍵2 tanh(K(s)L)          (3.16) 

 

For the above A1andA2, the solution becomes: 

 

 θ(z, s) = A ⍵S2+⍵2 [cosh(K(s)z) − tanh(K(s)L) sinh(K(s)z)] (3.17) 

 

 ∅(z, s) = −KskA ⍵S2+⍵2 [tanh(K(s)L)] (3.18) 

 

The dynamics of boundary temperatures θ1and θ2 are: 

 

 θ1 =  θ(0, s) =  A ⍵S2+⍵2                   (3.19) 

 

 θ2 =  θ(L, s) =  A wS2+⍵2 [cosh(K(s)L) − tanh(K(s)L) sinh(K(s0L)] 
                      =  A ⍵S2+⍵2[1/cosh(K(s)L)]                                (3.20) 

   

The transfer function of the direct problem linking θ2 to θ1is: 

 

 G1 =  θ2θ1 = [ 1cosh(K(s)L)] (3.21) 

 

The transfer function for the inverse problem is: 

 

 G2 = 1G1 =  cosh (K(s)L) (3.22) 

 

Solving equations (3-21) and (3-22), we obtain the poles of the direct problem (𝐺1) 

and the zeros of the inverse problem (𝐺2) as the following expansions [23]: 

 

 
1cosh (𝐾𝐿) = 𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6…(𝑠−𝑝1)(𝑠−𝑝2)(𝑠−𝑝3)(𝑠−𝑝4)(𝑠−𝑝5)(𝑠−𝑝6)…  (3.23) 

Where: 

𝑝𝑘 =  −[(2𝑘 − 1)𝜋2 ∗ 𝑠𝑞𝑟𝑡(𝛼)𝐿 ]2,     𝑘 = 1,2,3, … 

And 
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 cosh(𝐾𝐿) =  (𝑠− 𝑧1)(𝑠− 𝑧2)(𝑠− 𝑧3)(𝑠− 𝑧4)…𝑧1𝑧2𝑧3𝑧4…   (3.24) 

Where: 

𝑧𝑘 = −[(2𝑘 − 1)𝜋2 ∗ 𝑠𝑞𝑟𝑡(𝛼)𝐿 ]2,     𝑘 = 1,2,3, …   
 

As we see from Equation (1.1), we have the transfer functions resulted from equations 

(3.23) and (3.24) multiplied with each other. This explains the need for a different number of 

terms in both functions for the simulation study, which will be later verified by experiments. 

 

3.2.2 Taylor Expansion 

 

 Transfer functions for both direct and inverse problems are the same as in the previous 

section, but here we used different expansions for obtaining both transfer functions as a 

function of (s). 

  

To simulate the open-loop control problem, we need the transfer function as a 

dependent of integer powers of (s). The transfer functions are shown above as the hyperbolic 

cosine and hyperbolic secant containing the square root of the variable (s) and this cannot be 

simulated directly. To solve this problem, we have to write both transfer functions 𝐺1 and 𝐺2 

as a form of a Taylor series expansion as follows:   

 

 G1 = sech(x) = ∑ (Enn! )  xn,        for |x| < 𝜋/2∞n=0       (3.25) 

 

Where Euler numbers En is zero for odd-indexed numbers, and even indexed numbers are: 
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E0=1 

E2=-1 

E4=5 

E6=-61 

E8=1385 

E10=-50521 

E12=2702765 

E14=-199360981 

E16=19391512145 

E18=-2404879675441     etc. 

 

For the inverse problem 

 G2 = cosh(x) =  ∑ ( 1(2n)!)  x2n,     for − ∞ < 𝑥 <  ∞∞n=0          (3.26) 

From the above expansion, we see that there is a limitation of sech(𝑥) =  |𝑥|  < 𝜋2 , 
the alternative form sech(𝑥) =  1cosh (𝑥)  is used knowing that there are no domain limitations 

for cosh (𝑥).  

 

For the simulation, Taylor’s expansion of 𝐺1, the direct problem transfer function will 

be limited to N terms, and G2, inverse problem transfer function, is limited to M terms. For the 

transfer function (𝐺1𝐺2), N and M are chosen such that N > M, the reason for this condition is 

that for the inverse problem, when the number of terms M increase the ill-posedness of the 

problem increases. In the simulated case here, a thin aluminum plate has the thickness L = 

0.03 [m] and thermal diffusivity α= 9.715e-5 [m2/sec], such that 
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 x= K(s)L = √s
α

L=√ s9.715∗10−5 0.03                      (3.27) 

  

For the simulations, N and M were chosen to be for M=4 and N=8, such that N >M. 

The resulting transfer functions for direct and inverse problems are: 

 

 G2(s) =  1 +  4.632s +  3.576s2  +  1.104s3         (3.28) 

 

 G1 (s) = 1cosh(KL) =  1/(1 +  4.632s +  3.576s2 + 1.104s3  + 0.1827s4 +  0.0188𝑠5 

 + 0.00132𝑠6 +  6.717e−5𝑠7)          (3.29) 

  

For the system in Figure 2, an open-loop block diagram, we compute the resultant 

transfer function for the open-loop which is (G1 ∗ G2 ). MATLABTM and SimulinkTM are used 

for simulation. Simulations were done for the open-loop control for different values of input 

frequency and the desired sinusoidal temperature amplitude of 200 above the original 

temperature; i.e., for (20sin (𝜔𝑡)) as input temperature. 

 

3.3 Two-Layer Plate Formulation 

 

The temperature transfer through a wall of multilayer material can be formulated using 

the thermal quadrupoles approach for each layer, assuming that the contact between layers is 

perfect. The 1D heat conduction equation is 

 
𝜕2𝑇𝜕𝑥2   =   1∝ 𝜕𝑇𝜕𝑡                    (3.30) 

Where the heat flux ∅ is: 
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 ∅ =  −𝑘 𝜕𝑇𝜕𝑥                     (3.31) 

In the complex domain: 

 
𝜕2𝜃𝜕𝑧2    =    𝑠𝛼  𝜃(𝑧, 𝑠)                 (3.32)  

We consider two layers of thickness, L1 and L2, diffusivity α1, and α2. 

 

Figure 5: Two-layer material description. 

 

The model for two layers can be obtained using the quadrupole approach as follows: 

 (𝜃1∅1)  =  𝑀1𝑀2  (𝜃2∅2)         (3.33)  

Where: 𝑀1  =  [𝐴1 𝐵1𝐶1 𝐷1] 

 𝑀2  =  [𝐴2 𝐵2𝐶2 𝐷2] 
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And: 𝐴1 =  𝐷1 = cosh(𝐾1𝐿1);      𝐵1= 1𝑘1∗𝐾1∗𝐴𝑠 sinh(𝐾1 𝐿1) 

𝐶1 = (𝐾1 ∗ 𝑘1 ∗ 𝐴𝑠)sinh (𝐾1𝐿1);     𝐾1 =  √ 𝑠∝1 

Where 𝐴𝑠 is the area of the plane isothermal surface that considered for the x-transfer?   

And: 𝐴2 =  𝐷2 = cosh(𝐾2𝐿2);      𝐵2= 1𝑘2∗𝐾2∗𝐴𝑠 sinh(𝐾2 𝐿2) 

𝐶2 = (𝐾2 ∗ 𝑘2 ∗ 𝐴𝑠)sinh (𝐾2𝐿2);     𝐾2 =  √ 𝑠∝2 

We compute (M) Matrix which is: 

 𝑀 =  𝑀1 ∗ 𝑀2 =  [𝐴 𝐵𝐶 𝐷]        (3.34) 

Where: 𝐴 =  𝐴1 ∗ 𝐴2 +  𝐵1 ∗ 𝐶2;        𝐵 =  𝐴1 ∗ 𝐵2 +  𝐵1 ∗ 𝐷2 𝐶 =  𝐶1 ∗ 𝐴2 +  𝐷1 ∗ 𝐶2;       𝐷 =  𝐶1 ∗ 𝐵2 + 𝐷1 ∗ 𝐷2 

This product will show that: 

𝐴 = cosh(𝐾1𝐿1) cosh(𝐾2𝐿2) +  𝐾2𝑘2𝐾1𝑘1 sinh(𝐾1𝐿1) sinh (𝐾2𝐿2) 

𝐵 = 1𝐾2𝑘2𝐴𝑠 cosh(𝐾1𝐿1) sinh(𝐾2𝐿2) 1𝐾1𝑘1𝐴𝑠 sinh(𝐾1𝐿1) cosh (𝐾2𝐿2)  
𝐶 = 𝐾1𝑘1𝐴𝑠𝑐𝑜𝑠ℎ(𝐾2𝐿2) sinh 𝐾1𝐿1 +  𝐾2𝑘2𝐴𝑠𝑐𝑜𝑠ℎ(𝐾1𝐿1) sinh(𝐾2𝐿2) 

𝐷 = 𝐾1𝑘1𝐾2𝑘2 sinh(𝐾1𝐿1) sinh(𝐾2𝐿2) + cosh(𝐾1𝐿1) cosh(𝐾2𝐿2) 

From these we get: 
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  𝜃1 =  𝐴 ∗ 𝜃2 +  𝐵 ∗ ∅2                 (3.35) 

 ∅1 = 𝐶 ∗ 𝜃2 +  𝐷 ∗ ∅2                  (3.36) 

We want to solve these two equations to get  𝐺(𝑠) = 𝜃2𝜃1 as the transfer function related 

to input temperature and output temperature. 

 

The boundary conditions were considered in the following: 

 

 𝜃1(0, 𝑡) = 𝐴 𝑠𝑖𝑛⍵𝑡             𝜃2(𝐿, 𝑡) = 𝑓𝑟𝑒𝑒   (3.37) 

 

 ∅1(0, 𝑡) =  𝑓𝑟𝑒𝑒                        ∅2(𝐿, 𝑡) =  0  (3.38) 

 

 

 

After we apply the boundary conditions, we get: 

 
𝜃2𝜃1 = 1𝐴          (3.39) 

Where: 

 𝐴 = cosh(𝐾1𝐿1) cosh(𝐾2𝐿2) +  𝐾2𝑘2𝐾1𝑘1 sinh(𝐾1𝐿1) sinh (𝐾2𝐿2)        (3.40) 

We further develop A as follows: 

cosh(𝑥) cosh(𝑦) =  12 [cosh(𝑥 + 𝑦) + cosh(𝑥 − 𝑦)] 
𝑠𝑖𝑛ℎ(𝑥)𝑠𝑖𝑛ℎ(𝑦) =  12 [cosh(𝑥 + 𝑦) − cosh(𝑥 − 𝑦)] 

Where: 𝑥 =  𝐾1𝐿1 𝑎𝑛𝑑 𝑦 =  𝐾2𝐿2  

Then A becomes: 

 𝐴 =  12 [cosh(𝑥 + 𝑦) + cosh(𝑥 − 𝑦) + b{cosh(𝑥 + 𝑦) − cosh(𝑥 − 𝑦)}] (3.41) 

Where: 
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𝑏 =  𝐾2𝑘2𝐾1𝑘1     

Case 1: Plates of the same material and the same thickness. 

Now, when we want to use the same material, this will give that: 𝑏 = 1 

We substitute b=1 in equation (3.41), and we get: 

 𝐴 =  12 [cosh(𝑥 + 𝑦) + cosh(𝑥 + 𝑦)]    (3.42) 

Now, we will use the same thickness for the two layers: 

 𝐿1 =  𝐿2 =  𝐿2    (3.43) 

Where L represents the plate thickness. 

From this we get: 

𝑥 =  𝑦 = 𝐾 𝐿2 

Substituting for x and y in equation (3.42), we get: 

 

 𝐴 =  12 [cosh (𝐾(𝑠) 𝐿2 + 𝐾(𝑠) 𝐿2) + cosh (𝐾(𝑠) 𝐿2 + 𝐾(𝑠) 𝐿2)]   (3.44) 

Simplifying (A), we get: 

  𝐴 = cosh (𝐾(𝑠)𝐿)         (3.45) 

 When we use two layers of the same thickness (
𝐿2) and the same material, we verify 

that we obtain the same transfer function for a single layer material of thickness (𝐿) and the 

same material properties. 

Case 2: Using a different material and the same thickness of (
𝐿2). 

When: 
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 𝐿1 =  𝐿2 =  𝐿2                (3.46) 

We get: 

 𝑥 − 𝑦 =  √𝑠 [𝐿(√∝2− √∝1 )2√∝1∝2 ]                   (3.47) 

 

 𝑥 + 𝑦 =  √𝑠 [𝐿(√∝2+ √∝1 )2√∝1∝2 ]                (3.48) 

From equation (3.41): 

 𝐴 = [12 + 𝑏2] [cosh(𝑥 + 𝑦)] + [12 − 𝑏2] [cosh(𝑥 − 𝑦)]         (3.49) 

Where: 

 𝑏 =  √∝1√∝2 𝑘2𝑘1               (3.50) 

 𝐴 = [12 + 𝑏2] [cosh(ℎ√𝑠)] + [12 − 𝑏2] [cosh(𝑔√𝑠)]        (3.51) 

Where: ℎ = 𝑥 + 𝑦√𝑠  

𝑔 =  𝑥 − 𝑦√𝑠  

From equation (3.45), we have: 

 𝐺1 =  1𝐴    (3.52) 

Which is the direct problem transfer function? 

The inverse problem transfer function is: 

 𝐺2 =  1𝐺1 = 𝐴     (3.53) 
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Solving equations (3-52) and (3-53), we obtain the poles of the direct problem (𝐺1) 

and the zeros of the inverse problem (𝐺2), as follows: 

 𝐺1 = 1/{[12 + 𝑏2] (𝑠 − 𝑝1)(𝑠 − 𝑝2)(𝑠 − 𝑝3)(𝑠 − 𝑝4)(𝑠 − 𝑝5)(𝑠 − 𝑝6) …𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6 … + 

 [12 − 𝑏2]       (𝑠−𝑓1)(𝑠−𝑓2)(𝑠−𝑓3)(𝑠−𝑓4)(𝑠−𝑓5)(𝑠−𝑓6)…𝑓1𝑓2𝑓3𝑓4𝑓5𝑓6… }    (3.54) 

Where: 

𝑝𝑛 =  −[(2𝑘 − 1)𝜋2 ∗ 1ℎ]2,     𝑛 = 1,2,3, … 

𝑓𝑛 =  −[(2𝑘 − 1)𝜋2 ∗ 1𝑔]2,     𝑛 = 1,2,3, … 

 

And 

 𝐺2 = [12 + 𝑏2] (𝑠− 𝑧1)(𝑠− 𝑧2)(𝑠− 𝑧3)(𝑠− 𝑧4)…𝑧1𝑧2𝑧3𝑧4… + [12 − 𝑏2] (𝑠− 𝑦1)(𝑠− 𝑦2)(𝑠− 𝑦3)(𝑠− 𝑦4)…𝑦1𝑦2𝑦3𝑦4…        (3.55) 

Where: 

𝑧𝑛 = −[(2𝑘 − 1)𝜋2 ∗ 1ℎ]2,     𝑛 = 1,2,3, …   
𝑦𝑛 = −[(2𝑘 − 1)𝜋2 ∗ 1𝑔]2,     𝑛 = 1,2,3, … 
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Chapter Four: Simulations Results  

 

In the current chapter, we will present the simulation results for both open-loop and 

closed-loop schemes. 

4.1 Open Loop Results 

 

Fractional order rational complex functions cannot be computed as such and 

approximations by integer-order functions are required, as is extensively shown in 

publications [2, 39-71, 73-95]. In the current section, we will present the simulations’ results 

for both Taylor expansion and Zero-Pole expansion. 

4.1.1 Taylor Expansion 

 

Simulations were carried out for open-loop control for different values of input 

frequency, and the desired sinusoidal temperature amplitude of 200 above the original 

temperature; i.e., for 20sin (⍵𝑡). 

To achieve the simulation study, we have to verify first that the number of terms used 

in the approximation is suitable and gives a good approximation for the transfer function. 

