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Abstract— Many real dynamic systems are better charac-
terized using a non-integer order dynamic model based on
fractional calculus or, differentiation or integration of non-
integer order. Traditional calculus is based on integer order
differentiation and integration. The concept of fractional cal-
culus has tremendous potential to change the way we see, model,
and control the nature around us. Denying fractional derivatives
is like saying that zero, fractional, or irrational numbers do
not exist. In this paper, we offer a tutorial on fractional
calculus in controls. Basic definitions of fractional calculus,
fractional order dynamic systems and controls are presented
first. Then, fractional order PID controllers are introduced
which may make fractional order controllers ubiquitous in
industry. Additionally, several typical known fractional order
controllers are introduced and commented. Numerical methods
for simulating fractional order systems are given in detail
so that a beginner can get started quickly. Discretization
techniques for fractional order operators are introduced in
some details too. Both digital and analog realization methods
of fractional order operators are introduced. Finally, remarks
on future research efforts in fractional order control are given.

I. INTRODUCTION

Fractional calculus is a more than 300 years old topic. The

number of applications where fractional calculus has been

used rapidly grows. These mathematical phenomena allow

to describe a real object more accurately than the classical

“integer-order” methods. The real objects are generally frac-

tional [61], [77], [56], [99], however, for many of them the

fractionality is very low. A typical example of a non-integer

(fractional) order system is the voltage-current relation of a

semi-infinite lossy transmission line [98] or diffusion of the

heat through a semi-infinite solid, where heat flow is equal

to the half-derivative of the temperature [76].

The main reason for using the integer-order models was

the absence of solution methods for fractional differen-

tial equations. At present time there are lots of methods

for approximation of fractional derivative and integral and
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Ivo Petráš is with the Institute of Control and Informatization of Produc-
tion Processes, BERG Faculty, Technical University of Košice, B. Němcovej
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fractional calculus can be easily used in wide areas of

applications (e.g.: control theory - new fractional controllers

and system models, electrical circuits theory - fractances,

capacitor theory, etc.).

As pointed in [13], clearly, for closed-loop control sys-

tems, there are four situations. They are 1) IO (integer order)

plant with IO controller; 2) IO plant with FO (fractional

order) controller; 3) FO plant with IO controller and 4) FO

plant with FO controller. From control engineering point of

view, doing something better is the major concern. Existing

evidences have confirmed that the best fractional order

controller can outperform the best integer order controller. It

has also been answered in the literature why to consider frac-

tional order control even when integer (high) order control

works comparatively well [49], [52]. Fractional order PID

controller tuning has reached to a matured state of practical

use. Since (integer order) PID control dominates the industry,

we believe FO-PID will gain increasing impact and wide

acceptance. Furthermore, we also believe that based on some

real world examples, fractional order control is ubiquitous

when the dynamic system is of distributed parameter nature

[13].

A comprehensive review of fractional order control and

its applications can be found in the coming monograph [51].

For computational methods in fractional calculus, we refer

to the book [101]. Note that, the textbook [102] is the first

control textbook containing a dedicated chapter on fractional

order control.

In this paper, we offer a tutorial on fractional calculus in

controls. Basic definitions of fractional calculus, fractional

order dynamic systems and controls are presented first in

Sec. II. Then, fractional order PID controllers are introduced

in Sec. III which may make fractional order controllers

ubiquitous in industry. Additionally, several typical known

fractional order controllers are introduced and commented in

Sec. IV. Numerical methods for simulating fractional order

systems are given in detail in Sec. V so that a beginner can

get started quickly. Discretization techniques for fractional

order operators are introduced in some details in Sec. VI and

implementation in Sec. VII . Finally, in Sec. VIII remarks on

future research effort in fractional order control are given.

II. FRACTIONAL CALCULUS AND FRACTIONAL

ORDER DYNAMIC SYSTEMS

The idea of fractional calculus has been known since

the development of the regular (integer-order) calculus, with

the first reference probably being associated with Leibniz
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and L’Hôpital in 1695 where half-order derivative was men-

tioned.

Fractional calculus is a generalization of integration and

differentiation to non-integer order fundamental operator

aDr
t , where a and t are the limits of the operation. The

continuous integro-differential operator is defined as

aDr
t =






dr/dtr ℜ(r) > 0,

1 ℜ(r) = 0,∫ t

a
(dτ)−r ℜ(r) < 0,

where r is the order of the operation, generally r ∈ R but r

could also be a complex number [62].

A. Definition of Fractional Differintegral

Two definitions used for the general fractional differin-

tegral are the Grunwald-Letnikov (GL) definition and the

Riemann-Liouville (RL) definition [58], [76]. The GL is

given here

aDr
t f (t) = lim

h→0
h−r

[ t−a
h

]

∑
j=0

(−1) j

(
r

j

)
f (t − jh), (1)

where [.] means the integer part. The RL definition is given

as

aDr
t f (t) =

1

Γ(n− r)

dn

dtn

∫ t

a

f (τ)

(t − τ)r−n+1
dτ, (2)

for (n−1 < r < n) and Γ(.) is the Gamma function.

