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Abstract. Customized patient drug delivery overcomes classic medicine setbacks such as side effects, improper drug absorption or slow action. 

Nanorobots can be successfully used for targeted patient-specific drug administration, but they must be reliable in the entire circulatory system 

environment. This paper analyzes the possibility of fractional order control applied to the nanomedicine field. The parameters of a fractional 

order proportional integral controller are determined with the purpose of controlling the velocity of the nanorobot in non-Newtonian fluids 

envisioning the blood flow in the circulatory system.
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the drug are low and the body struggles to absorb enough. Also, 

the drug may have the proper solubility, but the body removes 

it before it has enough time to provide benefits. There is also 

the issue of side effects caused by excessive substance or poor 

delivery of it at the site of the diseases. For example, cancer 

targeted drugs must act solely on the affected cells and ignore 

the healthy tissue. Nanomedicine can play an important role in 

eliminating side effects, provide faster action and improving 

the quality of the treatment [10‒13]. The real-life applicability 
with its drawbacks and difficulties such as body rejection and 

determining the particular treatment scheme for individual pa-

tients are described in [12].
The paper presents some preliminary results regarding the 

design of a velocity control system for a nanorobot in non-New-

tonian fluids. Since previous research has shown that the char-

acteristics of non-Newtonian fluids are better represented using 

fractional order models [8], the velocity control system is also 
based on a fractional order controller. When compared to a clas-

sical, integer-order controller, fractional order approaches in 

control strategies prove superior in terms of stability, robustness 

and honoring design specifications [14, 15].
The paper is structured as follows. After the Introduction, 

the second section describes the dedicated experimental plat-

form that will be further used to validate the results presented in 

this paper. The third section describes the design of a fractional 

order controller, whereas the actual tuning of this controller for 

the nanorobot velocity is detailed in section four. Finally, some 

concluding remarks are presented in the last section, as well as 

some future research ideas.

2. Towards a dedicated experimental platform

2.1. Design of the test stand. The circulatory system simulator 

is realized based on the myRIOTM equipment, which is Lab-

VIEWTM programmable.

1. Introduction

Several possibilities of defining real or complex number powers 

of the differentiation and integration operators have been in-

tensely studied in the last years. The popularity of fractional cal-

culus has increased in the control engineering field in the areas 

of process modeling and controller tuning such as the fractional 

order proportional integrative derivative (FOPID) controller 

[1‒3]. The results obtained by using fractional operators con-

sisted of more accurate modeling of physical phenomena and 

obtaining controllers that performed better when compared to 

the classic PID controller [4]. In the case of the fractional order 
PID, there are more parameters to be tuned than the integer 

order. The tuning of the controller is usually done by solving 

a system of equations in the frequency domain involving the 

phase margin, gain crossover frequency and robustness [5‒7].
Newton’s law of viscosity is the ability of a fluid to re-

sist gradual deformation caused by shear of tensile stresses. 

A non-Newtonian fluid is dependent on shear rate and shear 

rate history. Non-Newtonian fluids can be modeled using the 

Navier-Stokes equation over linearized interval, which may 

become obsolete at limit flows [8]. One classic example of 
such a fluid is the blood. One dimensional blood flow can be 

successfully modeled using fractional order operators. The in-

terplay between viscous dissipations and elastic energy storage 

is modelled through a single fractional order parameter α [9]. 
A physically accurate model for the blood flow brings great 

improvements in understanding and improving the nanomedi-

cine field. Nanotechnology is currently used for targeted drug 

delivery that overcomes the problems encountered in classic 

medicine. There are cases in which the solubility properties of 
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The system consists of analog and digital lines, serial inter-

faces of UART type, I2C or SPI, Wi-Fi and USB communication 

(master and slave) as can be seen in the diagram from Fig. 1.

Among the advantages there are: flexibility, ease of pro-

gramming programmable (because of the graphic programming 

language) and real-time performance given by the operating 

system and the integrated FPGA (Field Programmable Gate 

Arrays).

The design of the test stand is detailed in Fig. 2. The vari-
able flow pump CM10P7‒1‒24 ensures a variable flow and 
a similar profile as the one in the circulatory system. The pump 

needs +24 V and can generate a flow of up to 15 liters per 
minute. The driver for the pump, EM-174A, allows a variable 
or continuous command of the flow and needs between +10 V 
and +35 V to operate.

Closing the control loop is possible because of the flow-

meter SNS-FLOW201 with a flow between 1 and 30 liters in 
a minute. The supply voltage is 5‒18 V while the output is 
a TTL frequency signal.