Figure 6 shows that for only high frequency the magnitude and phase diagrams start to deviate 

from each other. While for low frequency, which is the case for our study, the magnitude and 

phase diagrams are identical regardless of the number of terms used in the approximation. 
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a 

 

b 

Figure (6): Bode plot diagram comparison for a different number of terms used in the approximation, a) 

Magnitude diagram, b) Phase diagram. 
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Simulations were carried for the direct problem (𝐺1) for N=8 while for the inverse 

problem (𝐺2) for M= 4. The input was θ2d = 20sin (𝜔𝑡)  above the environment temperature. 

Simulation results for ⍵ =0.1, 1, 5, and 10 (rad/sec) are shown in Figure (7-11), which shows 

a sine variation of temperature around 00C. The results show the sine variation of about 200 C 

above the original (environmental) temperature. The variation of temperature is shown as the 

relative temperature with regard to the environmental temperature or, alternatively, the 

environmental temperature assumed to be zero. In all figures of simulation results shows the 

variations of the temperature due to the sine input temperature. 

 

(a) 

 

 (b) 

Figure 7: The relative output temperatures (a) of the inverse problem 𝜃1 and of (b) the open loop control 𝜃2 for ⍵= 0.1 rad/sec. 
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(a) 

 

 (b) 

Figure 8: The relative output temperatures (a) of the inverse problem 𝜃1 and (b) of the open loop control 𝜃2for ⍵ = 1 rad/sec. 

 

(a) 
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 (b) 

Figure 9: The relative output temperatures (a) of the inverse problem 𝜃1 and (b) of the open loop control 𝜃2for ⍵ = 5 rad/sec. 

 

 

(a) 

 

 (b) 

Figure 10: The relative output temperatures (a) of the inverse problem 𝜃1 and (b) of the open loop control 𝜃2for ⍵ = 10 rad/sec. 
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       (a) 

 

(b) 

Figure 11: The relative output temperature of the open-loop control with N=8, M=4 for (a), ⍵= 12and (b) 15 

rad/sec. 

 The results in Figures (8 – 10) show higher amplitudes of 𝜃1 for higher frequencies, 

i.e. the effect of inverse problem ill-posedness nature on the results for different frequencies. 
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Figure 12: Bode diagram of the open-loop control transfer function G1*G2 for N=8 and M=4. 

 
The results in Figures (7-10) are the output temperature deviations about 200 for the 

inverse problem  𝜃1 (a) and the output of the open-loop control 𝜃2 (b) with N=8, M=4 for ⍵ = 

0.1, 1, 5 and 10 (rad/sec). The output temperature 𝜃2 in Figures (7-8) (b) with lower 

frequencies of 0.1 and 1 rad/sec, compared to the desired one θ2d =  20 sin⍵t, are very close. 

The results in Figures (9-10) (b), for output temperature θ2, with higher frequencies of 5 and 

10 (rad/sec) (compared to the desired deviation of about 200 of  θ2d =  20 sin⍵t) are 

significantly different. This can be explained by the very high amplitudes of the output of the 

inverse problem in Figures (9-10) (a), which leads eventually to an ill-posed inverse problem. 

For ⍵ = 12 and ⍵ =15 (rad/sec) in Figure 11 (a, and b), we start to see a decrease in the 

amplitude with increasing the frequency. The Bode diagram of the open-loop control transfer 

function in Figure 12 explains this by indicating significantly lower magnitudes for ⍵>11 

rad/sec. the Bode diagram in Fig 12 shows that beyond bandwidth frequency of about 11 

rad/sec at -3 dB, the amplitude decreases for 20 rad/sec at cca – 35 dB and for 40 rad/sec at 

cca – 50 dB. This requires huge values for inverse problem output temperatures 𝜃1(not 
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displayed in diagrams, illustrating ill-posedness, to achieve the output temperatures 𝜃 2. In 

fact, for 20 rad/sec and for 40 rad/sec, the resulting 𝜃 1 from simulations is so high that in 

experiments could not be realized because it would melt the metal plates. These results explain 

the effect of fractional order systems on the degree of ill-posedness of the inverse problem, 

which leads to severe ill-posedness of the inverse problem. 

 

4.1.2 Zero-Pole expansion  

 

Simulations were done for a thin aluminum plate which has the thickness L = 0.03 [m] 

and thermal diffusivity α= 9.715e-5 [m2/sec]. For the open-loop scheme, we use M=4 and N=8 

terms where M is the number of terms for the inverse problem, while N is the number of terms 

for the direct problem.  

 

a 

 

b 
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d 

 

e 
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f 

Figure 13: The open loop control relative temperature response (θ1 ) for M=4, N=8 and ω = (a) 0.1 , (b) 1 , (c) 5 
, (d) 10 , (e) 20, (f) 40 rad/sec. 

 

 

a 

 

b 
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f 

Figure 14: The open loop control relative temperature response (θ2 ) for M=4, N=8 and ω = (a) 0.1 , (b) 1 , (c) 5 
, (d) 10 , (e) 20, (f) 40 rad/sec. 

 

From Figures 13 (a-f) we see that as frequency increases, the inverse problem output 

increases rapidly, while from Figures 14 (a-c), the response is almost the same as the desired 

value, and from Figure 14 (d-f), we see that as frequency increases, the response decreases 

and starts to be significantly smaller than the desired value. 
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4.2 Closed Loop Results  

 

In this section, we will present the closed-loop scheme simulations results for both 

Taylor expansion and Zero-Pole expansion. 

 

4.2.1 Taylor Expansion 

 

Simulations were carried out for the closed-loop control for different values of input 

frequency and the desired sinusoidal temperature amplitude of 200 above the original 

temperature of 200C. 

Simulations were carried out for the direct problem 𝐺1 for N=6 while for the inverse 

problem 𝐺2 for M= 4, these two values for the number of terms for the direct and inverse 

problems were chosen from the stability results shown in Table 1. The input was θ1(0, t) =20sin (ωt). Simulations results for ⍵ = 0.1, 1, 5, 10 and 20 rad/sec are shown in Figure 15 for 

k=10. 

Table 1: Stability results for closed loop control. 

 

Direct  N = 5 N = 6 N = 7 N = 8 

Gain 1 5 10 1 5 10 1 5 10 1 5 10 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

 (e) 

Figure 15: The closed loop control relative temperature response (θ2) for M=4, N=6 k=10 and ω = (a) 0.1, (b) 
1, (c) 5, (d) 10, (e) 20 rad/sec. 

The simulation results in Figure 15, for k=10 represent the relative output temperatures 

of the closed-loop control θ2 with N=6, M=4 terms for ⍵ = 0.1, 1, 5, 10 and 20 (rad/sec). The 

output temperature 𝜃2 results in Figure 15, for lower frequencies of 0.1 and 1 rad/sec, 

compared to the desired one, 20 sin (⍵t), are very close. The results for output temperature θ2, for higher frequencies of 5 and 10 rad/sec, compared to the desired one, 20 sin⍵t, and of 

the command temperature  θ1, are significantly different. This can be again explained by the 

very high amplitudes of the output of the inverse problem, shown in Figure 16, which leads 
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eventually to an ill-posed inverse problem at higher frequencies, particularly with regards to 

parameters L and α uncertainty. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

 (e) 

Figure 16: The inverse problem relative temperature response (θ1) for M=4, N=6 k=1 and ω = (a) 0.1, (b) 1, (c) 
5, (d) 10, (e) 20 rad/sec. 

  

From Figure 16, where the relative temperature response is shown, we see that due to 

the sudden change of reference temperature from 0 𝑡𝑜 20sin (𝜔𝑡), there is an initial transient 

response of temperature that rapidly disappears, which is an unavoidable transient behavior. 

The high relative temperature shown in results explains the ill-posedness effect of the inverse 
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problem when high frequencies were used. This results in an inverse problem relative 

temperature response (θ1) for10 and 20 rad/sec of over 10 0000 C, obviously unachievable in 

any experimental study. This makes the results in Figure 15 for 10, and 20 rad/sec equally 

impossible to verify in experiments. For our simulations and experiments study, we focus on 

a frequency input in the range of 3 (rad/sec) or less. 

Bode diagrams of open-loop control transfer function in Figure 17 explain this by 

indicating significantly lower magnitudes for ⍵ > 11 rad/sec in Figure (17) (a) for k=1 and for ⍵ >20 rad/sec in Figure 17 (b) for k=10. In the case of the open-loop control, since there is no 

feedback from the output, parameter uncertainty and disturbance effects cannot be reduced. 

Figure 17 shows the Bode diagram of the closed-loop control transfer function for N=6 and 

M=4 and k=1 in (a) and k=10 in (b). 

 

(a) 
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 (b) 

Figure 17: Bode diagram of the closed loop control transfer function for N=6 and M=4.and (a) k=1and (b) 

k=10. 

 

Bode diagram of the closed-loop control transfer function shows the bandwidth 

increases from cca 10 to cca 20 rad/s when k changes from 1 to 10. 

 

4.2.2 Zero-Pole Expansion 

 

 For a controller with gain 𝐺𝑐 = 1, Figure 18 (a - f) shows the inverse problem 

response, which starts a rapid increase while increasing the frequency.  

In fact, for an ideal inverse problem  

𝐺2−1  =  𝐺1 

And 𝐺𝑐 = 1, the feedforward transfer function is 1 and the closed-loop output is 
11+1 = 0. 
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The amplitude of the output is half the desired one. From Figure 19 (a - f), the closed-loop 

response for a controller with gain 𝐺𝐶 = 10 is almost the same as the desired value. Figures 

18 and 19 introduced here to show the effect of controller gain on the relative temperature 

response, the simulations were carried out for different frequencies, to show that the controller 

works regardless of the frequency input. The simulations used here just for controller 

verification, given that we know that the high frequency cannot be physically achievable due 

to the slow rate of heat transfer in a plate.  

 

 

a 

 

    b 
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d 

 

e 
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f 

Figure 18: The closed loop control relative temperature response (θ2) for M=4, N=6, gain=1, and ω = (a) 0.1, 
(b) 1, (c) 5, (d) 10, (e) 20, (f) 40 rad/sec. 

 

 

a 

 

b 
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Figure 19: The closed loop control relative temperature response (θ2) for M=4, N=6, gain=10, and ω = (a) 0.1, 
(b) 1, (c) 5, (d) 10, (e) 20, (f) 40 rad/sec. 

 

The closed-loop control relative temperature response (𝜃2) for k=1 and for ω = 0.1, 1, 

5, 10, 20 rad/sec is shown in Figure 18, and the amplitude is approximately 0.5 of the desired 

amplitude. This is explained by the closed-loop output for 𝐺2−1  =  𝐺1 such that the output is    

11+1 = 0.5. The closed-loop control relative temperature response (𝜃2) for k=10 and for ω = 

0.1, 1, 5, 10, 20 (rad/sec) in Figure 19 shows that the amplitude is about the same as the desired 

amplitude, including for 40 (rad/sec). 

 

4.3 Comparison of Zero-Pole Expansion and Taylor Expansion 

  

The goal in this comparison of the two expansions is to determine which expansion 

serves better for the current research problem. Root locus plots for the inverse problem transfer 

function using both Zero-Pole and Taylor expansion, for a different number of terms, were 
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obtained using MatlabTM. The results are shown in Figures 20, 21, 22, and 23 for three, four, 

five, and six terms respectively: 

 

(a) 

 

(b) 

Figure 20: Root locus plots for the inverse problem with three terms transfer function: (a) Taylor expansion, (b) 

Zero-Pole expansion. 
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(a) 

 

(b) 

Figure 21: Root locus plots for the inverse problem with four terms transfer function: a) Taylor expansion, b) 

Zero-Pole expansion. 

 

 

(a) 
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(b) 

Figure 22: Root locus plots for the inverse problem with five terms transfer function: (a) Taylor expansion, (b) 

Zero-Pole expansion. 

 

(a) 

 

(b) 

Figure 23: Root locus plots for the inverse problem with six terms transfer function: (a) Taylor expansion, (b) 

Zero-Pole expansion. 
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Figure (20-a) to Figure (23-a) shows that for Taylor expansion, the plots are much 

closer to the imaginary axis than the plots for Zero-Pole expansion in Figure (20-b) to Figure 

(23-b). This indicates that Zero-Pole expansion is much more stable than the use of a Taylor 

expansion. 

The second investigation to do is to see the effect of the number of terms used in the 

transfer function expansion to represent the inverse problem over the ill-posedness of the 

inverse problem. Bode plots for the inverse problem transfer function using a different number 

of terms are shown in Figure 24.   

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

Figure 24: Bode plots for the inverse problem with different number of terms used in the transfer function: (a) 

3, (b) 4, (c) 5, (d) 6, (e) 7. 

 

Figure 24 shows that as the number of terms in the transfer function increases, both 

the magnitude and the phase start to increase at an earlier value of frequency and reach higher 

values as well. A suitable number of terms for the inverse problem has been chosen to achieve 

an acceptable degree of ill-posedness in the inverse problem. The degree of ill-posedness 

always plays a major factor in the inverse problem solutions. This is why the results in Figure 

24 are important because they give us a simple way of evaluating the degree of ill-posedness 

of an inverse problem using the number of terms as a factor. 

 

4.4 Two-layer Plate Results: 

 

In this section, we will study a plate of two layers dissimilar instead of the single-

layer plate. This was done as a preliminary study of multilayer plates.  

 

4.4.1 Bode plot results: 

 

We simulate based on the transfer functions from Equations (3.51) and (3.52) for 

different values of plate thickness (0.01, 0.02, 0.03, 0.04, and 0.05) m, and we obtain the Bode 

diagram for these values for thickness. 

The simulations were done for a two-layer, one of aluminum and the other of 

aluminum alloy 2024 T6 with the following properties: 
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𝑘1 = 237   ( 𝑊𝑚. 𝐾 )                  𝑎𝑛𝑑     ∝1= 9.715𝑒−5 ( 𝑚2𝑠𝑒𝑐) 

𝑘2 = 177   ( 𝑊𝑚. 𝐾 )                  𝑎𝑛𝑑     ∝2= 7.3𝑒−5 ( 𝑚2𝑠𝑒𝑐) 

 

  

Figure 25: Bode plot for the open-loop with M=4, N=8, and L=0.01 m. 

  

Figure 26: Bode plot for the open-loop with M=4, N=8, and L=0.02 m. 
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Figure 27: Bode plot for the open-loop with M=4, N=8, and L=0.03 m. 

 

Figure 28: Bode plot for the open-loop with M=4, N=8, and L=0.04 m. 
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Figure 29: Bode plot for the open-loop with M=4, N=8, and L=0.05 m. 

 

From the above Figures (25 – 29), we see that the bandwidth decreases significantly 

with the increase of plate thickness L.   

Next are presented the results of the simulations for the open-loop and closed-loop 

cases when using the inverse problem transfer function. 

 

4.4.2 Open Loop Case  

 

We use L = 0.03 (m), M=4 terms, and N=8 terms where M is the number of terms in 

the inverse problem transfer function, while N is the number of terms in the direct problem 

transfer function. The results of the open-loop control approach are shown in Figure 30.  
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Figure 30: Relative temperature (θ2) for the open-loop M=4, N=8 and frequency of a) 0.1, b) 1, c) 5, d) 10, e) 

20, f) 60, g) 100 (rad/sec). 

From Figure 30 (a-e), we see that the open-loop response is almost the same as the 

desired value where the frequency is less than 20 rad/sec, while from Figure 30 (e-f), we see 

that the response starts to decrease for higher frequency. In fact, as in the case of a single layer 

plate, the results for 20, 60, and 100 rad/sec can be obtained only with very high values of the 

temperature (θ1), the command generated by the inverse problem transfer function. 