The Laplace transform method is routinely used for solv-

ing engineering problems. The formula for the Laplace trans-

form of the RL fractional derivative (2) has the following

form [76]:

∫ ∞

0
e−st

0Dr
t f (t)dt = srF(s)−

n−1

∑
k=0

sk
0Dr−k−1

t f (t)
∣∣∣
t=0

, (3)

for (n − 1 < r ≤ n), where s ≡ jω denotes the Laplace

transform variable.

A geometric and physical interpretation of fractional

integration and fractional differentiation can be found in

Podlubny’s work [79].

B. Properties of Fractional Calculus

The main properties of fractional derivatives and integrals

are the following:

1) If f (t) is an analytical function of t, its fractional

derivative 0Dα
t f (t) is an analytical function of z and

α .

2) For α = n, where n is an integer, the operation 0Dα
t f (t)

gives the same result as classical differentiation of

integer order n.

3) For α = 0 the operation 0Dα
t f (t) is the identity oper-

ator:

0D0
t f (t) = f (t).

4) Fractional differentiation and fractional integration are

linear operations:

0Dα
t a f (t)+ bg(t) = a 0Dα

t f (t)+ b 0Dα
t g(t).

5) The additive index law (semigroup property)

0Dα
t 0D

β
t f (t) = 0D

β
t 0Dα

t f (t) = 0D
α+β
t f (t)

holds under some reasonable constraints on the func-

tion f (t).
The fractional-order derivative commutes with integer-

order derivative

dn

dtn
(aDr

t f (t)) = aDr
t

(
dn f (t)

dtn

)
= aDr+n

t f (t),

under the condition t = a we have f (k)(a) = 0, (k =
0,1,2, . . . ,n− 1). The relationship above says the op-

erators dn

dtn and aDr
t commute. (see [76, Chapter 2] for

other commute properties).

C. Fractional Order Dynamic Systems

A fractional-order dynamic system can be described by a

fractional differential equation of the following form [74],

[76], [91]:

anDαny(t)+ an−1Dαn−1y(t)+ · · ·+ a0Dα0y(t)

= bmDβmu(t)+ bm−1Dβm−1u(t)+ · · ·+ b0Dβ0u(t),
(4)

where Dγ ≡ 0D
γ
t ; ak (k = 0, · · · n), bk (k = 0, · · · m) are

constants; and αk (k = 0, · · · n), βk (k = 0, · · · m) are arbitrary

real numbers.

Without loss of generality we can assume that αn > αn−1 >
· · · > α0, and βm > βm−1 > · · · > β0.

For obtaining a discrete model of the fractional-order

system (4), we have to use discrete approximations of the

fractional-order integro-differential operators and then we

obtain a general expression for the discrete transfer function

of the controlled system [91]

G(z) =
bm

(
w

(
z−1

))βm + . . .+ b0

(
w

(
z−1

))β0

an (w(z−1))
αn + . . .+ a0 (w(z−1))

α0
, (5)

where (ω(z−1)) denotes the discrete equivalent of the

Laplace operator s, expressed as a function of the complex

variable z or the shift operator z−1.

The fractional-order linear time-invariant system can also

be represented by the following state-space model

0D
q
t x(t) = Ax(t)+Bu(t)

y(t) = Cx(t), (6)

where x∈Rn, u∈Rr and y∈Rp are the state, input and output

vectors of the system and A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n,

q is the fractional commensurate order.

D. Stability of LTI Fractional Order Systems

It is known from the theory of stability that an LTI

(linear, time-invariant) system is stable if the roots of the

characteristic polynomial are negative or have negative real

parts if they are complex conjugate. It means that they

are located on the left half of the complex plane. In the

fractional-order LTI case, the stability is different from the

integer one. Interesting notion is that a stable fractional

system may have roots in the right half of complex plane
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(see Fig. 1). It has been shown that system (6) is stable if

the following condition is satisfied [45]

|arg(eig(A))| > q
π

2
, (7)

where 0 < q < 1 and eig(A) represents the eigenvalues of

matrix A.

Matignon’s stability theorem says [45]: The fractional

transfer function G(s) = Z(s)/P(s) is stable if and only if

the following condition is satisfied in σ -plane:

|arg(σ)| > q
π

2
, ∀σ ∈ C, P(σ) = 0, (8)

where σ := sq. When σ = 0 is a single root of P(s), the system

cannot be stable. For q = 1, this is the classical theorem of

pole location in the complex plane: no pole is in the closed

right half plane of the first Riemann sheet.