The concentration is measured with 3 electrodes (CE, RE, 
WE) of type DS 550 and dedicated electronics that ensures 

a certain impedance, reference signal generation and signal 

processing. The integration of the module in the submersible 

is limited because of the circuit dimensions and the necessity of 

a supply voltage between 10 V and 15 V that requires another 
2 commutation circuits. In the implemented configuration, the 
myRIOTM controller gives the supply voltage of ±15.0 V.

2.2. Design of the submersible. The submersible device has 

one motor for propulsion with a propeller bigger than the fu-

selage that can rotate in both directions. The propeller can 

generate a current in the fluid helping the submersible move 

forward and it can also produce a contra current such that the 

submersible is not moved by the flow of the liquid.

Fig. 3. Submersible – longitudinal section

Fig. 2. Test stand – design

Fig. 1. Experimental setup – hardware block diagram

A longitudinal section through the submersible is presented 

in Fig. 3. On the left side is the board containing all the elec-

tronics, while on the right side is the battery and the motor 

which are separated in isolated compartments.

The command of the submersible is realized based on the 

ESP WROOM-02 Arduino programmable module. This module 
offers analogic and digital lines, UART, I2C or SPI and the 
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wireless communication (Fig. 4). The advantages of integrating 

this module are: reduced dimension, low power consumption, 

ease of programming, support for special functions and the 

communication stack.

The position is determined using the BNO055 circuit which 

includes three types of sensors: accelerometer, gyroscope and 

magnetometer.

By fusing data from the 9-DOF device, a precise positioning 

is obtained. The position algorithm is based on double inte-

grating the linear acceleration provided by the BNO sensor fu-

sion. The proposed algorithm for double integration in the case 

of the acceleration and overcoming the accumulating error is 

presented in [16]. The study presents the integration algorithm 
as well as experimental validation of the method in order to 

confirm that the obtained accuracy can be for the same elec-

tronic equipment and the same submersible as the one presented 

in this paper.

The propulsion is realized by a continuous current motor 

with a 25:1 gearbox. The angular velocity is 1650 rpm, the 
diameter is 6mm, the length is 16mm and the supply voltage is 

3 V. The driver for the DC motor is realized with the DRV8833 
used for setting the rotation direction and sudden breaking.

The presented setup presented in Fig. 3. is fed from a CR2 
3 V lithium battery and has a capacity of up to 850 mAh. 
A booster circuit has been included, TPS61090, to ensure 3.3 V 
operating voltage. Usually, the lithium batteries have a plain 

characteristic, giving a nominal voltage between 2.7 and 3.0 V 
for a long period of type. The ESP WROOM-02 has a minimum 
limit of 3.0 V and, without this circuit, the proper operating 
voltage can’t be assured.

Since the communication with the entire setup is done over 

WiFi, there is a network delay present. Weather this delay is 

constant or not is irrelevant since the shared information is 

related to the current position of the submersible. The control 

algorithm is implemented on the microcontroller and the control 

signal is computed inside the submersible, without needing any 

additional information sent over the network.

A significant improvement to the presented setup is in-

cluding the circuit that measures the fluid conductivity at the 

submersible level. The current setup is modular, but the final 

version will have dedicated electronics, reducing considerably 

the size of the setup.

3. Design of a fractional order based velocity 
controller

For zero steady state errors in the velocity profile of the nano-

robot, an integrative effect of the controller is required. This im-

plies a fractional order PI controller design for velocity control. 

The transfer function of this controller is given as:

 HFO ¡ PI(s) = kp 1 +  ki

sµ  (1)

with µ 2 (1, 0) the fractional order, s – the Laplace variable, 
and kp and ki – the proportional and integral gains. Once the 
structure of the controller has been established in the form given 

in (1), the design of the controller implies the tuning of the three 

controller parameters kp, k i and µ. The tuning is based on a set 

of closed loop performance constraints that the overall nano-

robot system must meet. In this particular case, the robustness 

is one of the key issues and this constraint represents the most 

important requirement for the nanorobot control system. Apart 

from the robustness constraint, the nanorobot velocity control 

system should exhibit a fast settling time and a low overshoot. 

Thus, for the tuning of the fractional order PI controller the 

following design specifications are considered:

3.1. Robustness. This design constraint implies that the overall 

nanorobot control system ensures similar closed loop perfor-

mance despite possible modeling errors, disturbances, uncer-

tainties, parameter variations, etc. In this paper, the open loop 

Fig. 4. Experimental setup – submersible hardware block diagram
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gain variations are considered only. To make the overall closed 

loop system robust to these variations, the corresponding open 

loop system should have a flat phase around the gain crossover 

frequency, ωgc. In this way, the phase margin, ϕm, remains con-

stant and the closed loop system will behave in a similar manner 

regardless of possible variations in the system gain. This design 

constraint can be specified in the frequency domain as:

 
d(∠Hd( jω))

dω j
ω = ωgc

 = 0 (2)

where Hd(s) = HP(s) ¢ HFO ¡ PI(s) is the open loop system 

transfer function with HP(s) is a transfer function that describes 

the relation between the nanorobot velocity and the power sup-

plied to the propeller system.