 

4.4.3 Closed Loop Case 

 

 For L= 0.03 (m), M=4, and N=6, the results for the closed-loop case are shown in 

Figure 31. 
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Figure 31: Relative temperature (θ2) for the closed loop M=4, N=6, gain Gc =1, and frequency of a) 0.1, b) 1, 

c) 5, d) 10, e) 60, f) 100, g) 200, h) 250 (rad/sec). 
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Figure 32: Relative temperature (θ2) for the closed loop M=4, N=6, gain Gc =10, and frequency of a) 0.1, b) 1, 

c) 5, d) 10, e) 60, f) 100, g) 200, h) 250 (rad/sec). 

 
Similar to the single-layer case from Figure 18 for k=1, in Figure 31 (a-f) for 𝐺𝑐 = 1 

we see that the closed-loop response is half of the desired value due to the gain value of one 

and frequency less than 100 (rad/sec). In Figure 31 (g-h), the response starts to decrease due 
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to a higher value of frequency. Similar to the single-layer case from Figure 19 for k=10, in 

Figure 32 (a-h), the gain k=10 we see that the closed-loop response is almost the same as the 

desired value due the gain value of ten for all frequencies used. These frequencies were used 

for simulations study to poof the control action of the controller for higher frequencies 

bandwidth and, again these frequencies cannot be achieved physically.   

Next, are presented Bode diagram results. 

 

 
a 
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f 

Figure 33: Bode plot for the closed loop L = 0.03 (m), and gain: a) 1, b) 10, c) 20, d) 40, e) 60, and f) 100. 

 

From the Bode plots in Figure 33 (a-f), we see that for the same plate thickness and 

different gain values, the magnitude and the phase remain constant for a wider range of 

frequency, and this range increases; while increasing the gain value, the magnitude starts to 

have sudden local increase at higher frequencies, and this range increases; while increasing 

the gain value, the magnitude starts to have sudden local increase at higher frequencies. 

Achieving experiments for k larger than 10 can be constrained by resulting too high commands 

of this proportional controller. 

In fact, simulation results in time and frequency domain for a frequency of 0.1 rad/s 

are valid for any lower frequency, including much lower frequencies used in experiments. 
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Chapter Five: Experimental Approach and Results 

 

In this chapter, we will present the experimental setup and the experimental results for 

the inverse problem control approach. 

 

5.1 Experimental Setup 

 

Controlling the temperature of metal used in industry to a precise, desired value is 

required to maintain a longer functionality without affecting the final product. In this chapter, 

we present the experimental study for the closed-loop approach, using a two-stage 

experimental setup shown in Figure 34. The first part on the left is a PC, which computes the 

inverse problem, the control law, and the signal processing, while the second part on the right 

consists of a physical system corresponding to the direct problem components: the plate, 

thermocouples, signal amplifiers, and the power supply. Simulations were carried out for 

closed-loop control schemes for different values of input frequency and the input sinusoidal 

relative temperature amplitude of 100C above the initial relative temperature; the initial 

relative temperature is 600C above the environment temperature, this initial relative 

temperature was chosen to be physically achievable. The use of high initial relative 

temperature cannot be achievable with the current resources we have. The input was θ2(0, t) =10sin(wt) =  𝜃2𝑑(𝑡). The simulations in the previous chapters were done for a sine amplitude 

of 200C, while in experiments we have to minimize the sine amplitude to 100C. This was done 

because we have to match the amplitude variations experimentally using the silicone rubber 

heater, and due to the heater limitations we have to drop the sine amplitude. 
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Figure 34 is the schematic diagram of the closed-loop experimental setup used to run 

the experiments. For these experiments, we use the same inverse problem as in the simulation 

setup with M=4 terms, the physical parts were the aluminum plate mentioned in the 

simulation; a 500-watt silicon rubber heater was used in the experiments with low-frequency 

values to give us a good heating period; while for the cooling we use a fan with different 

speeds. 

In the experimental setup, we use the LABVIEW software to link the inverse problem 

with the direct problem (physical problem) using NI-DAQ USB-6259. Experiments were 

carried out for different values of input frequency and different gain values. Figure (34) shows 

the experimental setup used to run the experiments, the inverse problem, and the controller 

represented in the PC, while the direct problem is replaced by the physical plate. The inverse 

problem and the controller are computed in the PC are shown on the left-hand side, while the 

direct problem consists of the physical part shown on the right-hand side. 
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Figure 34: Experimental setup for the closed-loop approach. 

 

5.2 Results and Discussion 

 

 

Figures (35 to 37) show comparatively the simulation experimental results for a gain 

of k=1 and different frequencies when using inverse problem control. 

. 
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Figure 35: Relative temperature results for frequency of 0.00038 (rad/sec) and a control gain k = 1. a) Solid line 

is simulation result, b) Dashed line is the experimental result. 

 

 

Figure 36: Relative temperature results for frequency of 0.0004 (rad/sec) and a control gain k = 1. a) Solid line 

is simulation result, b) Dashed line is the experimental result. 
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Figure 37: Relative temperature results for frequency of 0.00042 (rad/sec) and a control gain of k = 1. a) Solid 

line is simulation result, b) Dashed line is the experimental result. 

 

The results shown in Figures (35 to 37) for the gain k=1 and frequencies of  0.00038, 

0.0004, and 0.00042 (rad/sec) respectively show that the temperature oscillation in simulation 

results and the experimental results differ by only 1.50C. The average temperature is, however, 

about 300C; i.e., about half of the average desired temperature of 600C, as in Ch.4.2, due to 

the closed-loop output for 𝐺2−1  =  𝐺1 resulting in 
11+1  = 0.5.  This difference can be reduced 

by increasing the gain k.  

The results in Figures (38 to 40) were obtained for a gain of k=5 and different 

frequencies.  

Figure 38 refers in (a) to the simulation results for a frequency of 0.00038 (rad/sec) 

and in (b) the experimental results for the same gain value and frequency. From these two 

figures, we see that the output for both is matching within 1.5 - 20 C.  
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Figures 39 and 40 indicate the same time variation as in Figure 38, for the same gain 

k=5 and frequencies of 0.0004 and 0.00042 (rad/sec), respectively. In this case, the average 

temperature is about 500C, i.e. much closer to the average desired temperature of 600C. Further 

improvements can be obtained by a suitable controller design. 

 

Figure 38: Relative temperature results for frequency of 0.00038 (rad/sec) and a control gain k = 5. a) Solid line 

is simulation result, b) Dashed line is the experimental result. 
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Figure 39: Relative temperature results for frequency of 0.00040 (rad/sec) and a control gain k = 5. a) Solid line 

is simulation result, b) Dashed line is the experimental result. 

 

 

 

Figure 40: Relative temperature results for frequency of 0.00042 (rad/sec) and a control gain k = 5. a) Solid line 

is simulation result, b) Dashed line is the experimental result. 
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From the above simulations and experimental results, it can be seen that for both gain 

k values of 1 and 5, the sinusoidal response match within small difference, and this confirms 

that surface temperature oscillations of a thin plate can be successfully controlled using this 

approach and the desired temperature can be achieved for higher control gains k. 

All experiments reach the required response after running for 4-5 hours; this required 

some adjustments for the time scales to be consistent with the simulation results for a period 

of 60000 (sec). The starting time of each experiment was modified to start the sine signal as 

in the simulation, which means the starting time of the signal varies for each experiment. 
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Chapter Six: Fractional Order Controller Design 

 

In the current chapter, we will focus on the fractional-order controller approach, and it 

is the design process. 

6.1 Controller Equation 

 

In this section, we will design different types of fractional controllers to control the 

metal plate, and we derive the control equation based on the design method introduced by 

Monje et al book published in 2010 [39]. 

 

6.1.1 Fractional Proportional Integral Controller 

 

 

The first controller is the Fractional Order Proportional Integral controller (FOPIλ). 

The fractional-order PI controller formula is [43]: 

 

  C(jω)=kp[1+ ki(jω)-λ]           (6.1) 

 
 

 C(jω)=kp[1+ki(ω)-λ cos (μπ2 ) +jki(ω)-λ sin (μπ2 )        (6.2) 

 

 Arg[C(jω)]=tan-1[ ki(ω)-λ sin(μπ2 )1+ ki(ω)-λ cos(μπ2 )  ]         (6.3) 

 

 |C(jω)|=Kp√[1+ ki(ω)-λ cos (μπ2 ) ]2+[kI(ω)-λ sin (μπ2 ) ]2         (6.4) 

 

The open-loop transfer function is: 
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L (𝑗𝜔) = C (𝑗𝜔) G (𝑗𝜔) 
 

We want to satisfy three conditions to solve for the three variables of the controller: 

1 -   Robustness: 

 d(Arg[L(jω)]dω |ω=ωcg =0 

 
2 - Gain crossover frequency: 

 |L(jω)|dB=0 

 
3 - Phase Margin: 

 Arg[L(jω)]|ω=ωcg= -π+ φm 

 
From condition (3), we get: 

 

 tan-1 [ kI(ωcg)-λ sin(μπ2 )1+ kI(ωcg)-λ cos(μπ2 )  ] - tan-1 [2ζωcgωnωn2-ωcg2 ]  = -π+ φm           (6.5) 

 

From condition (2), we get: 

 

 
Kp √[1+ ki(ωcg)-λ cos(μπ2 )]2+[ki(ωcg)-λ sin(μπ2 )]2

√(1-ωcg2ωn2 )2+ 4ζ2ωcg2/ωn2 =1          (6.6) 

 

From condition (1), we get: 

 

 Ki= - B ± √B2- 4A[Aωcg-2λ+λ(ωcg)-2λ-1]2[Aωcg-2λ+λ(ωcg)-2λ-1]           (6.7) 

 

Where 
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A= 2ζωn(ωn2- ωcg2)+4ζωnωcg2(ωn2- ωcg2)2+(2ζωnωcg)2  

 

And 

 B= 2Aωcg-λ cos [λπ2 ]+λωcg-λ-1cos [λπ2 ] 

 

 
 

 

6.1.2 Fractional Proportional Derivative Controller 

 

 

The second controller is the Fractional Order Derivative Controller (FOPDμ). 

The system transfer function formula is [38]: 

 

 G= ωn2s2+2ζωns+ωn2          (6.8) 

 

We get: 

 

 |G(jω)|= 1√(1-ω2ωn2)2+ 4ζ2ω2/ωn2       (6.9) 

 

 Arg[G(jω)]=- tan-1 [2ζωωnωn2- ω2]        (6.10) 

 

The fractional order PD controller formula is [40][45]: 

 

 C(jω)=kp[1+ kd(jω)μ]              (6.11) 

 

 C(jω)=kp[ 1+ kd(ω)μ cos (μπ2 ) +jkd(ω)μ sin (μπ2 ) ]         (6.12) 

 

 Arg[C(jω)]=tan-1[ sin[(1- μ)π2 ]+kd(ω)μcos[(1- μ)π2 ] ]- (1- μ)π2         (6.13) 
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 |𝑐(𝑗𝜔)| = 𝐾𝑝√(1 + 𝐾𝑑𝜔𝜇 cos (𝜇𝜋2 ))2 + (1 + 𝐾𝑑𝜔𝜇 sin (𝜇𝜋2 ))2        (6.14) 

 

Where: 

Kp is the proportional gain. 

Kd is the derivative gain. 

The open-loop transfer function is: 

L (𝑗𝜔) = C (𝑗𝜔) G (𝑗𝜔) 

We want to satisfy three conditions to solve for the three variables of the controller: 

1 -   Robustness: 

 d(Arg[L(jω)]dω |ω=ωcg =0 

 
2 - Gain crossover frequency: 

 |L(jω)|dB=0 

 
3 - Phase Margin: 

 Arg[L(jω)]|ω=ωcg= -π+ φm 

 
From condition (3), we get: 

 

 tan-1 [sin[(1- μ)π2 ]+kd(ωcg)μcos[(1- μ)π2 ] ] - (1- μ)π2 - tan-1 [2ζωcgωnωn2-ωcg2 ]  = -π+ φm          (6.15) 

 

From condition (2), we get: 

 

 
𝐾𝑝 √[1 +𝐾𝑑𝜔𝑐𝑔𝜇 cos (𝜇𝜋2 )]2+[𝐾𝑑𝜔𝑐𝑔𝜇sin (𝜇𝜋2 )]2

√(1−𝜔2𝜔𝑛2 )2+ 4𝜁2𝜔2𝜔 𝑛2
= 1            (6.16) 

 

From condition (1), we get: 
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μKdωcgμ-1cos[(1- μ)π2 ]cos2(1- μ)π2 +[sin(1- μ)π2 +Kdωcgμ ]2  - 2ζωn(ωn2- ωcg2)+4ζωnωcg2(ωn2- ωcg2)2+(2ζωnωcg)2 =0             (6.17) 

 

From criteria (3), we can get a relation between 𝐾𝑑 and 𝜇 as follows: 

 

 Kd= - B ± √B2- 4A2ωcg2μ2Aωcg2μ           (6.18) 

 

Where:  A= 2ζωn(ωn2- ωcg2)+4ζωnωcg2(ωn2- ωcg2)2+(2ζωnωcg)2  

 B= 2Aωcgμ sin [(1- μ)π2 ] - μωcgμ-1cos [(1- μ)π2 ] 

 

 

6.1.3 Fractional Proportional Integral with Fractional Controller 

 
The third controller is the Fractional Order Proportional Derivative Controller 

(FOPIDμ). 

The fractional-order PID controller formula is[44] [45]: 

 

 C(s)=kp[1+ ki(s)λ +kd(s)μ]         (6.19) 

 

For the current controller we have 𝜆 = 1, we get: 

 

 𝐶(𝑗𝜔) = 𝑘𝑝{1 +𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 ) + 𝑗 [−𝑘𝑖𝜔−1 + 𝑘𝑑(𝜔)𝜇sin (𝜇𝜋2 )]}          (6.20) 

 

 

Let 

 P(ω)=1   +kd(ω)μ cos (μπ2 ) 
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And 

 Q(ω)=- kiω-1+kd(ω)μsin (μπ2 ) 

 

Then 

 

 Arg[C(jω)]=tan-1[ Q(ω)P(ω) ]           (6.21) 

 

 |𝐶(𝑗𝜔)| = 𝑘𝑝√𝑃2(𝜔) + 𝑄2(𝜔)           (6.22) 

 

We want to satisfy the four conditions to solve for the four variables of the controller: 

1 -   Robustness: 

 d(Arg[L(jω)]dω |ω=ωcg =0 

 
2 - Gain crossover frequency: 

 |L(jω)|dB=0 

 
3 - Phase Margin: 

 Arg[L(jω)]|ω=ωcg= -π+ φm 

 
4 - Noise rejection: 

 |T(jω)= C(jω)G(jω)1+C(jω)G(jω)|dB ≤A dB 

 
Where A is a designed value. 

According to condition (2), we get: 
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kp√P2(ω)+Q2(ω)√(1-ωcg2ωn2 )2+ 4ζ2ωcg2/ωn2 =1         (6-23) 

 

From condition (3), we get: 

 

 tan-1 [Q(ω)P(ω)] - tan-1 [2ζωωnωn2- ω2]  = -π+ φm            (6-24) 

 

From condition (1), we get: 

 

 

 
P(ω)*aa-Q(ω)*ppP(ω)2+Q(ω)2 - 2ζωn(ωn2- ωcg2)+4ζωnωcg2(ωn2- ωcg2)2+(2ζωnωcg)2 =0           (6-25) 

 

From condition (4), we get: 

 

 
|C(jω)G(jω)||1+C(jω)G(jω)| = √P2(ω)+Q2(ω)

√[(1-ωcg2ωn2 )2Kp +P(w)]2+[Q(w)+2ζ ωcgωnKp]2
≤A          (6-26) 

 

6.2 Results and Discussion 

 

For the design purpose, the crossover frequency was set to be 20 (rad/sec), and the 

phase margin is set to be 65 degrees; all results had a one-second time step to see a clear step 

response away from Y-axis. 

After we solve Equations (6.5, 6.6, and 6.7) for the fractional-order PI controller 

parameters, we get a controller formula as follows:   

 

FOPI=  1.3862 + 25.993(s)-1.486
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From Figure 41, we see that the system reaches the desired response after 1.5 seconds, 

but it has an overshoot of 20%.  