Fig. 1. Stability region of LTI fractional order systems with order 0 < q≤ 1

Generally, consider the following commensurate fractional

order system in the form:

Dqw = f(w), (9)

where 0 < q < 1 and w ∈ Rn. The equilibrium points of

system (9) are calculated via solving the following equation

f(w) = 0. (10)

The equilibrium points are asymptotically stable if all the

eigenvalues λ j, ( j = 1,2, . . . ,n) of the Jacobian matrix J =
∂f/∂w, evaluated at the equilibrium, satisfy the condition:

|arg(eig(J))| = |arg(λ j)| > q
π

2
, j = 1,2, . . . ,n. (11)

Figure 1 shows the stable and unstable regions of the

complex plane for such case.

III. FRACTIONAL-ORDER PID CONTROLLERS

According to a survey [103] of the state of process control

systems in 1989 conducted by the Japan Electric Measuring

Instrument Manufacturer’s Association, more than 90 percent

of the control loops were of the PID type. It was also

indicated in [6] that a typical paper mill in Canada has

more than 2,000 control loops and that 97 percent use

PI control. Therefore, the industrialist had concentrated on

PI/PID controllers and had already developed one-button type

relay auto-tuning techniques for fast, reliable PI/PID control

yet with satisfactory performance [36], [3], [104], [88], [18].

Intuitively, with noninteger order controllers for integer

order plants, there are more flexibilities in adjusting the gain

and phase characteristics than using IO controllers. These

flexibilities make FO control a powerful tool in designing

robust control system with less controller parameters to tune.

The key point is that using few tuning knobs, FO controller

achieves similar robustness achievable by using very high-

order IO controllers.

PIλ Dµ controller, also known as PIλ Dδ controller, was

studied in time domain in [77] and in frequency domain in

[67]. In general form, the transfer function of PIλ Dδ is given

by

C(s) =
U(s)

E(s)
= Kp + Tis

−λ + Tdsδ , (12)

where λ and δ are positive real numbers; Kp is the propor-
tional gain, Ti the integration constant and Td the differenti-
ation constant. Clearly, taking λ = 1 and δ = 1, we obtain a
classical PID controller. If λ = 0 (Ti = 0) we obtain a PDδ

controller, etc. All these types of controllers are particular
cases of the PIλ Dδ controller. The time domain formula is
that

u(t) = Kpe(t)+TiD
−λ
t e(t)+TdDδ

t e(t). (D
(∗)
t ≡0 D

(∗)
t ). (13)

It can be expected that PIλ Dδ controller (13) may enhance

the systems control performance due to more tuning knobs

introduced. Actually, in theory, PIλ Dδ itself is an infinite

dimensional linear filter due to the fractional order in differ-

entiator or integrator. For controller tuning techniques, refer

to [50], [15].

Similar to the fact that, every year, numerous PI/PID

papers have been published, we can foresee that, more and

more FO PI/D papers will be published in the future. In

general, the following issues should be addressed:

• How to tell there is a need to use FO PI/D controller

while integer order PI/D control works well in the

existing controlled systems?

• How to predict the net performance gain by using FO

PI/D controller?

• How to best tune the FO PI/D controller by taking

minimum experimental efforts?

• How to best design the experiments to tune FO PI/D

controller?

• For a given class of plants to be controlled, how to best

design FO PI/D controller?

In the interest of space, we conclude this section by

referring to the two recent Ph.D. dissertations [105], [49]

and the references therein.

Remark 3.1: We comment that since PID control is ubiq-

uitous in industry process control, FO PID control will be

also ubiquitous when tuning and implementation techniques

are well developed.

IV. SOME TYPICAL FRACTIONAL-ORDER CONTROLLERS

As already widely known, the early attempts to apply

fractional-order derivative to systems control can be found
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in [42], [4], [63]. In this section, three other representative

fractional-order controllers in the literature will be briefly

introduced, namely, TID (tilted integral derivative) con-

troller, CRONE controller and fractional lead-lag compen-

sator [100], [102]. For detailed introduction and comparison,

refer to [100]. For the latest developments, we refer to [7],

[47], [60], [51], [52].

• TID Controller. In [38], a feedback control system

compensator of the PID type is provided, wherein the

proportional component of the compensator is replaced

with a tilted component having a transfer function s−
1
n .

The resulting transfer function of the entire compensator

more closely approximates an optimal loop transfer

function, thereby achieving improved feedback control

performance. Further, as compared to conventional PID

compensators, the TID compensator allows for simpler

tuning, better disturbance rejection, and smaller effects

of plant parameter variations on the closed-loop re-

sponse.

The objective of TID is to provide an improved feedback

loop compensator having the advantages of the conven-

tional PID compensator, but providing a response which

is closer to the theoretically optimal response. In the

TID patent [38], an analog circuit using op-amps plus

capacitors and resistors is introduced with a detailed

component list which is useful in some cases where the

computing power to implementing T3(s) digitally is not

possible. An example is given in [38] to illustrate the

benefits from using TID over applying conventional PID

in both time and frequency domains.

• CRONE Controller. The CRONE control was proposed

by Oustaloup in pursuing fractal robustness [65], [66].