3.2. Settling time. For the velocity control system to be ef-

fective, the settling time of the overall closed loop system 

must be fast enough so that the nanorobot will be able to 

track the desired speed as fast as possible, without traveling 

too much down the blood vessels. In this paper, the aim is 

to reduce by five times the average settling time of the na-

norobot velocity system. The settling time requirement is 

treated indirectly by specifying a certain gain crossover fre-

quency as the design constraint. In the frequency domain, 

this requirement implies:

 jHd( jωgc)j = 1 (3)

where j . j stands for the modulus of a transfer function.

3.3. Overshoot. The velocity control system of the nanorobot 

should exhibit a reduced overshoot. In frequency domain, this 

requirement is tackled using the phase margin performance 

specification. A large phase margin will be imposed as a design 

constraint and leads to a reduced overshoot. This performance 

criteria is specified as:

	 ∠Hd( jωgc) = –π + ϕm (4)

where ∠ ¢ represents the phase of a transfer function.
In what follows, without loss of generality, we assume that the 

velocity of the nanorobot can be written in its Laplace form as:

 HP( jωgc) =  1

K + jL
 (5)

where K and L denote the real and imaginary parts and are both 

functions of the frequency ω.

The frequency domain representation of the transfer func-

tion of the fractional order PI controller in (1) can be expressed 

as follows, taking s ! jωgc:

 HFO ¡ PI( jωgc) = kp 1 + kiω
–µ
gc cos

πµ
2

 ¡ jsin
πµ
2

. (6)

According to (5) and (6), the phase of the open loop transfer 

function can be computed simply as:

∠Hd( jωgc) = tan–1 –
kiω

–µ
gc sin

πµ
2

1 + kiω
–µ
gc cos

πµ
2

 ¡ tan–1 L

K
. (7)

Replacing now (7) into (4) leads to:

 tan–1 –
kiω

–µ
gc sin

πµ
2

1 + kiω
–µ
gc cos

πµ
2

 ¡ tan–1 L

K
 = –π + ϕm. (8)

Separating the terms and applying the tangent function to 

(8) leads to:

 
ki sin

π ¢ µ
2

ωµ
gc + ki cos

π ¢ µ
2

 = tg π ¡ ϕm ¡ a tan
L

K
. (9)

Using the result in (7) to apply the derivative with respect 
to the frequency ω as indicated in (2), leads to:

 
µkiω

–µ ¡ 1
gc sin

πµ
2

1 + 2kiω
–µ
gc cos

πµ
2  + ki

2ω–2µ
gc

 ¡  L ̇ K ¡ LK ̇

L2 + K2
 = 0. (10)

Equations (9) and (10) can now be used to uniquely deter-

mine the parameters k i and µ of the fractional order PI con-

troller. This can be simply achieved using graphical methods 

in which the k i parameter computed based on (9) is plotted as 

a function of the fractional order µ. The procedure is repeated 

for ki computed based on (10). The result of this approach con-

sists in two plots of ki as functions of µ. Thus, the final solution 

of (9) and (10) can be found at the intersection of the two plots 

[8].
Once the k i and µ parameters have been computed, the set-

tling time condition specified as the modulus equation in (3) is 
used to determine the last parameter kp:

 j 1

k + jL jωgc

jkp 1 + kiω
–µ
gc cos

πµ
2

 ¡ jsin
πµ
2 j = 1. (11)

The proportional gain kp can be computed using (11):

 kp = 
L2 + K2

1 + 2kiω
–µ
gc cos

πµ
2  + ki

2ω–2µ
gc

. (12)

4. Main results

Information regarding nonlinear parametric models can be ob-

tained by analyzing the shear rate as being dependent on the 

viscosity of the blood [8, 17].
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Linear transfer functions with variable parameters can be 

obtained through linearization. The pole-zero mappings of the 

obtained transfer functions vary significantly if a full coverage 

of the f low dynamics is desired. The dominant lead-lag is 

changed through drag forces in the hemodynamic time-space. 

Taking the case of a single particle and analyzing its moving 

from the hemodynamic point of view, the obtained dominant 

poles is real, while the zeroes are complex conjugated.