After we solve Equations (6.16, 6.17, and 6.18) for the fractional-order PD controller 

parameters, we get a controller formula as follows:   

 

FOPD=  1.5622 + 0.0086842(s)1.832
 

 

 
Figure 41: Step response for direct transfer function G1 using fractional order proportional controller (FOPIλ). 

 
Figure 42: Step response for direct transfer function G using fractional order proportional derivative controller 

(FOPDμ). 
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From Figure 42, we can see that the controller can’t reach the desired steady-state value 

no matter how long the time we give the system. 

After we solve Equations (6.23, 6.24, 6.25 and 6.26) for the fractional order PID 

controller parameter, we get the controller formula as follows: 

 

FOPID=  0.9639 + 
2.9379𝑠 -0.0862(s)0.713

 

 

From Figure 43, we can see that the system reaches the desired response after 2.5 

seconds, also with no overshoot. 

From Figures 41, 42, and 43, we see that the best controller is the Fractional Order 

Proportional Derivative Controller (FOPIDμ) since it achieves the desired response without 

overshoot and with zero steady-state error. 

Now we compare the results with the Integer Order Controller (IOPID). From Figure 

44, we can see that the response is slower with an overshoot of about 8%, and this favours the 

Fractional Order Proportional Derivative Controller (FOPIDμ) over all other controllers. This 

is because this controller has four parameters to change, which gives it a better design over all 

the other controllers, where only three parameters are available to change. The results for the 

integer-order controller were obtained by using Automatic Tuning Criteria in MatlabTM. 
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Figure 43: Step response for direct transfer function G using fractional order proportional derivative controller 

(FOPIDμ). 

 
Figure 44: Step response for direct transfer function G using integer order proportional derivative controller 

(IOPID). 
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Chapter Seven: Fractional Proportional Integral Derivative Controller 

 

In the current chapter, we will investigate the design procedure for the Fractional Order 

Proportional Integral Derivative (FOPID) controller. Also, we will present simulation results 

and experimental results. 

7.1 Fractional Proportional Integral Derivative Controller Design 

 

Figure 45 shows the closed-loop block diagram used for the designing purpose of 

fractional-order PID controller.  

 

 

 

                             𝜃2𝑑                                                 𝜃1                                                       𝜃2                         

                        + 

                                - 

 

 

 

The resulted transfer functions for the direct were obtained after a Zero-Pole 

approximation was used for the resulted hyperbolic transfer functions are for M=0 and N=6: 

  

 𝐺1 = 5.169∗108(𝑠+1.056)(𝑠 +  9.054)(𝑠 +  26.4)(𝑠 +  85.54)(𝑠 +  127.8)(𝑠 +  178.5)         (7.1) 

 

The fractional-order PID controller formula is [40][41]: 

Direct Problem 𝐺1 𝐺𝑐 

 

 

Figure 45: Closed loop control block diagram. 
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 𝐺𝑐(𝑠) = 𝑘𝑝[1 + 𝑘𝑖(𝑠)𝜆 + 𝑘𝑑(𝑠)𝜇]     (7.2) 

 𝐺𝑐(𝑗𝜔) = 𝑘𝑝{1 + 𝑘𝑖𝜔−𝜆  [cos (𝜆𝜋2 ) + 𝑗𝑠𝑖𝑛 (−𝜆𝜋2 )] + 𝑘𝑑 (𝜔)𝜇 [cos (𝜇𝜋2 ) + 𝑗 sin (𝜇𝜋2 )]}  (7.3)                      

𝐺𝑐(𝑗𝜔) = 𝑘𝑝{1 + 𝑘𝑖𝜔−𝜆 cos (𝜆𝜋2 ) +𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 ) 

 𝑗 [𝑘𝑖𝜔−𝜆 sin (−𝜆𝜋2 ) + 𝑘𝑑(𝜔)𝜇sin (𝜇𝜋2 )]}     (7.4) 

Let: 

 𝑃(𝜔) = 1 + 𝑘𝑖𝜔−𝜆 cos (𝜆𝜋2 ) +𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 )     (7.5) 

And 

 𝑄(𝜔) = − 𝑘𝑖𝜔−𝜆 sin (𝜆𝜋2 ) + 𝑘𝑑(𝜔)𝜇sin (𝜇𝜋2 )        (7.6) 

Then 

 𝐴𝑟𝑔[𝐺𝑐(𝑗𝜔)] = 𝑡𝑎𝑛−1[𝑄(𝜔)𝑃(𝜔)]                                  (7.7) 

 

 |𝐺𝑐(𝑗𝜔)| = 𝑘𝑝√𝑃(𝜔)2 + 𝑄(𝜔)2                            (7.8) 

 

The open-loop transfer function is: 

 

 L (𝑗𝜔) = 𝐺𝑐(𝑗𝜔) G (𝑗𝜔)                                            (7.9) 

 

Fractional-order PID controller design must satisfy the five conditions to solve for 

the controller parameters [40]: 

1 -   Robustness: 

 
𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0                   (7.10) 
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2 - Gain crossover frequency: 

 |𝐿(𝑗𝜔)|𝑑𝐵 = 0          (7.11) 

3 - Phase Margin: 

 𝐴𝑟𝑔[𝐿(𝑗𝜔)]|𝜔=𝜔𝑐𝑔 =  −𝜋 +  𝜑𝑚         (7.12) 

4 - Noise rejection: 

 |𝑇(𝑗𝜔) = 𝐶(𝑗𝜔)𝐺(𝑗𝜔)1+𝐶(𝑗𝜔)𝐺(𝑗𝜔)|𝑑𝐵 ≤ 𝐴 𝑑𝐵         (7.13) 

Where A is a designed value. 

5 - Disturbance rejection: 

 |𝑆(𝑗𝜔) = 11+𝐶(𝑗𝜔)𝐺(𝑗𝜔)|𝑑𝐵 ≤ 𝐵 𝑑𝐵       (7.14) 

Where B is a designed value.  

According to condition (1) we get: 

 

 
𝑝(𝜔)𝑎𝑎−𝑄(𝜔)𝑏𝑏𝑝2(𝜔)+ 𝑄2(𝜔) − 0.9470.897𝜔2+1 − 0.10521.1067𝑒−3𝜔2+1 − 0.037881.4349𝑒−3𝜔2+1  

 − 0.011691.366𝑒−4𝜔2+1 − 0.0078256.1231𝑒−5𝜔2+1 − 0.0056023.138𝑒−5𝜔2+1 = 0 (7.15) 

 

From condition (2) we get: 

 

 
5.1689𝑒8𝑘𝑝√𝑃2(𝜔)+ 𝑄2(𝜔)√𝜔12+5.63𝑒4𝜔10+9.169𝑒8𝜔8+4.5𝑒12𝜔6+3.058𝑒15𝜔4+2.431𝑒17𝜔2+2.673𝑒17 = 1   (7.16) 

 

From condition (3) we get: 

 

Tan−1 [Q(ω)P(ω)] −  tan−1[0.947ω] −  tan−1[0.1052ω] −  tan−1[0.03788ω] −  
       tan−1[0.01169ω] −  tan−1[0.007825ω] −  tan−1[0.005602ω]  =  −π + φm    (7.17) 
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From condition (4) we get: 

 

5.1689𝑒8𝑘𝑝√𝑝2(𝜔)+𝑄2(𝜔)√[5.1689𝑒8𝑘𝑝𝑃(𝜔)+5.17𝑒8−𝜔6+6.378𝑒4𝜔4−8.638𝑒7𝜔2]2+[5.1689𝑒8𝑘𝑝𝑄(𝜔)+428.8𝜔5−3.786𝑒6𝜔3+5.766𝑒8𝜔]2 ≤ 𝐴      (7.18) 

 

Finally, from condition (5) we get: 

 

√𝜔12+5.63𝑒4𝜔10+9.169𝑒8𝜔8+4.5𝑒12𝜔6+3.058𝑒15𝜔4+2.431𝑒17𝜔2+2.673𝑒17√[5.1689𝑒8𝑘𝑝𝑃(𝜔)+5.17𝑒8−𝜔6+6.378𝑒4𝜔4−8.638𝑒7𝜔2]2+[5.1689𝑒8𝑘𝑝𝑄(𝜔)+428.8𝜔5−3.786𝑒6𝜔3+5.766𝑒8𝜔]2 ≤ 𝐵     (7-19) 

 

 

 

Figure 46: Bode plot diagram for the direct transfer function. 

 

To get the FOPID controller parameters, we have solved Equations (7.15 through 7.19) 

using the phase margin ( -44.9◦) and the gain crossover frequency ( 0.8 rad/sec) from Figure 
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46, which is the Bode plot for the direct transfer function, A and B are chosen to be 20 dB; 

this was done using Nonlinear Optimization toolbox and Fsolve functions from MATLABTM. 

The resulted FOPID is: 

 𝐺𝐹𝑂𝑃𝐼𝐷(s) = 1.0818 + 0.265𝑠0.9511 + 0.549𝑠0.9159    
 

 

Figure 47: Step response results for direct transfer function G1 using FOPID controller, IOPID controller, and 

No controller. 

 

From Figure 47, we see that the FOPID controller produces the best step response with 

no overshoot, while the IOPID controller produces about 18% overshoot, the input was a unit 

step shifted on the x-axis to be away from the y-axis to see a clear response. Step response 

simulations permitted to find out which performance is advantageous. The result for the IOPID 

controller design was obtained using the first three conditions applied in the FOPID controller 
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design because we have only three parameters that needed to be found. The resulted IOPID 

controller was: 

 

𝐺𝐼𝑂𝑃𝐼𝐷(s) = 0.1 + 0.45572𝑠  + 0.71194𝑠      
 

In Table 2, we show the step response properties for both the IOPID controller and the 

FOPID controller. From these results, we see that the FOPID controller performs better with 

regards to overshoot. On the other hand, we see that the IOPID controller has a lower Rise, 

and Settling time. 

For our study, we decided that the critical criterion to be considered is the overshoot. 

This is because the heat conduction problem is a very slow process.   

 

Table 2: Comparison of FOPID controller and IOPID controller step response properties. 

Properties IOPID FOPID 

Overshoot 14.1215 0 

Rise Time 4.4376 13.3697 

Settling Time 29.9342 39.9558 

 

Next are the resulted response of the plant due to sinusoidal input of frequency of 

{40 + 10sin (0.1𝜔𝑡)℃}. As shown in Figure 48 (a, b, and c), we see that the case of no 

controller response is half of the input signal, while both IOPID controller and FOPID 
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controller responses are practically the same as the input. The only concern is for the case of 

the IOPID controller, we see the effect of the overshoot at the start of the simulation results. 

 

 

 

a 

 

b 
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c 

Figure (48): Comparison of plant response with a) No controller, b) IOPID controller, c) FOPID controller. 

 

 

Figure (49): Step response comparison of two, four, and six terms used for approximation. 
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 A different number of terms from Zero-Pole expansion was used to approximate the 

plant transfer function. The step response results are shown in Figure 49 and Figure 50. Results 

show that with a small number of terms, we could still get a good approximation. The case of 

two terms only results in slight changes than for three or more terms, while four, six, and eight 

terms cases are identical. We choose six terms to be the transfer function of interest. 

 

 

Figure (50): Step response comparison of six, and eight terms used for approximation. 

  

7.2 Why Fractional Order Controller 

 

The investigation in section (7.1) shows that both the IOPID controller and FOPID 

controller response are similar, except for the better performance of the FOPID controller with 

regard to the overshoot. 

There are, however, other advantages of using the fractional-order controller. To do 

this, we will investigate the ability of the fractional-order controller to reduce noises compared 
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to the integer-order controller. To study the effect of using the FOPID on the measurement 

noises, we simulate the closed-loop scheme consisting of FOPID controller, the plant, and the 

random white noise of amplitude 1 in the feedback loop. The results are compared to the same 

closed-loop scheme for the IOPID controller. From the results shown in Figures (51 and 52), 

we see that for the FOPID controller results in (a) Figures have a significant ability to reduce 

noises are clear, while the IOPID controller results in (b) Figures show that almost there is no 

ability to reduce noises. 

From this simulation study, we see that the FOPID controller can reduce noise. While 

for the IOPID controller it is shown that the ability to reduce noise is zero. We study this 

because noises always present in such a system, it comes from the plant or the measuring 

devices. In our case, that is the thermocouples used to measure temperatures. 

 

 a  
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b 

Figure 51: Theta2 response for frequency of 0.01 (rad/sec), a) FOPID controller, b) IOPID controller. 

 

 

a 
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b 

Figure 52: Theta2 response for frequency of 0.1 (rad/sec), a) FOPID controller, b) IOPID controller. 
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7.3 Results and Discussion 

 

 Experiments were carried out to verify the conclusions obtained using simulation 

results obtained for the above fractional order controller. Experiments were done for a very 

low frequency (0.0024, 0.0026, 0.0028 rad/sec). To physically achieve this frequency, silicone 

rubber heaters produced by OMEGA were used; while for the cooling, we use a fan with 

different values of the speeds. We control the speed of the fan to control the forced convection 

cooling rate following a sine wave. Both heating and cooling are controlled by the fractional 

order controller following the input sine wave.  The cooling, however, is affected by the 

thermodynamics of the air between the fan and the plate. For these experiments, we used a 

heater of 500 watts, and to exactly give the required heat for each frequency, we used a variable 

AC input power supply for the heater. Experiments were done for 100C desired input 

temperature of ( 10sin(wt)) above the initial relative temperature of 400C and LABVIEWTM 

were used to run and record the results. The temperatures were measured using a K-type 

thermocouple produced by OMEGA. 

Figures 53, 54, and 55 show that the experimental results almost produce the same 

simulated results. If we want to be more specific, we see that there is a lower end in the 

experimental results by 10C. The fractional-order controller shows very good results in the 

case of surface temperature control of a plate from both the simulated results and the 

experimental results. In experiments, the noise is present due to the use of the measurement 

devices. We face a lot of variations in the results: specifically the output signal of the 

controller. To overcome these difficulties, we have to add a low pass filter of 0.5 (rad/sec) cut-

off frequency to filter out the signal and remove the high-frequency noise from the signal. The 

filter was used to get a smooth output signal, as we see in the experimental results. 
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Figure 53: Relative temperature results for frequency of 0.0024 (rad/sec). a) The solid line is simulation result, 

b) Dashed line is an experimental result. 

 

 

Figure 54: Relative temperature results for frequency of 0.0026 (rad/sec). a) The solid line is simulation result, 

b) Dashed line is an experimental result. 
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Figure 55: Relative temperature results for frequency of 0.0028 (rad/sec). a) The solid line is simulation result, 

b) Dashed line is an experimental result. 

 

For the above experimental results, previous comments regarding the switch from 

heating to cooling are the same.  

The results show that using a FOPID controller for the current system produces better 

results compared to an IOPID controller; this is why we proposed to use the fractional 

controller in a fractional-order system, as it is the case in our original system where the 

fractional-order was (0.5). 
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Chapter Eight: Conclusion and Future Work 

 

8.1 Future Work 

 

More study is needed for the multi-layer metal plates frequently used in the industry. 

This could start with extending this research study to a two-dimensional and three-dimensional 

case.   

The fractional-order controller needs to be designed using a different design method, 

and the resulting controllers need to be compared to evaluate the benefits of each design. 

Deferent types of boundary conditions need to be investigated. Temperature 

distribution through the plate thickness needs to be studied. 

Multi heat-input in 1-D, 2- D and 3-D parts require distributed parameters heat transfer 

models and temperature controllers have to be developed. 

 

 

8.2 Conclusions 

 

The investigation concerns with achieving the desired temperature on one side surface 

of a plate controlled by a time-varying heat input on the other side. Simulations required the 

numerical calculation of high order transfer functions derivation, and the results show that the 

number of terms used in the approximation has a significant influence on the ill-posedness of 

the inverse problem. The simulation study verified that the temperature can be controlled for 

a wide range of frequency input.   
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The inverse problem approach, used in the first part of this study, shows that surface 

temperature can be efficiently controlled to the desired value. Experiments carried out to verify 

this approach show encouraging results, but only the low frequency can be achieved physically 

due to low-frequency bandwidth of plate heat transfer, and this range is up to 3 (rad/sec) 

maximum.    