CRONE is a French abbreviation for “Contrôle Robuste

d’Ordre Non Entier” (which means non-integer order

robust control). In this subsection, we shall follow the

basic concept of fractal robustness, which motivated the

CRONE control, and then mainly focus on the second

generation CRONE control scheme and its synthesis

based on the desired frequency template which leads

to fractional transmittance.

In [61], “fractal robustness” is used to describe the

following two characteristics: the iso-damping and the

vertical sliding form of frequency template in the

Nichols chart. This desired robustness motivated the use

of fractional-order controller in classical control systems

to enhance their performance.

With a unit negative feedback, for the characteristic

equation

1 +(τs)α = 0,

the forward path transfer function, or the open-loop

transmittance, is that

β (s) =

(
1

τs

)α

=
(ωu

s

)α
, (14)

which is the transmittance of a non integer integrator in

which ωu = 1/τ denotes the unit gain (or transitional)

frequency.

In controller design, the objective is to achieve such

a similar frequency behavior, in a medium frequency

range around ωu, knowing that the closed-loop dynamic

behavior is exclusively linked to the open-loop behavior

around ωu. Synthesizing such a template defines the

non-integer order approach that the second generation

CRONE control uses.

There are a number of real life applications of CRONE

controller such as the car suspension control [66],

flexible transmission [65], hydraulic actuator [34] etc.

CRONE control has been evolved to a powerful non-

conventional control design tool with a dedicate MAT-

LAB toolbox for it [64]. For an extensive overview, refer

to [62] and the references therein.

• Fractional Lead-Lag Compensator. In the above,

fractional controllers are directly related to the use of

fractional-order differentiator or integrator. It is possible

to extend the classical lead-lag compensator to the

fractional-order case which was studied in [83], [53].

The fractional lead-lag compensator is given by

Cr(s) = C0

(
1 + s/ωb

1 + s/ωh

)r

(15)

where 0 < ωb < ωh, C0 > 0 and r ∈ (0,1). The autotun-

ing technique has been presented in [53].

We conclude this section by offering the following remark.

Remark 4.1: Just like the non-integers are ubiquitous be-

tween integers, noninteger order control schemes will be

ubiquitous by extending the existing integer order control

schemes into their noninteger counterparts. For example,

fractional sliding mode control with fractional order sliding

surface dynamics; model reference adaptive control using

fractional-order parameter updating law etc. The opportu-

nities for extensions of existing integer-order controls are

almost endless. However, the question remains: we need a

good reason for such extensions. Performance enhancement

as demonstrated in previous sections is only part of the

reason.

V. HOW TO SIMULATE? INTRODUCING FOTF MATLAB

TOOLBOX

In order to carry out numerical computation of fractional

order operators, the revised version of (1) is rewritten as

aDα
t f (t) = lim

h→0

1

hα

[(t−a)/h]

∑
j=0

w
(α)
j f (t − jh) (16)

where h is the step-size in computation, and w
(α)
j can be

evaluated recursively from

w
(α)
0 = 1, w

(α)
j =

(
1− α + 1

j

)
w

(α)
j−1, j = 1,2, · · · . (17)

Laplace transform (3) can be applied to the fractional-

order derivatives of a given signal. In particular, if the

function f (t) and its derivatives at t = a are all equal to

0, one has

L [aDα
t f (t)] = sα

L [ f (t)]. (18)
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Fractional-order control systems are often modeled by

fractional-order differential equations and a standard form of

a linear time-invariant fractional-order differential equation is

given in (4), from which the fractional-order transfer function

(FOTF) model can be established

G(s) =
bmsβm + bm−1sβm−1 + · · ·+ b0sβ0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (19)

It can be seen that essential parameters of the FOTF model

are, the order vectors of numerator and denominator and the

coefficient vectors of them, which are summarized below

nb = [βm,βm−1, · · · ,β0], na = [αn,αn−1, · · · ,α0]
b = [bm,bm−1, · · · ,b0], a = [an,an−1, · · · ,a0].

(20)

A MATLAB class FOTF is designed, and based on it, a

series of overload functions are provided which are useful in

the evaluation of block diagram modeling. A mini-toolbox

based on the FOTF models is designed. The stability test,

time- and frequency-domain analysis of FOTF models are

presented with the use of the toolbox.

A. FOTF-Object Programming

In this section, MATLAB object-oriented programming

technique is illustrated, with an application of the estab-

lishment of the FOTF-class, with which the fractional-order

transfer function can be expressed. Based on the class, a

series of overload functions can be written, aiming at describ-

ing ways for FOTF block interconnections and simplification.

An illustrative example is given to show the fractional order

feedback control system modeling.

1) FOTF-Class Creation: To define a class in MATLAB,

folder with the name started with @ is required. For instance

for FOTF class, a folder named @fotf should be created

first. Then in the folder, two files are essential: A foft.m

file is used in defining the class, and a display.m file is

used to define the way in which the class is displayed.