The gradient in the values of the pole-zero mappings is 

a fifth-fold order of magnitude. Figure 5 presents the 5th order 

frequency response of the gradient taking into consideration 

the particle’s acceleration rate caused when exposed to pressure 

changes. Taking the real conditions of the circulatory system 

gives an operating environment in which the temperature is 

37°C in a blood viscosity of 3‒4 mPa second [18]. In addition, 
the heart beats 70 to 100 times in a second providing a fre-

quency range of interest below 100 rad/s. Analyzing the data 

presented in Fig. 5 it can be seen that the time constant response 

varies significantly implying that the particle has a very high 

acceleration or very low movement. From the control effort 

point of view, the controller must ensure constant acceleration 

in the divergent environment. Practical implementation must 

take into consideration tuning the controller using robustness 

constraints such that the performance of the obtained controller 

overcomes the bandwidth limitation.

In this paper, a fractional order PI (FO-PI) controller is 

designed to meet the requirements regarding the isodamping 

property (robustness to open loop gain variations). Additionally, 

to reduce the settling time and ensure a low overshoot, the open 

loop gain crossover frequency is selected as ωcg =0.85 rad/s, 

while the phase margin is ϕ = 73°.

The linear model for which this controller is designed is 

given as:

 

HP(s) = 

= 
2493(s + 626.2)(s2 + 2.188 s + 111.5)

(s + 53.32)(s + 0.09916)(s2 + 586.6 s + 197500)
.
 (13)

The Bode diagram and the step response of (13) are given in 
Fig. 5 and 6, respectively. The transfer function in (13) in its 
complex form is:

 HP( jωgc) =  1

0.006 + 0.0517 j
 (14)

with the modulus equal to 25.66 dB and the phase –83.36o. 

These results can be easily verified on the Bode diagram. The 

step response shows zero overshoot and a settling time of 

39.5 ms.
Figure 7 shows the plots of the ki parameter as a function 

of the fractional order µ as resulting from the isodamping and 

phase margin design constraints in (9) and (10). The inter-

section in Fig. 7 gives the following result: µ = 0.5217 and 
k i = 0.9035. With this values replaced into (12), the propor-
tional gain is determined to be: kp = 0.0282.

Fig. 5. Bode diagram of the linear model used in the design of the 
velocity control system

M
a
g
n
it
u
d
e
 (

d
B

)

–20

–10

0

10

20

30

40

50

P
h
a
s
e
 (

d
e
g
)

10
–2

10
0

10
2

10
4

–90

–45

0

45

90

Bode Diagram

Frequency  (rad/s)

Fig.6. Step response of the linear model used in the design of the 
velocity control system

Time (ms)

0 10 20 30 40 50 60 70

A
m

p
li
tu

d
e

0

20

40

60

80

100

120

140

160

180

Fig. 7. Plots of k i as functions of the fractional order µ

0.3 0.4 0.5 0.6 0.7 0.8 0.9
–10

–5

0

5

10

15

20

25

30 iso-damping property

phase margin property (overshoot constraint)

In
te

g
ra

l 
g
ai

n
 k

i

Fractional order µ



996

C.I. Muresan, I.R. Birs, S. Folea, and C. Ionescu

Bull.  Pol.  Ac.:  Tech.  66(6)  2018

The transfer function of the FO-PI controller is finally:

 HFO ¡ PI(s) = 0.0282 1 +  0.9305
s0.5217

. (15)

The Bode diagram of the open loop system, showing that 

all design specifications are met, is given in Fig. 8, as well as 

the frequency response of the system considering ±30% gain 
variations. Figure 10 indicates the closed loop simulation results 

considering both the nominal, as well as ±30% gain variations. 
The simulation results show a reduced overshoot, regardless of 

the open loop gain variations. This is due to a constant phase 

margin as indicated in Fig. 9. It is obvious that the designed 

fractional order controller has significantly reduced the settling 

time, with the nominal velocity control system reaching its final 

steady state value within 5.86 ms and 5.14 ms and 6.75 ms in 
the case of ±30% gain variations. As specified in the design 
constraint, the settling time is reduced by more than five times 

with respect to the open loop system.

5. Conclusions

The purpose of the presented work is to design a fractional 

order controller that ensures a constant velocity of a nanorobot 

moving through the circulatory system. The submersible must 

overcome the hostile environment from the blood flow, which 

exhibits the behavior of a non-Netwonian fluid.

A fractional order PI controller is obtained based on im-

posed frequency domain specifications such as gain crossover 

frequency, phase margin and the isodamping property. The 

obtained controller significantly reduces the settling time and 

overshoot and ensures robustness to gain variations.

The results obtained prove that fractional order calculus can 

be successfully applied to the nanomedicie field bringing im-

provements in targeted patient-specific drug delivery.
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