  

The fractional-order controller investigated as a second approach gives better results 

compared to the integer-order controller with regards to the overshoot. Different types of 

fractional order controllers were designed. Results show an improvement, depending on the 

number of parameters needed for each controller type. Such that when the number of controller 

parameters increases, the response of the controller becomes significantly better, but the 

performance saturates at a high number of parameters.    

The fractional-order controller was investigated to find out its advantages over the 

integer-order controller, in particular with regard to the overshoot. Fractional order controller 

results show that response without overshoot can be achieved. The fractional-order controller 

design was experimentally investigated and verified. Results show that the fractional-order 

controller behaves better, which is proved by both experimental results and simulation results. 

Fractional order systems can be controlled using both integer order controller and 

fractional-order controllers. The results were encouraging, but to be implemented for all 

fractional-order systems, they need to be further investigated. 

The fractional-order controller shows good results in noise rejection produced by 

measuring devices compared to the integer-order controller. This is why we used the fractional 

controller with fractional-order systems. 

Finally, during this study, we have done the following: 
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1- Designed the FOPID controller for a plate surface temperature control using multi-

criteria applied to transient response. 

2 - Simulation study and real-time experimental tests of the advantages of the proposed 

plate surface temperature Fractional Order - compared to Integer Order – PID. 

3 – Multi-step control of a plate surface temperature control using an inverse problem 

approach under the constraint of ill-posedness. 

4- Control of fractional-order heat conduction for a multi-layer plate. 

5- Prove that the proposed Zero-Pole expansion is better than Taylor's expansion for 

the current research study. 
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Appendices 

 

All appendices follow Procedure from Monje et al Book [39].  

 

A: FOPID Controller Design 

 

The Zero-Pole approximated plate direct transfer function is: 

 

 𝐺1 = 5.169∗108(𝑠+1.056)(𝑠 +  9.054)(𝑠 +  26.4)(𝑠 +  85.54)(𝑠 +  127.8)(𝑠 +  178.5)  (A.1) 

 

 

The magnitude of the direct transfer function is: 

 

 |𝐺1(𝑗𝜔)| = 5.1689𝑒8√𝜔12+5.63𝑒4𝜔10+9.169𝑒8𝜔8+4.5𝑒12𝜔6+3.058𝑒15𝜔4+2.431𝑒17𝜔2+2.673𝑒17  (A.2) 

 

 

The phase of the direct transfer function is: 

 

 𝐴𝑟𝑔[𝐺𝑐(𝑗𝜔)] =−𝑡𝑎𝑛−1( 𝜔1.056)−𝑡𝑎𝑛−1( 𝜔9.504)−𝑡𝑎𝑛−1( 𝜔26.4)−𝑡𝑎𝑛−1( 𝜔85.54)−𝑡𝑎𝑛−1( 𝜔127.8)−𝑡𝑎𝑛−1( 𝜔178.5) (A.3) 

 

 

The FOPID controller formula is: 

 

 𝐺𝑐(𝑠) = 𝑘𝑝[1 + 𝑘𝑖(𝑠)𝜆 + 𝑘𝑑(𝑠)𝜇]   (A.4)   

Which can be rewritten as: 

 𝐺𝑐(𝑗𝜔) = 𝑘𝑝{1 + 𝑘𝑖𝜔−𝜆  [cos (𝜆𝜋2 ) + 𝑗𝑠𝑖𝑛 (−𝜆𝜋2 )] + 𝑘𝑑 (𝜔)𝜇 [cos (𝜇𝜋2 ) + 𝑗 sin (𝜇𝜋2 )]} (A.5)                          
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𝐺𝑐(𝑗𝜔) = 𝑘𝑝{1 + 𝑘𝑖𝜔−𝜆 cos (𝜆𝜋2 ) +𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 ) 

 +𝑗 [𝑘𝑖𝜔−𝜆 sin (−𝜆𝜋2 ) + 𝑘𝑑(𝜔)𝜇sin (𝜇𝜋2 )]}  (A.6) 

               

We denote: 

 

 𝑃(𝜔) = 1 + 𝑘𝑖𝜔−𝜆 cos (𝜆𝜋2 ) +𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 )    (A.7) 

And 

 𝑄(𝜔) = − 𝑘𝑖𝜔−𝜆 sin (𝜆𝜋2 ) + 𝑘𝑑(𝜔)𝜇sin (𝜇𝜋2 )    (A.8) 

    

Then the phase angle of the FOPID controller transfer function is: 

 

 𝐴𝑟𝑔[𝐺𝑐(𝑗𝜔)] = 𝑡𝑎𝑛−1[𝑄(𝜔)𝑃(𝜔)]   (A.9) 

                                

And the magnitude of the FOPID controller transfer function is: 

 

 |𝐺𝑐(𝑗𝜔)| = 𝑘𝑝√𝑃(𝜔)2 + 𝑄(𝜔)2        (A.10)                     

 

The open loop transfer function is: 

 

 L (𝑗𝜔) = 𝐺𝑐(𝑗𝜔) G 𝑗𝜔)    (A.11)                            

 

Fractional order PID controller design must satisfy five conditions to solve for the 

controller parameters [34]: 

1 -   Robustness: 
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𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0                   

 

2 - Gain crossover frequency: |𝐿(𝑗𝜔)|𝑑𝐵 = 0          

3 - Phase Margin: 𝐴𝑟𝑔[𝐿(𝑗𝜔)]|𝜔=𝜔𝑐𝑔 =  −𝜋 +  𝜑𝑚         

4 - Noise rejection: |𝑇(𝑗𝜔) = 𝐶(𝑗𝜔)𝐺(𝑗𝜔)1+𝐶(𝑗𝜔)𝐺(𝑗𝜔)|𝑑𝐵 ≤ 𝐴 𝑑𝐵         

Where A is a designed value. 

5 - Disturbance rejection: |𝑆(𝑗𝜔) = 11+𝐶(𝑗𝜔)𝐺(𝑗𝜔)|𝑑𝐵 ≤ 𝐵 𝑑𝐵       

Where B is a designed value.  

According to condition (1), we have: 𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0 

 𝐴𝑟𝑔[𝐿(𝑗𝜔)] =𝑡𝑎𝑛−1[𝑄(𝜔)𝑃(𝜔)]−𝑡𝑎𝑛−1( 𝜔1.056)−𝑡𝑎𝑛−1( 𝜔9.504)−𝑡𝑎𝑛−1( 𝜔26.4)−𝑡𝑎𝑛−1( 𝜔85.54)−𝑡𝑎𝑛−1( 𝜔127.8)−𝑡𝑎𝑛−1( 𝜔178.5) (A.12) 

 

To get the derivative of 
𝑑(𝑡𝑎𝑛−1[𝑄(𝜔)𝑃(𝜔)])𝑑𝜔  

 

Let       𝑦2 =  𝑡𝑎𝑛−1 [𝑄(𝜔)𝑃(𝜔)] 
 

Then    tan (𝑦2) =  [𝑄(𝜔)𝑃(𝜔)] 
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 1𝑐𝑜𝑠2𝑦2 𝑑𝑦2𝑑𝜔 =  𝑃(𝜔) ∗ 𝑎𝑎 − 𝑄(𝜔) ∗ 𝑝𝑝𝑃2(𝜔)   
 

Where  

𝑎𝑎 = 𝜆𝑘𝑖 𝜔−𝜆−1 sin (𝜆𝜋2 ) + 𝜇𝑘𝑑𝜔𝜇−1 sin (𝜆𝜋2 )      
And 

𝑝𝑝 = −𝜆𝑘𝑖  𝜔−𝜆−1 cos (𝜆𝜋2 ) + 𝜇𝑘𝑑𝜔𝜇−1 cos (𝜆𝜋2 )    
From the above, we get: 

 𝑑𝑦2𝑑𝜔 =  𝑃(𝜔) ∗ 𝑎𝑎 − 𝑄(𝜔) ∗ 𝑝𝑝𝑃2(𝜔) 𝑐𝑜𝑠2𝑦2𝑐𝑜𝑠2𝑦2 + 𝑠𝑖𝑛2𝑦2 

 𝑐𝑜𝑠2𝑦2 + 𝑠𝑖𝑛2𝑦2𝑐𝑜𝑠2𝑦2 = 𝑡𝑎𝑛2𝑦2 + 1  
 

Using tan (𝑦2) =  [𝑄(𝜔)𝑃(𝜔)] we get 

 𝑐𝑜𝑠2𝑦2 + 𝑠𝑖𝑛2𝑦2𝑐𝑜𝑠2𝑦2 =  𝑄2(𝜔) +  𝑃2(𝜔)𝑃2(𝜔)  

 

And 

 𝑑𝑦2𝑑𝜔 =  𝑃(𝜔) ∗ 𝑎𝑎 − 𝑄(𝜔) ∗ 𝑝𝑝𝑃2(𝜔) + 𝑄2(𝜔)  

 

Now to get 
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𝑑(𝑡𝑎𝑛−1[0.947𝜔])𝑑𝜔   

Let 

 𝑦1 = 𝑡𝑎𝑛−1(0.947𝜔)  
 tan (𝑦1) =  (0.947𝜔)  
 1𝑐𝑜𝑠2𝑦1 𝑑𝑦1𝑑𝜔 = 0.947 

 𝑑𝑦1𝑑𝜔 = 0.947 𝑐𝑜𝑠2𝑦1𝑐𝑜𝑠2𝑦1 + 𝑠𝑖𝑛2𝑦1  
  𝑐𝑜𝑠2𝑦1 +  𝑠𝑖𝑛2𝑦1𝑐𝑜𝑠2𝑦1 = 𝑡𝑎𝑛2𝑦1 + 1  
 𝑑𝑦1𝑑𝜔 = 𝑑(𝑡𝑎𝑛−1[0.947𝜔])𝑑𝜔 =  0.9470.897𝜔2 + 1  
 

Similarly, 

 𝑑(𝑡𝑎𝑛−1[0.1052𝜔])𝑑𝜔 =  0.10520.011067𝜔2 + 1  
 𝑑(𝑡𝑎𝑛−1[0.0.03788𝜔])𝑑𝜔 =  0.037880.0014349𝜔2 + 1  
 𝑑(𝑡𝑎𝑛−1[0.001169𝜔])𝑑𝜔 =  0.011691.3666𝑒−4𝜔2 + 1  
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 𝑑(𝑡𝑎𝑛−1[0.0.007825𝜔])𝑑𝜔 = 0.0078256.1231𝑒−5𝜔2 + 1  
 𝑑(𝑡𝑎𝑛−1[0.005602𝜔])𝑑𝜔 = 0.0.005623.138𝑒−5𝜔2 + 1  
 

Finally, from condition (1), we get: 

 

 
𝑝(𝜔)𝑎𝑎−𝑄(𝜔)𝑏𝑏𝑝2(𝜔)+ 𝑄2(𝜔) − 0.9470.897𝜔2+1 − 0.10521.1067𝑒−3𝜔2+1 − 0.037881.4349𝑒−3𝜔2+1 − 0.011691.366𝑒−4𝜔2+1 

 − 0.0078256.1231𝑒−5𝜔2+1 − 0.0056023.138𝑒−5𝜔2+1 = 0   (A.13) 

 

From condition (2), we get: 

 

 
5.1689𝑒8𝑘𝑝√𝑃2(𝜔)+ 𝑄2(𝜔)√𝜔12+5.63𝑒4𝜔10+9.169𝑒8𝜔8+4.5𝑒12𝜔6+3.058𝑒15𝜔4+2.431𝑒17𝜔2+2.673𝑒17 = 1  (A.14) 

 

From condition (3), we get: 

 

 Tan−1 [Q(ω)P(ω)] − tan−1[0.947ω] − tan−1[0.1052ω] −  tan−1[0.03788ω] − tan−1[0.01169ω] − 

  tan−1[0.007825ω] − tan−1[0.005602ω]  =  −π +  φm     (A.15)                    

 

From condition (4), we have: 

 

 | 𝐶(𝑗𝜔)𝐺(𝑗𝜔)1+𝐶(𝑗𝜔)𝐺(𝑗𝜔)|𝑑𝐵 ≤ 𝐴 𝑑𝐵  (A.16) 
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| 𝐶(𝑗𝜔)𝐺(𝑗𝜔)1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  |𝐶(𝑗𝜔)𝐺(𝑗𝜔)||1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| 
        

|𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  5.1689𝑒8𝑘𝑝√𝑃2(𝜔) + 𝑄2(𝜔)√𝜔12 + 5.63𝑒4𝜔10 + 9.169𝑒8𝜔8 + 4.5𝑒12𝜔6 + 3.058𝑒15𝜔4 + 2.431𝑒17𝜔2 + 2.673𝑒17 

 

|1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  |1 +  5.1689𝑒8𝑘𝑝(𝑃(𝜔) + 𝑗𝑄(𝜔))(𝑗𝜔 + 1.056)(𝑗𝜔 + 9.504)(𝑗𝜔 + 26.4)(𝑗𝜔 + 85.54)(𝑗𝜔 + 127.8)(𝑗𝜔 + 178.5)| 
 

|1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| = | 5.1689𝑒8𝑘𝑝(𝑃(𝜔) + 𝑗𝑄(𝜔)) + (𝑗𝜔 + 1.056)(𝑗𝜔 + 9.504)(𝑗𝜔 + 26.4)(𝑗𝜔 + 85.54)(𝑗𝜔 + 127.8)(𝑗𝜔 + 178.5)(𝑗𝜔 + 1.056)(𝑗𝜔 + 9.504)(𝑗𝜔 + 26.4)(𝑗𝜔 + 85.54)(𝑗𝜔 + 127.8)(𝑗𝜔 + 178.5) |  
 |1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)|= √[5.1689𝑒8𝑘𝑝𝑃(𝜔) + 5.17𝑒8 − 𝜔6 + 6.378𝑒4𝜔4 − 8.638𝑒7𝜔2]2 + [5.1689𝑒8𝑘𝑝𝑄(𝜔) + 428.8𝜔5 − 3.786𝑒6𝜔3 + 5.766𝑒8𝜔]2√𝜔12 + 5.63𝑒4𝜔10 + 9.169𝑒8𝜔8 + 4.5𝑒12𝜔6 + 3.058𝑒15𝜔4 + 2.431𝑒17𝜔2 + 2.673𝑒17   
 5.1689𝑒8𝑘𝑝√𝑝2(𝜔)+𝑄2(𝜔)√[5.1689𝑒8𝑘𝑝𝑃(𝜔)+5.17𝑒8−𝜔6+6.378𝑒4𝜔4−8.638𝑒7𝜔2]2+[5.1689𝑒8𝑘𝑝𝑄(𝜔)+428.8𝜔5−3.786𝑒6𝜔3+5.766𝑒8𝜔]2 ≤ 𝐴    

 

Finally, from condition (5), we have: 

 

 | 11+𝐶(𝑗𝜔)𝐺(𝑗𝜔)|𝑑𝐵 ≤ 𝐵 𝑑𝐵  (A.17) 

 | 11 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  |1||1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| 
 

|1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| = √[5.1689𝑒8𝑘𝑝𝑃(𝜔) + 5.17𝑒8 − 𝜔6 + 6.378𝑒4𝜔4 − 8.638𝑒7𝜔2]2 + [5.1689𝑒8𝑘𝑝𝑄(𝜔) + 428.8𝜔5 − 3.786𝑒6𝜔3 + 5.766𝑒8𝜔]2√𝜔12 + 5.63𝑒4𝜔10 + 9.169𝑒8𝜔8 + 4.5𝑒12𝜔6 + 3.058𝑒15𝜔4 + 2.431𝑒17𝜔2 + 2.673𝑒17  

 

From the above, we get: 

 

 



150 

 

√𝜔12+5.63𝑒4𝜔10+9.169𝑒8𝜔8+4.5𝑒12𝜔6+3.058𝑒15𝜔4+2.431𝑒17𝜔2+2.673𝑒17√[5.1689𝑒8𝑘𝑝𝑃(𝜔)+5.17𝑒8−𝜔6+6.378𝑒4𝜔4−8.638𝑒7𝜔2]2+[5.1689𝑒8𝑘𝑝𝑄(𝜔)+428.8𝜔5−3.786𝑒6𝜔3+5.766𝑒8𝜔]2 ≤ 𝐵      

 

 
 

 

Screenshot of experimental work using LabviewTM 

The following is the Matlab program used to obtain approximated transfer functions. 