The lists of the two files are given below, respectively

function G=fotf(a,na,b,nb) %fotf.m

if nargin==0,

G.a=[]; G.na=[]; G.b=[];

G.nb=[]; G=class(G,’fotf’);

elseif isa(a,’fotf’), G=a;

elseif nargin==1 & isa(a,’double’),

G=fotf(1,0,a,0);

else,

ii=find(abs(a)<eps); a(ii)=[];

na(ii)=[]; ii=find(abs(b)<eps);

b(ii)=[]; nb(ii)=[]; G.a=a;

G.na=na; G.b=b; G.nb=nb;

G=class(G,’fotf’);

end

function display(G) %display.m

strN=polydisp(G.b,G.nb);

strD=polydisp(G.a,G.na);

nn=length(strN); nd=length(strD);

nm=max([nn,nd]); n1=(nm-nn)/2;

disp([char(’ ’*ones(1,floor(-n1))) strN])

disp(char(’-’*ones(1,nm)))

disp([char(’ ’*ones(1,floor(n1)) strD])

function strP=polydisp(p,np)

P=’’; [np,ii]=sort(np,’descend’); p=p(ii);

for i=1:length(p),

P=[P,’+’,num2str(p(i)),...

’sˆ{’,num2str(np(i)),’}’];

end

P=P(2:end); P=strrep(P,’sˆ{0}’,’’);

P=strrep(P,’+-’,’-’);

P=strrep(P,’ˆ{1}’,’’);

P=strrep(P,’+1s’,’+s’);

strP=strrep(P,’-1s’,’-s’);

if length(strP)>=2 & strP(1:2)==’1s’,

strP=strP(2:end);

end

If one wants to specify a FOTF object

G(s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5

the model can be entered into MATLAB

>> b=[-2,4]; na=[3.501,2.42,1.798,1.31,0];

nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5];

G=fotf(a,na,b,nb)

and the FOTF object is displayed as

-2sˆ{0.63}+4

---------------------------------------------------

2sˆ{3.501}+3.8sˆ{2.42}+2.6sˆ{1.798}+2.5sˆ{1.31}+1.5

2) Overload Functions Programming: In mathematical

representation, if two blocks, G1(s) and G2(s), are con-

nected in series, the overall model can be evaluated from

G2(s)G1(s), and if they are in parallel, the overall model

can be G2(s)+ G1(s).
The multiplication and plus operation for FOTF objects

can be implemented with the overload facilities. Specifically,

the mtimes.m and mplus.m functions can be designed in the

@fotf folder.

function G=mtimes(G1,G2) % mtimes.m

G2=fotf(G2); a=kron(G1.a,G2.a);

b=kron(G1.b,G2.b); na=[]; nb=[];

for i=1:length(G1.na),

na=[na,G1.na(i)+G2.na];

end

for i=1:length(G1.nb),

nb=[nb,G1.nb(i)+G2.nb];

end

G=unique(fotf(a,na,b,nb));

function G=plus(G1,G2) % plus.m

a=kron(G1.a,G2.a); na=[]; nb=[];

b=[kron(G1.a,G2.b),kron(G1.b,G2.a)];

for i=1:length(G1.a),

na=[na G1.na(i)+G2.na];

nb=[nb, G1.na(i)+G2.nb];

end

for i=1:length(G1.b),

nb=[nb G1.nb(i)+G2.na];

end

G=unique(fotf(a,na,b,nb));

A common function, unique.m is designed to collect

polynomial terms and to simplify the FOTF model.

function G=unique(G) % common unique.m

[a,n]=polyuniq(G.a,G.na); G.a=a; G.na=n;

[a,n]=polyuniq(G.b,G.nb); G.b=a; G.nb=n;

function [a,an]=polyuniq(a,an)

[an,ii]=sort(an,’descend’); a=a(ii);

ax=diff(an); key=1;

for i=1:length(ax)

if ax(i)==0, a(key)=a(key)+a(key+1);

a(key+1)=[]; an(key+1)=[];
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else, key=key+1; end

end

Thus, whenever the * and + commands are used on FOTF

objects, the corresponding overload function will be called

automatically to perform the right task. This is the beauty of

object-oriented programming under MATLAB.

Other functions should also be designed, such as the

feedback(), minus(), uminus(), inv(), and the files

should be placed in the @fotf directory to overload the

existing ones.

function G=feedback(F,H) % feedback.m

H=fotf(H); b=kron(F.b,H.a); na=[]; nb=[];

a=[kron(F.b,H.b), kron(F.a,H.a)];

for i=1:length(F.b),

nb=[nb F.nb(i)+H.nb];

na=[na,F.nb(i)+H.nb];

end

for i=1:length(F.a),

na=[na F.na(i)+H.na];

end

G=unique(fotf(a,na,b,nb));

function G=uminus(G1) % uminus.m

G=fotf(G1.a,G1.na,-G1.b,G1.nb);

function G=minus(G1,G2) % minus.m

G=G1+(-G2);

function G=inv(G1) % inv.m

G=fotf(G1.b,G1.nb,G1.a,G1.na);

With the above overloaded functions, the series, parallel

and feedback connections of FOTF blocks, as well as the

inverse and other manipulation operations can easily be

achieved in a similar manner with the existing MATLAB

Control Systems Toolbox.

Also if one designs a fotf.m file below in the @tf folder,

the integer-order transfer function can be converted directly

into a FOTF object.

function G1=fotf(G)

[n,d]=tfdata(G,’v’);

i1=find(abs(n)<eps); i2=find(abs(d)<eps);

if length(i1)>0 & i1(1)==1, n=n(i1(1)+1:end); end

if length(i2)>0 & i2(1)==1, d=d(i2(1)+1:end); end

G1=fotf(d,length(d)-1:-1:0,n,length(n)-1:-1:0);

3) Illustrations of FOTF Modeling: With the use of the

overload functions, interconnected systems can easily be

simplified.

Suppose in the unity negative feedback system, the models

are given by

G(s) =
0.8s1.2 + 2

1.1s1.8 + 0.8s1.3 + 1.9s0.5 + 0.4

Gc(s) =
1.2s0.72 + 1.5s0.33

3s0.8
.

To find the overall model, the two fractional-order transfer

function blocks should be entered first

>> G=fotf([1.1,0.8 1.9 0.4],...

[1.8 1.3 0.5 0],[0.8 2],[1.2 0]);

Gc=fotf([3],[0.8], [1.2 1.5],[0.72 0.33]);

H=fotf(1,0,1,0); GG=feedback(G*Gc,H)

and the closed-loop FOTF is given by

G(s) =
0.96s1.92 + 1.2s1.53 + 2.4s0.72 + 3s0.33

3.3s2.6 + 2.4s2.1 + 0.96s1.92 + 1.2s1.53 + 5.7s1.3

+1.2s0.8 + 2.4s0.72 + 3s0.33

.

It can be seen from the above illustrations that, although

both the plant and controller models are relatively simple,

extremely complicated closed-loop models may be obtained.

This makes the analysis and design of the fractional-order

system a difficult task.

B. Analysis of FOTF-Objects

In this section, three important system analysis methods

are explored to FOTF blocks, with MATLAB implementa-

tions.

1) Stability: The stability assessment problems for a class

of FOTFs can easily be carried out with the method in

Section II-D. It should be noted that, only the denominator

is meaningful in stability assessment and the numerator does

not affect the stability of a FOTF.

The following MATLAB function can be written to test

approximately the stability of a given FOTF model. In order

to avoid the case that the order of the polynomial is too

high, the resolution of commensurate-order is restricted to

q = 0.01. The returned argument K is the stability of the

system, with 1 for stable and 0 for unstable.

function [K,q,err,apol]=isstable(G)

a=G.na; a1=fix(100*a); n=gcd(a1(1),a1(2));

for i=3:length(a1), n=gcd(n,a1(i)); end

q=n/100, a=fix(a1/n), b=G.a;

c(a+1)=b; c=c(end:-1:1);

p=roots(c); p=p(abs(p)>eps);

err=norm(polyval(c,p));

plot(real(p),imag(p),’x’,0,0,’o’)

apol=min(abs(angle(p))); K=apol>q*pi/2;

xm=xlim; xm(1)=0; line(xm,q*pi/2*xm)

Consider the system model given below

G(s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5

The following statements can be given

>> b=[-2,4]; na=[3.501,2.42,1.798,1.31,0];

nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5];

[K,q,err,apol]=isstable(G)

Using the isstable function, the denominator is trun-

cated automatically by 2s3.50 +3.8s2.42+2.6s1.80 +2.5s1.31+
1.5, with a least common divisor of 0.01. Thus it is found

that K = 1, indicating the system is stable, with q = 0.01.

The pole position plot is also obtained as shown in Fig. 2,

and from the zoomed plot, it is immediately found that all

the poles of the s0.01 polynomial are located in the stable

area, which means that the system is stable.

2) Time-Domain Analysis: Time domain responses of

fractional-order systems can be evaluated with different

methods. For instance, the impulse and step responses of

commensurate-order systems can be obtained by the use of

the well-established Mittag-Leffler functions[76]. However

the solution method is time consuming and tedious.
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Fig. 2. Pole positions with zoomed area

A closed-form solutions presented in [106] is useful in

evaluating time-domain responses of linear fractional-order

systems. Let us first consider a simple case. Suppose that the

right hand side of (4) is u(t) such that

anDαny(t)+ an−1Dαn−1y(t)+ · · ·+ a0Dα0y(t) = u(t). (21)