  

%This is the programme to obtained the approximated transfer 

function 

%This programme obtained both direct and invers transfer 

function 

clear all 

clc 

%function G1= derict()  

%Transfer function 
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%G1=Direct problem 

%G2=Inverse problem 

L = (0.5*25.4)/1000; 

%Al Thermal properties 

a1=6.9031e-5; 

k1=167;  

rho=2700; 

cp=896; 

bbb=k1/(rho*cp); 

L1=L/2; 

% Al Alloy 2024 T6 Thermal properties 

a2=a1;%7.3-5; 

L2=L/2; 

k2=k1;%177;% AL Alloy 2024 T 6 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

b=[sqrt(a1)*k2]/[sqrt(a2)*k1]; 

y=[L]/([sqrt(a1)]); 

x=[L]/([sqrt(a1)]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%s = zpk('s'); 

s = tf('s'); 

%syms s A w  

%G2=A*(w/((s^2) +(w^2))); 

Px1 = -[(pi/2)*(1)*(1/(x))]^2; 

Px2 = -[(pi/2)*(3)*(1/(x))]^2; 

Px3 = -[(pi/2)*(5)*(1/(x))]^2; 

Px4 = -[(pi/2)*(9)*(1/(x))]^2; 

Px5 = -[(pi/2)*(11)*(1/(x))]^2; 

Px6 = -[(pi/2)*(13)*(1/(x))]^2; 

Px7 = -[(pi/2)*(15)*(1/(x))]^2; 

Px8 = -[(pi/2)*(17)*(1/(x))]^2; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Py1 = -[(pi/2)*(1)*(1/(y))]^2; 

%bw = ureal('bw',5,'Percentage',10) 

Py11 = ureal('Py1',Py1,'Percentage',10); 

Py2 = -[(pi/2)*(3)*(1/(y))]^2; 

Py12 = ureal('Py2',Py2,'Percentage',10); 

Py3 = -[(pi/2)*(5)*(1/(y))]^2; 

Py13 = ureal('Py3',Py3,'Percentage',10); 

Py4 = -[(pi/2)*(9)*(1/(y))]^2; 

Py14 = ureal('Py4',Py4,'Percentage',10); 

Py5 = -[(pi/2)*(11)*(1/(y))]^2; 

Py15 = ureal('Py5',Py5,'Percentage',10); 

Py6 = -[(pi/2)*(13)*(1/(y))]^2; 

Py16 = ureal('Py6',Py6,'Percentage',10); 
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Py7 = -[(pi/2)*(15)*(1/(y))]^2; 

Py8 = -[(pi/2)*(17)*(1/(y))]^2; 

%a1 = (P1*P2*P3*P4*P5*P6)/[(P1-P2)*(P1-P4)*(P1-P3)*(P1-

P5)*(P1-P6)]; 

%a2 = (P1*P2*P3*P4*P5*P6)/[(P2-P1)*(P2-P4)*(P2-P3)*(P2-

P5)*(P2-P6)]; 

%a3 = (P1*P2*P3*P4*P5*P6)/[(P3-P2)*(P3-P4)*(P3-P1)*(P3-

P5)*(P3-P6)]; 

%a4 = (P1*P2*P3*P4*P5*P6)/[(P4-P2)*(P4-P1)*(P4-P3)*(P4-

P5)*(P4-P6)]; 

%a5 = (P1*P2*P3*P4*P5*P6)/[(P5-P2)*(P5-P4)*(P5-P3)*(P5-

P1)*(P5-P6)]; 

%a6 = (P1*P2*P3*P4*P5*P6)/[(P6-P2)*(P6-P4)*(P6-P3)*(P6-

P5)*(P6-P1)]; 

  

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

GcoshD1=[(1/2)+(b/2)]*[(Px1*Px2*Px3*Px4*Px5*Px6)/[(s-Px1)*(s-

Px2)*(s-Px3)*(s-Px4)*(s-Px5)*(s-Px6)]]; 

%GcoshD1=[(1/2)+(b/2)]*[(Px1*Px2)/[(s-Px1)*(s-Px2)]]; 

  

GcoshI1=[(1/2)+(b/2)]*[(Py11*Py12*Py13*Py14)/[(s-Py11)*(s-

Py12)*(s-Py13)*(s-Py14)]]; 

 GcoshI1=[(1/2)+(b/2)]*[(Py1*Py2*Py3*Py4)/[(s-Py1)*(s-Py2)*(s-

Py3)*(s-Py4)]]; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Gdirect=(GcoshD1);%+GcoshD2);%+(Gcosh2+Gcosh22) 

Ginverse=(1)/(GcoshI1);% + GcoshI2); 

Gopen=[Ginverse]*[Gdirect]; 

Gopenr = minreal(Gopen); 

%[z,p,k] = tf2zpk(Gdirect) 

%w = logspace(-0.0001,10,100); 

%w = linspace(0.1,100*pi,1000); 

%opt = bodeoptions;   

%opt.PhaseMatching = 'on'; 

%bode(Gdirect); 

%%%%Gopen.NominalValue 

%%%%get(Gopen) 

%%%%Gopen.Uncertainty 

%margin (Gopen); 

%step(Gopen); 

%hold on 

%Gc=1; 

%GG=Gc*Gopen/(1+Gc*Gopen); 



153 

 

%step(GG); 

%hold on 

%step (Gdirect); 

%grid on 

%GGG=((1/22805)*s^2 +(306.2/22805)*s+1) 

  

%pole(Gopenr); 

 

 

 The following are the two functions used for Matlab 

optimization tools 

  

  

function f = omar(x) 

%KK=22804.74; 

%Wn=sqrt(KK); 

%FF=306.2;%2zetaWn 

%Zeta=FF/(2*Wn); 

%T1=5.5;T2=6.5; 

%x(3)<=[1]; 

Kp=x(1); 

Ki=x(2); 

lam=x(3); 

Kd=x(4);%x(4)=4; 

mu=x(5); 

%Kd=-0.5; 

%x(5)=[0,1]; 

Wcg=0.8; %%%%(rad/sec) 

Phim=(pi*(180-44.9)/180); %%%(degree) 

P=1+Ki*((Wcg)^-lam)*cos(pi*lam/2)+Kd*((Wcg)^mu)*cos(pi*mu/2); 

Q=-Ki*((Wcg)^-lam)*sin(pi*lam/2)+Kd*((Wcg)^mu)*sin(pi*mu/2); 

aa=lam*Ki*(Wcg^(-lam-1))*sin(lam*pi/2)+mu*Kd*(Wcg^(mu-

1))*sin(mu*pi/2); 

bb=-lam*Ki*(Wcg^(-lam-1))*cos(lam*pi/2)+mu*Kd*(Wcg^(mu-

1))*cos(pi*mu/2); 

f = 

5.1689e8*(Kp*(P^2+Q^2))/sqrt(Wcg^12+5.63e4*Wcg^10+9.169e8*Wcg^

8+... 

    4.5e12*Wcg^6+3.058e15*Wcg^4+2.431e17*Wcg^2+2.673e17)-1; 

  

 

 

  

  

  

function [ceq,c] = moham(x) 

%KK=22804.74; 
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%Wn=sqrt(KK); 

%FF=306.2;%2zetaWn 

%Zeta=FF/(2*Wn); 

Kp=x(1); 

Ki=x(2); 

lam=x(3); 

Kd=x(4);%x(4)=4; 

mu=x(5); 

%Kd=; 

%x(5)=[0,1]; 

Wcg=0.8; %%%%(rad/sec) 

Phim=(pi*(180-44.9)/180); %%%(degree) 

P=1+Ki*((Wcg)^-lam)*cos(pi*lam/2)+Kd*((Wcg)^mu)*cos(pi*mu/2); 

Q=-Ki*((Wcg)^-lam)*sin(pi*lam/2)+Kd*((Wcg)^mu)*sin(pi*mu/2); 

aa=lam*Ki*(Wcg^(-lam-1))*sin(lam*pi/2)+mu*Kd*(Wcg^(mu-

1))*sin(mu*pi/2); 

bb=-lam*Ki*(Wcg^(-lam-1))*cos(lam*pi/2)+mu*Kd*(Wcg^(mu-

1))*cos(pi*mu/2); 

ceq(1) =atan(Q/P)-

(atan(0.947*Wcg)+atan(0.1052*Wcg)+atan(0.03788*Wcg)+... 

    

atan(0.01169*Wcg)+atan(0.007825*Wcg)+atan(0.005602*Wcg))+pi-

Phim; 

ceq(2) =((P*aa-Q*bb)/(P^2+Q^2))-

((0.947/(0.897*(Wcg^2)+1))+(0.1052/(0.0011067*(Wcg^2)+1))... 

    +(0.03788/(0.0014349*(Wcg^2)+1))+(0.001169/(1.3666e-

6*(Wcg^2)+1))+... 

    (0.007825/(6.1231e-5*(Wcg^2)+1))+(0.005602/(3.138e-

5*(Wcg^2)+1))); 

%c1eq = [ ]; 

c(2) 

=sqrt(Wcg^12+5.63e4*Wcg^10+9.169e8*Wcg^8+4.5e12*Wcg^6+3.058e15

*Wcg^4+... 

    2.431e17*Wcg^2+2.673e17)/(sqrt([5.1689e8*x(1)*P+5.17e8-

Wcg^6+6.378e4*Wcg^4-... 

    8.638e7*Wcg^2]^2+[5.1689e8*x(1)*Q+5.766e8*Wcg+428.8*Wcg^5-

3.876e6*Wcg^3]^2))+20; 

     

c(1) 

=5.1689e8*x(1)*sqrt(P^2+Q^2)/(sqrt([5.1689e8*x(1)*P+5.17e8-

Wcg^6+... 

    6.378e4*Wcg^4-

8.638e7*Wcg^2]^2+[5.1689e8*x(1)*Q+5.766e8*Wcg+428.8*Wcg^5-

3.876e6*Wcg^3]^2))+20; 

%c2eq = [ ]; 

%ceq =   

%c3eq = [ ]; 
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%c = sqrt(P^2+Q^2)/sqrt([P+(1/x(1))*(1-

Wcg^2/Wn^2)]^2+[Q+2*Zeta*Wcg/x(1)*Wn]^2)+20; 

%ceq = [ ]; 

 

The following is the Matlab function used in the Fsolve from Matlab: 
function F = rootFOPID(x) 

  

%KK=22804.74; 

%Wn=sqrt(KK); 

%FF=306.2;%2zetaWn 

%Zeta=FF/(2*Wn); 

%T1=5.5;T2=6.5; 

Wcg=0.8; %%%%(rad/sec) 

Phim=(pi*(180-44.9)/180); %%%(degree) 

Kp=x(1); 

Ki=x(2); 

lam=x(3); 

Kd=x(4);%x(4)=4; 

mu=x(5); 

P=1+Ki*((Wcg)^-lam)*cos(pi*lam/2)+Kd*((Wcg)^mu)*cos(pi*mu/2); 

Q=-Ki*((Wcg)^-lam)*sin(pi*lam/2)+Kd*((Wcg)^mu)*sin(pi*mu/2); 

aa=lam*Ki*(Wcg^(-lam-1))*sin(lam*pi/2)+mu*Kd*(Wcg^(mu-

1))*sin(mu*pi/2); 

bb=-lam*Ki*(Wcg^(-lam-1))*cos(lam*pi/2)+mu*Kd*(Wcg^(mu-

1))*cos(pi*mu/2); 

%end 

F = [((P*aa-Q*bb)/(P^2+Q^2))-

((0.947/(0.897*(Wcg^2)+1))+(0.1052/(0.0011067*(Wcg^2)+1))... 

    +(0.03788/(0.0014349*(Wcg^2)+1))+(0.001169/(1.3666e-

6*(Wcg^2)+1))+... 

    (0.007825/(6.1231e-5*(Wcg^2)+1))+(0.005602/(3.138e-

5*(Wcg^2)+1))); 

    atan(Q/P)-

[atan(0.947*Wcg)+atan(0.1052*Wcg)+atan(0.03788*Wcg)+... 

    atan(0.01169*Wcg)+atan(0.007825*Wcg)+atan(0.005602*Wcg)]-

Phim+pi;  

5.1689e8*(Kp*(P^2+Q^2))/sqrt(Wcg^12+5.63e4*Wcg^10+9.169e8*Wcg^

8+... 

    4.5e12*Wcg^6+3.058e15*Wcg^4+2.431e17*Wcg^2+2.673e17)-1; 

     5.1689e8*Kp*sqrt(P^2+Q^2)/(sqrt([5.1689e8*Kp*P+5.17e8-

Wcg^6+... 

    6.378e4*Wcg^4-

8.638e7*Wcg^2]^2+[5.1689e8*Kp*Q+5.766e8*Wcg+428.8*Wcg^5-

3.876e6*Wcg^3]^2))+0; 

  

sqrt(Wcg^12+5.63e4*Wcg^10+9.169e8*Wcg^8+4.5e12*Wcg^6+3.058e15*

Wcg^4+... 
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    2.431e17*Wcg^2+2.673e17)/(sqrt([5.1689e8*Kp*P+5.17e8-

Wcg^6+6.378e4*Wcg^4-... 

     8.638e7*Wcg^2]^2+[5.1689e8*Kp*Q+5.766e8*Wcg+428.8*Wcg^5-

3.876e6*Wcg^3]^2))+0]; 

%Feq = [ ]; 
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B: Fractional Proportional Integer Integral Fractional Derivative Controller Design 

 

 The resulted transfer functions for both direct and inverse problems were obtained 

after a Zero-Pole approximation was used for the resulted hyperbolic transfer functions are: 

  

 𝐺1 = 5.169∗108𝑠6+428.7𝑠5+6.337∗104𝑠4+3.785∗106𝑠3+8.636107𝑠2+5.764∗108𝑠+5.169∗108    (B.1) 

  

  

 𝐺2 = 𝑠4+122.5𝑠3+3450𝑠2+2.497∗104𝑠+2.267∗1042.267∗104     (B.2) 

 

From the above two transfer functions, we get our plant transfer function as their 

product, then we simplify the results in the form of Zero-Pole transfer function we get the 

following: 

  

 𝐺 = 𝐺2 ∗ 𝐺1 = 22804.75𝑠2+306.2𝑠+22804.75  (B.3) 

  𝐺 =  𝜔𝑛2𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛2        (B.4) 

From reference [38] we get: 

 |𝐺(𝑗𝜔)| = 1√(1−𝜔2𝜔𝑛2 )2+ 4𝜁2𝜔2/𝜔𝑛2     (B.5) 

  
 𝐴𝑟𝑔[𝐺(𝑗𝜔)] = − 𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2]     (B.6)   

The fractional-order PID controller formula is: 
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 𝐶(𝑠) = 𝑘𝑝[1 + 𝑘𝑖(𝑠)𝜆 + 𝑘𝑑(𝑠)𝜇]     (B.7) 𝐶(𝑗𝜔) = 𝑘𝑝{1 + 𝑘𝑖𝜔−𝜆  [cos (𝜆𝜋2 ) + 𝑗𝑠𝑖𝑛 (−𝜆𝜋2 )] + 𝑘𝑑 (𝜔)𝜇 [cos (𝜇𝜋2 ) + 𝑗 sin (𝜇𝜋2 )]}   

 

For the current controller, we have 𝜆 = 1,   𝐶(𝑗𝜔) = 𝑘𝑝{1 + 𝑘𝑖𝜔−1 cos (𝜋2) +𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 ) 

 +𝑗 [𝑘𝑖𝜔−1 sin (−𝜋2 ) + 𝑘𝑑(𝜔)𝜇sin (𝜇𝜋2 )]}     (B.8) 

 

 𝐶(𝑗𝜔) = 𝑘𝑝{1 +𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 ) + 𝑗 [−𝑘𝑖𝜔−1 + 𝑘𝑑(𝜔)𝜇sin (𝜇𝜋2 )]}   (B.9) 

Let: 

 𝑃(𝜔) = 1   +𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 )    (B.10) 

And 

 𝑄(𝜔) = − 𝑘𝑖𝜔−1 + 𝑘𝑑(𝜔)𝜇sin (𝜇𝜋2 )    (B.11) 

Then 

 𝐴𝑟𝑔[𝐶(𝑗𝜔)] = 𝑡𝑎𝑛−1[𝑄(𝜔)𝑃(𝜔)]      (B.12) 

 

 |𝐶(𝑗𝜔)| = 𝑘𝑝√𝑃2(𝜔) + 𝑄2(𝜔)      (B.13) 

 

The open loop transfer function is: 

 L (𝑗𝜔) = C (𝑗𝜔) G (𝑗𝜔)                  (B.14) 

 

We want to satisfy five conditions to solve for variables: 

1 -   Robustness: 𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0 
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2 - Gain crossover frequency: |𝐿(𝑗𝜔)|𝑑𝐵 = 0 

3 - Phase Margin: 𝐴𝑟𝑔[𝐿(𝑗𝜔)]|𝜔=𝜔𝑐𝑔 =  −𝜋 +  𝜑𝑚 

4 - Noise rejection: 

|𝑇(𝑗𝜔) = 𝐶(𝑗𝜔)𝐺(𝑗𝜔)1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)|𝑑𝐵 ≤ 𝐴 𝑑𝐵 

Where A is a designed value. 