Recall the Grünwald-Letnikov definition in (16). Substi-

tuting it to (21), the closed-form numerical solution to the

fractional-order differential equation can be obtained as

yt =
1

n

∑
i=0

ai

hαi

[
ut −

n

∑
i=0

ai

hαi

[(t−a)/h]

∑
j=1

w
(αi)
j yt− jh

]
. (22)

Now let us consider the full equation in (4), where the

right-hand-side is not u(t) but û(t) where

û(t) = bmDβmu(t)+ bm−1Dβm−1u(t)+ · · ·+ b0Dβ0u(t). (23)

Thus û(t) should be evaluated first using the algorithm

in (16), then from the closed-form solution in (22) the

time response under input signal u(t) can be obtained. A

MATLAB function lsim() is implemented below

function y=lsim(G,u,t)

a=G.a; eta=G.na; b=G.b; gamma=G.nb;

nA=length(a); h=t(2)-t(1);

D=sum(a./[h.ˆeta]); W=[]; nT=length(t);

vec=[eta gamma]; D1=b(:)./h.ˆgamma(:);

y1=zeros(nT,1); W=ones(nT,length(vec));

for j=2:nT,

W(j,:)=W(j-1,:).*(1-(vec+1)/(j-1));

end

for i=2:nT, A=[y1(i-1:-1:1)]’*W(2:i,1:nA);

y1(i)=(u(i)-sum(A.*a./[h.ˆeta]))/D;

end

for i=2:nT,

y(i)=(W(1:i,nA+1:end)*D1)’*[y1(i:-1:1)];

end

In the function call, the vector u of input samples at time

vector t must be given, and the time response vector y can

be obtained.

Step response of a fractional-order system is also very

important, and since the step signal equal to one at all time

t, an overload function step() can be implemented as

function y=step(G,t)

u=ones(size(t)); y=lsim(G,u,t);

if nargout==0, plot(t,y); end

If no returned argument is specified in the function call,

the unit step response curves can be drawn automatically.

Still consider the stable system model

G(s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5

Selecting a step-size h = 0.01 and an interested time

interval of t ∈ [0,30], the step response of the system can be

obtained as shown in Fig. 3 (a), with the following statements

>> b=[-2,4]; na=[3.501,2.42,1.798,1.31,0];

nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5];

G=fotf(a,na,b,nb);

t=0:0.01:30; step(G,t);
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Fig. 3. Step response and its validation

It should be noted that, since fixed-step computation is

involved in the time response evaluation, the accuracy of the

result may depend upon the step-size used. Thus a crucial

procedure in the computation should not be neglected —

the validation of the results. Due to the lack of analytical

solution method, the only plausible way to validate the results

is that, select different step-sizes and see whether they yield

the same results. To validate the results, the step-sizes of 0.1

and 0.001 are selected, and with a new set of commands, the

results are obtained as shown in Fig. 3 (b).

>> hold on

t=0:0.1:30; step(G,t);

t=0:0.001:30; step(G,t);

It can be observed from the results that, the step-size

0.1 yields the least computation effort, and there are slight

differences between the solutions with other step-sizes. The

step responses under the other two step-sizes are almost

identical, and cannot be distinguished from each other, which

means that the step response obtained under h = 0.01 is

accurate.

3) Frequency-Domain Analysis: For FOTF models, the

variable s can be replaced by jω such that the frequency-

domain response data can be obtained directly. Based on this

fact, an overload function bode() can be written as

function H=bode(G,w)

a=G.a; na=G.na; b=G.b; nb=G.nb; j=sqrt(-1);

if nargin==1, w=logspace(-4,4); end

for i=1:length(w)

P=b*((j*w(i)).ˆnb.’);

Q=a*((j*w(i)).ˆna.’); H1(i)=P/Q;

end
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H1=frd(H1,w);

if nargout==0, bode(H1); else, H=H1; end

Also, overload Nyquist and Nichols plots functions can

also be written

function nyquist(G,w)

if nargin==1, w=logspace(-4,4); end;

H=bode(G,w); nyquist(H);

function nichols(G,w)

if nargin==1, w=logspace(-4,4); end;

H=bode(G,w); nichols(H);

With the above overload functions, the Bode plot and

Nyquist plot of the previous FOTF object can easily be drawn

as shown in Fig. 4.

>> b=[-2,4]; na=[3.501,2.42,1.798,1.31,0];

nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5];

G=fotf(a,na,b,nb); w=logspace(-1,2);

bode(G,w), figure; nyquist(G,w)
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Fig. 4. Bode and Nyquist plots

VI. APPROXIMATE REALIZATION TECHNIQUES

In general, if a function f (t) is approximated by a grid

function, f (nh), where h the grid size, the approximation

for its fractional derivative of order α can be expressed as

[25]:

yh(nh) = h∓α
(
ω

(
ζ−1

))±α
fh (nh) (24)

where ζ−1 is the shift operator, and ω
(
ζ−1

)
is a generating

function, where s ≈ ω
(
ζ−1

)
. This generating function and

its expansion determine both the form of the approximation

and its coefficients [37]. List of some generating fucntions

is presented in Table VI-D.