5 - Disturbance rejection: |𝑆(𝑗𝜔) = 11+𝐶(𝑗𝜔)𝐺(𝑗𝜔)|𝑑𝐵 ≤ 𝐵 𝑑𝐵  

Where B is a designed value.  

According to condition (2) we get: 

 
𝑘𝑝√𝑃2(𝜔)+𝑄2(𝜔)√(1−𝜔2𝜔𝑛2 )2+ 4𝜁2𝜔2/𝜔𝑛2 = 1   (B.15) 

From condition (3) we get: 

 𝐴𝑟𝑔[𝐿(𝑗𝜔)]|𝜔=𝜔𝑐𝑔 =  −𝜋 +  𝜑𝑚   (B.16) 

 

 𝑡𝑎𝑛−1 [𝑄(𝜔)𝑃(𝜔)] −  𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2]  =  −𝜋 + 𝜑𝑚      (B.17) 

From condition (1) we get: 

𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0        

 𝐴𝑟𝑔[𝐿(𝑗𝜔)]|𝜔=𝜔𝑐𝑔 = 𝑡𝑎𝑛−1 [𝑄(𝜔)𝑃(𝜔)] −  𝑡𝑎𝑛−1 [2𝜁𝜔/𝜔𝑛𝜔𝑛2 − 𝜔2]  (B.18) 

To get the derivative of  
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𝑑(𝑡𝑎𝑛−1[ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2])𝑑𝜔   

We assume: 

𝑦1 =   𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2− 𝜔2] 

 Then 

 tan 𝑦1 =  2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2 

 From it we find 

  
𝑑𝑑𝜔 [tan 𝑦1] =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2  

 Which is 

 
1𝑐𝑜𝑠2𝑦1 𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2  

 Then 

 
𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2 𝑐𝑜𝑠2𝑦1𝑐𝑜𝑠2𝑦1+𝑠𝑖𝑛2𝑦1  

And 

  
𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔𝑐𝑔2)𝜔𝑛+4𝜁𝜔𝑐𝑔2𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)2 1[1+( 2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 − 𝜔𝑐𝑔2)2]  

Simplifying we get: 

𝑑𝑦1𝑑𝜔 =  2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2    
To get the 

 
𝑑(𝑡𝑎𝑛−1[𝑄(𝜔)𝑃(𝜔)])𝑑𝜔   

We assume: 

𝑦2 =   𝑡𝑎𝑛−1 [𝑄(𝜔)𝑃(𝜔)] 
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Then  

  tan  𝑦2 =   𝑄(𝜔)𝑃(𝜔) 1𝑐𝑜𝑠2𝑦2 𝑑𝑦2𝑑𝜔 =   𝑃(𝜔) ∗ 𝑎𝑎 − 𝑄(𝜔) ∗ 𝑝𝑝𝑃(𝜔)2  

Where: 𝑏𝑏 = 𝑑𝑃𝑑𝜔 =  𝜇𝑘𝑑(𝜔)𝜇−1cos (𝜇𝜋2 ) 

And  𝑎𝑎 = 𝑑𝑄𝑑𝜔 =  𝑘𝑖𝜔−2 + 𝜇𝑘𝑑(𝜔)𝜇−1sin (𝜇𝜋2 ) 𝑑𝑦2𝑑𝜔 =   𝑃(𝜔) ∗ 𝑎𝑎 − 𝑄(𝜔) ∗ 𝑝𝑝𝑃(𝜔)2 𝑐𝑜𝑠2𝑦2𝑐𝑜𝑠2𝑦2 + 𝑠𝑖𝑛2𝑦2 𝑑𝑦2𝑑𝜔 =   𝑃(𝜔) ∗ 𝑎𝑎 − 𝑄(𝜔) ∗ 𝑝𝑝𝑃(𝜔)2 𝑃(𝜔)2𝑃(𝜔)2 + 𝑄(𝜔)2 𝑑𝑦2𝑑𝜔 =   𝑃(𝜔) ∗ 𝑎𝑎 − 𝑄(𝜔) ∗ 𝑝𝑝𝑃(𝜔)2 + 𝑄(𝜔)2  𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 =  𝑑𝑦2𝑑𝜔  −  𝑑𝑦1𝑑𝜔  

 

  𝑃(𝜔)∗𝑎𝑎−𝑄(𝜔)∗𝑝𝑝𝑃(𝜔)2+𝑄(𝜔)2 − 2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2 =  0  (B.19) 

From condition (4) we get: 

| 𝐶(𝑗𝜔)𝐺(𝑗𝜔)1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| ≤ 𝐴 𝑑𝐵𝑑𝐵 

 | 𝐶(𝑗𝜔)𝐺(𝑗𝜔)1+𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  |𝐶(𝑗𝜔)𝐺(𝑗𝜔)||1+𝐶(𝑗𝜔)𝐺(𝑗𝜔)|   (B.20) 

We have: 

|𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  𝑘𝑝√𝑃2(𝜔) + 𝑄2(𝜔)√(1 − 𝜔2𝜔𝑛2)2 +  4𝜁2𝜔2/𝜔𝑛2
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And 

|1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  |1 + 𝐾𝑝{𝑃(𝜔) + 𝑗𝑄(𝜔)} ∗ 11 − 𝜔2𝜔𝑛2 +  𝑗2𝜁 𝜔𝜔𝑛| 
|1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  |1 − 𝜔2𝜔𝑛2 +  𝑗2𝜁 𝜔𝜔𝑛 +  𝐾𝑝{𝑃(𝜔) + 𝑗𝑄(𝜔)}||1 − 𝜔2𝜔𝑛2 +  𝑗2𝜁 𝜔𝜔𝑛|  

|1 + 𝐶(𝑗𝜔)𝐺(𝑗𝜔)| =  𝐾𝑝
√[(1 − 𝜔2𝜔𝑛2)2𝐾𝑝 + 𝑃(𝑤)]2 + [𝑄(𝑤) + 2𝜁 𝜔𝜔𝑛𝐾𝑝]2

√(1 − 𝜔2𝜔𝑛2)2 +  4𝜁2𝜔2/𝜔𝑛2
 

Then Equation B.20 becomes: 

 
|𝐶(𝑗𝜔)𝐺(𝑗𝜔)||1+𝐶(𝑗𝜔)𝐺(𝑗𝜔)| = √𝑃2(𝜔)+𝑄2(𝜔)

√[(1−𝜔2𝜔𝑛2 )2𝐾𝑝 +𝑃(𝑤)]2+[𝑄(𝑤)+2𝜁 𝜔𝜔𝑛𝐾𝑝]2
≤ 𝐴 𝑑𝐵  (B.21) 
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C: Fractional Proportional Derivative Controller Design 

 

After we get the Transfer function to our plant: 

  𝐺1 = 

 
5.169∗108𝑠6+428.7𝑠5+6.337∗104𝑠4+3.785∗106𝑠3+8.636107𝑠2+5.764∗108𝑠+5.169∗108    (C.1) 

  

  

 𝐺2 = 𝑠4+122.5𝑠3+3450𝑠2+2.497∗104𝑠+2.267∗1042.267∗104     (C.2) 

 

From the above two transfer functions, we get our plant transfer function as a product 

of both of them, then we simplify the results in the form of Zero-Pole transfer function we get 

the following: 

  

 𝐺 = 𝐺2 ∗ 𝐺1 = 22804.75𝑠2+306.2𝑠+22804.75  (C.3) 

  𝐺 =  𝜔𝑛2𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛2        (C.4) 

From reference [38] we get: 

 |𝐺(𝑗𝜔)| = 1√(1−𝜔2𝜔𝑛2 )2+ 4𝜁2𝜔2/𝜔𝑛2     (C.5) 

 And 

 𝐴𝑟𝑔[𝐺(𝑗𝜔)] = − 𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2]     (C.6)  
 

The fractional order PD controller formula is [44][45]: 

 𝐶(𝑗𝜔) = 𝑘𝑝[1 +  𝑘𝑑(𝑗𝜔)𝜇]     (C.7) 
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 𝐶(𝑗𝜔) = 𝑘𝑝[ 1 +  𝑘𝑑(𝜔)𝜇 cos (𝜇𝜋2 ) + 𝑗𝑘𝑑(𝜔)𝜇 sin (𝜇𝜋2 )]   (C.8) 

 

 𝐴𝑟𝑔[𝐶(𝑗𝜔)] = 𝑡𝑎𝑛−1[sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔)𝜇cos[(1− 𝜇)𝜋2 ] ] −  (1− 𝜇)𝜋2       (C.9) 

 

 |𝐶(𝑗𝜔)| = 𝐾𝑝 √[1 + 𝐾𝑑𝜔𝜇cos (𝜇𝜋2 )]2 + [𝐾𝑑𝜔𝜇sin (𝜇𝜋2 )]2        (C.10) 

 

The open-loop transfer function is: 

 L (𝑗𝜔) = C (𝑗𝜔) G (𝑗𝜔)                  (C.11) 

We want to satisfy three conditions to solve for the controller variables: 

1 -   Robustness: 

                  
𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0 

 

2 - Gain crossover frequency: 

                           |𝐿(𝑗𝜔)|𝑑𝐵 = 0 

3 - Phase Margin: 𝐴𝑟𝑔[𝐿(𝑗𝜔)]|𝜔=𝜔𝑐𝑔 =  −𝜋 +  𝜑𝑚 

From condition (3) we get: 

 

 𝑡𝑎𝑛−1[sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔𝑐𝑔)𝜇cos[(1− 𝜇)𝜋2 ] ] −  (1− 𝜇)𝜋2  −  𝑡𝑎𝑛−1 [2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 −𝜔𝑐𝑔2 ]  =  −𝜋 + 𝜑𝑚      (C.12) 

 

From criteria (2) we get: 
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  𝐾𝑝 √[1 +𝐾𝑑𝜔𝑐𝑔𝜇 cos (𝜇𝜋2 )]2+[𝐾𝑑𝜔𝑐𝑔𝜇sin (𝜇𝜋2 )]2
√(1−𝜔2𝜔𝑛2 )2+ 4𝜁2𝜔2/𝜔𝑛2 = 1       (C.13) 

From condition (1) we get: 

 
𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0     (C.14) 

 

 𝐴𝑟𝑔[𝐿(𝑗𝜔)] = 𝑡𝑎𝑛−1[sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔)𝜇cos[(1− 𝜇)𝜋2 ] ] −  (1− 𝜇)𝜋2 −  𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2]    (C.15)    

 

To get the derivative of  
𝑑(𝑡𝑎𝑛−1[ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2])𝑑𝜔  we assume: 

𝑦1 =   𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2− 𝜔2] 

 Then 

 tan 𝑦1 =  2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2 

 From it we find 

  
𝑑𝑑𝜔 [tan 𝑦1] =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2  

 Which is 

 
1𝑐𝑜𝑠2𝑦1 𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2  

 Then 

 
𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2 𝑐𝑜𝑠2𝑦1𝑐𝑜𝑠2𝑦1+𝑠𝑖𝑛2𝑦1  

And 

  
𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔𝑐𝑔2)𝜔𝑛+4𝜁𝜔𝑐𝑔2𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)2 1[1+( 2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 − 𝜔𝑐𝑔2)2]  
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Simplifying we get: 𝑑𝑦1𝑑𝜔 =  2𝜁𝜔𝑛(𝜔𝑛2− 𝜔𝑐𝑔2) + 4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2− 𝜔𝑐𝑔2)2 + (2𝜁𝜔𝑛𝜔𝑐𝑔)2  

We also get the derivative of 

  

𝑑(𝑡𝑎𝑛−1[sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔)𝜇cos[(1− 𝜇)𝜋2 ] ])𝑑𝜔   

In the same manner: 

Assume 

 𝑦2 = 𝑡𝑎𝑛−1 [sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔)𝜇cos[(1− 𝜇)𝜋2 ] ]  

Then 

 tan 𝑦2 =  [sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔)𝜇cos[(1− 𝜇)𝜋2 ] ]   

From it we find 

 
𝑑𝑑𝜔 [tan 𝑦2] =   𝜇𝑘𝑑𝜔𝜇−1cos[(1− 𝜇)𝜋2 ] 

Which is 

 
1𝑐𝑜𝑠2𝑦2 𝑑𝑦2𝑑𝜔 =  𝜇𝑘𝑑𝜔𝜇−1cos[(1− 𝜇)𝜋2 ]  

From it we get 

 
𝑑𝑦2𝑑𝜔 =  𝜇𝑘𝑑𝜔𝜇−1cos[(1− 𝜇)𝜋2 ] [ 11+𝑡𝑎𝑛2𝑦2] 
We have 

 𝑡𝑎𝑛2𝑦2 = [sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔)𝜇cos[(1− 𝜇)𝜋2 ] ]2  

Which is can be rewritten as 
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 𝑡𝑎𝑛2𝑦2 =  [sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔)𝜇]2cos2[(1− 𝜇)𝜋2 ]    

From the above we get  

𝑡𝑎𝑛2𝑦2 + 1 =  cos2 [(1 −  𝜇)𝜋2 ] + [sin [(1 −  𝜇)𝜋2 ] + 𝑘𝑑(𝜔)𝜇]2 cos2 [(1 −  𝜇)𝜋2 ]  

We use this to get  

𝑑𝑦2𝑑𝜔 =  𝜇𝑘𝑑𝜔𝜇−1 cos [(1 −  𝜇)𝜋2 ]cos2 [(1 −  𝜇)𝜋2 ] + [sin [(1 −  𝜇)𝜋2 ] + 𝑘𝑑(𝜔)𝜇]2 

 

Applying this obtained derivative in Equation C.14, we get: 

 

 
𝜇𝐾𝑑𝜔𝑐𝑔𝜇−1cos[(1− 𝜇)𝜋2 ]𝑐𝑜𝑠2(1− 𝜇)𝜋2 +[𝑠𝑖𝑛(1− 𝜇)𝜋2 +𝐾𝑑𝜔𝑐𝑔𝜇 ]2 − 2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2 = 0     (C.16) 

 

From Equation C.12, we can get a relation between 𝐾𝑑 and 𝜇 as follows: 

 

 𝑡𝑎𝑛−1[sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔𝑐𝑔)𝜇cos[(1− 𝜇)𝜋2 ] =  (1− 𝜇)𝜋2 + 𝑡𝑎𝑛−1 [2𝜁𝜔𝑛𝜔𝑐𝑔𝜔𝑛2 −𝜔𝑐𝑔2 ] − 𝜋 +  𝜑𝑚     (C.17) 

 

 [sin[(1− 𝜇)𝜋2 ]+𝑘𝑑(𝜔𝑐𝑔)𝜇cos[(1− 𝜇)𝜋2 ] = tan { (−𝜇)𝜋2 − 𝜋2 + 𝑡𝑎𝑛−1 [2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 −𝜔𝑐𝑔2 ] +  𝜑𝑚}    (C.18) 

 

 𝐾𝑑 = 1𝜔𝑐𝑔𝜇 tan { (−𝜇)𝜋2 − 𝜋2 +  𝑡𝑎𝑛−1 [2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 −𝜔𝑐𝑔2 ] +  𝜑𝑚} cos [(1− 𝜇)𝜋2 ] − 1𝜔𝑐𝑔𝜇 sin [(1− 𝜇)𝜋2 ]   (C.19) 

 

From Equation C.16, we can get a relation between 𝐾𝑑 and 𝜇 as follows: 
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𝜇𝐾𝑑𝜔𝑐𝑔𝜇−1cos [(1 −  𝜇)𝜋2 ]𝑐𝑜𝑠2 (1 −  𝜇)𝜋2 + 𝑠𝑖𝑛2 [(1 −  𝜇)𝜋2 ] + 𝑘𝑑2𝜔𝑐𝑔2𝜇 + 2𝑘𝑑𝜔𝑐𝑔𝜇 sin [(1 −  𝜇)𝜋2 ] – 

 
2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2 = 0     (C.20) 

 

 
𝜇𝐾𝑑𝜔𝑐𝑔𝜇−1cos[(1− 𝜇)𝜋2 ]1+𝑘𝑑2𝜔𝑐𝑔2𝜇+2𝑘𝑑𝜔𝑐𝑔𝜇 sin [(1− 𝜇)𝜋2 ] = 2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2    (C.21) 

Assume 

 𝐴 =  2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2    

Then Equation C.21 becomes as follows: 

 𝜇𝐾𝑑𝜔𝑐𝑔𝜇−1cos [(1− 𝜇)𝜋2 ] = 𝐴{1 + 𝑘𝑑2𝜔𝑐𝑔2𝜇 + 2𝑘𝑑𝜔𝑐𝑔𝜇 sin [(1− 𝜇)𝜋2 ]}   (C.22) 

Assume 

 𝐵 =  2𝐴𝜔𝑐𝑔𝜇 sin [(1− 𝜇)𝜋2 ] − 𝜇𝜔𝑐𝑔𝜇−1cos [(1− 𝜇)𝜋2 ]    
Then Equation C.22 becomes as follows: 

 𝐴𝑘𝑑2𝜔𝑐𝑔2𝜇 +  𝐵𝑘𝑑 +  𝐴 = 0    (C.23) 

From Equation C.23, we can find a relation between 𝐾𝑑 and 𝜇 as follows: 

 𝐾𝑑 =  − 𝐵 ± √𝐵2− 4𝐴2𝜔𝑐𝑔2𝜇2𝐴𝜔𝑐𝑔2𝜇      (C.24)    
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D: Fractional Proportional Integral Controller Design 

 

After we get the Transfer function to our plant: 

  

 𝐺1 = 5.169∗108𝑠6+428.7𝑠5+6.337∗104𝑠4+3.785∗106𝑠3+8.636107𝑠2+5.764∗108𝑠+5.169∗108    (D.1) 

  

  

 𝐺2 = 𝑠4+122.5𝑠3+3450𝑠2+2.497∗104𝑠+2.267∗1042.267∗104     (D.2) 

 

From the above two transfer functions, we get the plant transfer function as their 

product, then we simplify the results in the form of Zero-Pole transfer function we get the 

following: 

  

 𝐺 = 𝐺2 ∗ 𝐺1 = 22804.75𝑠2+306.2𝑠+22804.75  (D.3) 

 

  𝐺 =  𝜔𝑛2𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛2        (D.4) 

From reference [38] we get: 

 |𝐺(𝑗𝜔)| = 1√(1−𝜔2𝜔𝑛2 )2+ 4𝜁2𝜔2/𝜔𝑛2     (D.5) 

  
 𝐴𝑟𝑔[𝐺(𝑗𝜔)] = − 𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2]     (D.6) 

And  
The fractional-order PI controller formula is: 
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 𝐶(𝑗𝜔) = 𝑘𝑝[1 +  𝑘𝐼(𝑗𝜔)−𝜆]     (D.7) 

 

 𝐶(𝑗𝜔) = 𝑘𝑝[ 1 +  𝑘𝐼(𝜔)−𝜆 cos (𝜇𝜋2 ) − 𝑗𝑘𝐼(𝜔)−𝜆 sin (𝜇𝜋2 )]   (D.8) 

 

 𝐴𝑟𝑔[𝐶(𝑗𝜔)] = 𝑡𝑎𝑛−1[ 𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 ) ]     (D.9) 

 

 |𝐶(𝑗𝜔)| = 𝐾𝑝 √[1 +  𝑘𝐼(𝜔)−𝜆 cos (𝜇𝜋2 )]2 + [𝑘𝐼(𝜔)−𝜆 sin (𝜇𝜋2 )]2      (D.10) 

 

The open-loop transfer function is: 

 L (𝑗𝜔) = C (𝑗𝜔) G (𝑗𝜔)                  (D.11) 

We want to satisfy three conditions to solve for the controller variables: 

1 -   Robustness: 

                  
𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0 

 

2 - Gain crossover frequency: 

                           |𝐿(𝑗𝜔)|𝑑𝐵 = 0 

3 - Phase Margin: 𝐴𝑟𝑔[𝐿(𝑗𝜔)]|𝜔=𝜔𝑐𝑔 =  −𝜋 +  𝜑𝑚 

From condition (3) we get: 

 𝑡𝑎𝑛−1[ 𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 ) ] −   𝑡𝑎𝑛−1 [2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 −𝜔𝑐𝑔2 ]  =  −𝜋 +  𝜑𝑚      (D.12) 

From condition (2) we get: 

  𝐾𝑝 √[1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 )]2+[𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )]2
√(1−𝜔2𝜔𝑛2 )2+ 4𝜁2𝜔2/𝜔𝑛2 = 1       (D.13) 
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From condition (1) we get: 

 
𝑑(𝐴𝑟𝑔[𝐿(𝑗𝜔)]𝑑𝜔 |𝜔=𝜔𝑐𝑔 = 0     (D.14) 

 

 𝐴𝑟𝑔[𝐿(𝑗𝜔)] = 𝑡𝑎𝑛−1[ 𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 ) ] −   𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2]    (D.15)    

 

To get the derivative of 

  
𝑑(𝑡𝑎𝑛−1[ 2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2])𝑑𝜔   

We assume: 

𝑦1 =   𝑡𝑎𝑛−1 [ 2𝜁𝜔𝜔𝑛𝜔𝑛2− 𝜔2] 

 Then 

 tan 𝑦1 =  2𝜁𝜔𝜔𝑛𝜔𝑛2 − 𝜔2 

 From it we find 

  
𝑑𝑑𝜔 [tan 𝑦1] =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2  

 Which is 

 
1𝑐𝑜𝑠2𝑦1 𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2  

 Then 

 
𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔2)𝜔𝑛+4𝜁𝜔2𝜔𝑛(𝜔𝑛2 − 𝜔2)2 𝑐𝑜𝑠2𝑦1𝑐𝑜𝑠2𝑦1+𝑠𝑖𝑛2𝑦1  

And 

  
𝑑𝑦1𝑑𝜔 =  2𝜁(𝜔𝑛2 − 𝜔𝑐𝑔2)𝜔𝑛+4𝜁𝜔𝑐𝑔2𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)2 1[1+( 2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 − 𝜔𝑐𝑔2)2]  
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Simplify, we get: 𝑑𝑦1𝑑𝜔 =  2𝜁𝜔𝑛(𝜔𝑛2− 𝜔𝑐𝑔2) + 4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2− 𝜔𝑐𝑔2)2 + (2𝜁𝜔𝑛𝜔𝑐𝑔)2  

We also get the derivative of 

  

𝑑(𝑡𝑎𝑛−1[ 𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 ) ])𝑑𝜔   

In the same manner: 

Assume 

 𝑦2 = 𝑡𝑎𝑛−1[ 𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 ) ]  
Then 

 tan 𝑦2 = [ 𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 ) ]     
From it we find  

 
𝑑𝑑𝜔 [tan 𝑦2] = [[1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜆𝜋2 )][−𝜆𝑘𝐼(𝜔)(−𝜆−1) cos(𝜆𝜋2 )]−[𝑘𝐼(𝜔)−𝜆 sin(𝜆𝜋2 )(𝜆𝑘𝐼(𝜔)(−𝜆−1) sin(𝜆𝜋2 )][1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜆𝜋2 )]2  ] 

Which is 

 
1𝑐𝑜𝑠2𝑦2 𝑑𝑦2𝑑𝜔 = [−𝜆𝑘𝐼(𝜔)(−𝜆−1) cos(𝜆𝜋2 )]−[𝜆𝑘𝐼2(𝜔)−2𝜆−1][𝑠𝑖𝑛2(𝜆𝜋2 )+ 𝑐𝑜𝑠2(𝜆𝜋2 )][1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜆𝜋2 )]2  

From it we get 

 
𝑑𝑦2𝑑𝜔 =  [−𝜆𝑘𝐼(𝜔)(−𝜆−1) cos(𝜆𝜋2 )]−[𝜆𝑘𝐼2(𝜔)−2𝜆−1][1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜆𝜋2 )]2 [ 11+𝑡𝑎𝑛2𝑦2] 
We have 

 𝑡𝑎𝑛2𝑦2 = [ 𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 )]2  

From the above we get  
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𝑡𝑎𝑛2𝑦2 + 1 =  [1 +  𝑘𝐼(𝜔)−𝜆 cos (𝜇𝜋2 )]2 + [𝑘𝐼(𝜔)−𝜆 sin (𝜇𝜋2 )]2 [1 +  𝑘𝐼(𝜔)−𝜆 cos (𝜇𝜋2 )]2  

We use this to get  

𝑑𝑦2𝑑𝜔 =  [−𝜆𝑘𝐼(𝜔)(−𝜆−1) cos (𝜆𝜋2 )] − [𝜆𝑘𝐼2(𝜔)−2𝜆−1][1 +  𝑘𝐼(𝜔)−𝜆 cos (𝜇𝜋2 )]2 + [𝑘𝐼(𝜔)−𝜆 sin (𝜇𝜋2 )]2 

 

Apply these obtained derivatives in Equation D.14, we get: 

 

 
[−𝜆𝑘𝐼(𝜔)(−𝜆−1) cos(𝜆𝜋2 )]−[𝜆𝑘𝐼2(𝜔)−2𝜆−1][1+ 𝑘𝐼(𝜔)−𝜆 cos(𝜇𝜋2 )]2+[𝑘𝐼(𝜔)−𝜆 sin(𝜇𝜋2 )]2 − 2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2 = 0     (D.16) 

 

From Equation D.12, we can get a relation between 𝐾𝐼 and 𝜆 as follows: 

 𝑡𝑎𝑛−1[ 𝑘𝐼(𝜔𝑐𝑔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔𝑐𝑔)−𝜆 cos(𝜇𝜋2 )] =  𝑡𝑎𝑛−1 [2𝜁𝜔𝑛𝜔𝑐𝑔𝜔𝑛2 −𝜔𝑐𝑔2 ] − 𝜋 +  𝜑𝑚     (D.17) 

 

 [ 𝑘𝐼(𝜔𝑐𝑔)−𝜆 sin(𝜇𝜋2 )1+ 𝑘𝐼(𝜔𝑐𝑔)−𝜆 cos(𝜇𝜋2 )] = tan { −𝜋 + 𝑡𝑎𝑛−1 [2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 −𝜔𝑐𝑔2 ] +  𝜑𝑚}    (D.18) 

 

 𝑘𝐼(𝜔𝑐𝑔)−𝜆 sin (𝜇𝜋2 ) =  tan { −𝜋 +  𝑡𝑎𝑛−1 [2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 −𝜔𝑐𝑔2 ] + 𝜑𝑚}[1 +                                                       𝑘𝐼(𝜔𝑐𝑔)−𝜆 cos (𝜇𝜋2 )]      (D.19) 

 

 𝐾𝐼 =   tan { −𝜋+ 𝑡𝑎𝑛−1[2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 −𝜔𝑐𝑔2 ]+ 𝜑𝑚}
−(𝜔𝑐𝑔)−𝜆 cos(𝜇𝜋2 ) tan{ −𝜋+ 𝑡𝑎𝑛−1[2𝜁𝜔𝑐𝑔𝜔𝑛𝜔𝑛2 −𝜔𝑐𝑔2 ]+ 𝜑𝑚}+(𝜔𝑐𝑔)−𝜆 sin(𝜇𝜋2 )    (D.20) 

From Equation D.16, we can get a relation between 𝐾𝐼 and 𝜆 as follows: 

 
[−𝜆𝑘𝐼(𝜔𝑐𝑔)(−𝜆−1) cos(𝜆𝜋2 )]−[𝜆𝑘𝐼2(𝜔𝑐𝑔)−2𝜆−1][1+ 𝑘𝐼(𝜔𝑐𝑔)−𝜆 cos(𝜇𝜋2 )]2+[𝑘𝐼(𝜔𝑐𝑔)−𝜆 sin(𝜇𝜋2 )]2 − 2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2 = 0     (D.21) 
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[−𝜆𝑘𝐼(𝜔𝑐𝑔)(−𝜆−1) cos(𝜆𝜋2 )]−[𝜆𝑘𝐼2(𝜔𝑐𝑔)−2𝜆−1]1+𝑘𝐼2𝜔𝑐𝑔−2𝜆+2𝑘𝐼𝜔𝑐𝑔−𝜆cos [𝜆𝜋2 ]  = 2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2    (D.22) 

Assume 

 𝐴 =  2𝜁𝜔𝑛(𝜔𝑛2 − 𝜔𝑐𝑔2)+4𝜁𝜔𝑛𝜔𝑐𝑔2(𝜔𝑛2 − 𝜔𝑐𝑔2)2+(2𝜁𝜔𝑛𝜔𝑐𝑔)2    

Then Equation D.22 becomes as follows: 

 

 [−𝜆𝑘𝐼(𝜔𝑐𝑔)(−𝜆−1) cos (𝜆𝜋2 )] − [𝜆𝑘𝐼2(𝜔𝑐𝑔)−2𝜆−1] = 𝐴{1 + 𝑘𝐼2𝜔𝑐𝑔−2𝜆 + 2𝑘𝐼𝜔𝑐𝑔−𝜆cos [𝜆𝜋2 ]}  (D.23) 

Assume 

 𝐵 =  2𝐴𝜔𝑐𝑔−𝜆 cos [𝜆𝜋2 ]+𝜆𝜔𝑐𝑔−𝜆−1cos [𝜆𝜋2 ]    
Then Equation D.23 becomes as follows: 

 

 𝑘𝑑2[𝐴𝜔𝑐𝑔2𝜇 + 𝜆(𝜔𝑐𝑔)−2𝜆−1] +  𝐵𝑘𝑑 +  𝐴 = 0    (D.24) 

 

From Equation D.24, we can find the relation between 𝐾𝐼  and 𝜆 as follows: 

 

 𝐾𝐼 =  − 𝐵 ± √𝐵2− 4𝐴[𝐴𝜔𝑐𝑔−2𝜆+𝜆(𝜔𝑐𝑔)−2𝜆−1]2[𝐴𝜔𝑐𝑔−2𝜆+𝜆(𝜔𝑐𝑔)−2𝜆−1]      (D.25)   
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