It is worth mentioning that, in general, the case of con-

troller realization is not equivalent to the cases of simulation

or numerical evaluation of the fractional integral and dif-

ferential operators. In the case of controller realization it is

necessary to take into account some important considera-

tions. First of all, the value of h, the step when dealing with

numerical evaluation, is the value of the sample period T ,

and it is limited by the characteristics of the microprocessor-

based system, used for the controller implementation, in

two ways: (i) each microprocessor-based system has its own

minimum value for the sample period, and (ii) it is necessary

to perform all the computations required by the control law

between two samples. Due to this last reason, it is very

important to obtain good approximations with a minimal

set of parameters. On the other hand, when the number of

parameters in the approximation increases, it increases the

amount of the required memory and speed too.

It is also important to have discrete equivalents or approx-

imations with poles and zeros, that is, in a rational form.

In the following, the notation normally used in control

theory is adopted, that is: T , the sample period, is used

instead of h, and z, the complex variable resulting from the

application of the Z transform to the functions y(nT ), f (nT )
considered as sequences, is used instead of ζ .

A. Discrete Approximations Using PSE

The simplest and most straightforward method is the direct

discretization using finite memory length expansion from

GL definition (1). In general, the discretization of fractional-

order differentiator/integrator s±r, (r ∈ R) can be expressed

by the generating function s = ω(z−1).
Using the generating function corresponding to the back-

ward fractional difference rule, ω
(
z−1

)
=

(
1− z−1

)
, and per-

forming the power series expansion (PSE) of
(
1− z−1

)α
, the

Grünwald–Letnikov formula (1) for the fractional derivative

of order α is obtained.

In any case, the resulting transfer function, approximating

the fractional-order operators, can be obtained by applying

the following relationship:

Y (z) = T∓αPSE
{(

1− z−1
)±α

}
F(z) (25)

where T is the sample period, Y (z) is the Z transform of the

output sequence y(nT ), F(z) is the Z transform of the input

sequence f (nT ), and PSE{u} denotes the expression, which

results from the power series expansion of the function u.

Doing so gives:

D±α(z) =
Y (z)

F(z)
= T∓α PSE

{(
1− z−1

)±α
}
≃ T∓α Pp(z

−1)

(26)

where D±α(z) denotes the discrete equivalent of the

fractional-order operator, considered as processes.

By using the short memory principle [76], the discrete

equivalent of the fractional-order integro-differential opera-

tor, (ω(z−1))±α , is given by

D±α(z)=(ω(z−1))±α =T∓α z−[L/T ]
[L/T ]

∑
j=0

(−1) j

(±α

j

)
z[L/T ]− j

(27)

where T is the sampling period, L is the memory length and

(−1) j
( ±α

j

)
are the binomial coefficients w

(α)
j , ( j = 0,1, . . .)

computed according to relation (17).

For practical numerical calculation or simulation of the

fractional derivative and integral we can derive from the GL

definition (1) and (27) the following formula

(k−L/T )D
±α
kT f (t) ≈ T∓α

k

∑
j=v

(−1) j

(±α

j

)
fk− j

= T∓α
k

∑
j=v

c
(±α)
j fk− j,

(28)

1404



where v = 0 for k < (L/T ) or v = k− (L/T ) for k > (L/T )
in the relation (28).

Obviously, for this simplification we pay a penalty in the

form of some inaccuracy. If f (t)≤M, we can easily establish

the following estimate for determining the memory length L,

providing the required accuracy ε:

L ≥
(

M

ε|Γ(1−α)|

)1/α

. (29)

An evaluation of the short memory effect and convergence

relation of the error between short and long memory were

clearly described and also proved in [76].

Performing the PSE of the function
(
1− z−1

)−α
leads

to the formula given by Lubich for the fractional inte-

gral/derivative of order α [37]:

∇±α
T f (nT ) = T±α

∞

∑
k=0

(−1)k

(∓α

k

)
f ((n− k)T ). (30)

Another possibility for the approximation is the use of the

trapezoidal rule, that is, the use of the generating function

and then the PSE

ω(z−1) = 2
1− z−1

1 + z−1
(31)

It is known that the forward difference rule is not suitable

for applications to causal problems [25], [37].

It should be mentioned that, at least for control purposes,

it is not very important to have a closed-form formula for

the coefficients, because they are usually pre-computed and

stored in the memory of the microprocessor. In such a

case, the most important is to have a limited number of

coefficients because of the limited available memory of the

microprocessor system.

It is very important to note that the PSE scheme leads

to approximations in the form of polynomials, that is, the

discretized fractional order derivative is in the form of FIR

filters. Taking into account that our aim is to obtain discrete

equivalents to the fractional integrodifferential operators in

the Laplace domain, s±α , the following considerations have

to be made:

1) sα , (0 < α < 1), viewed as an operator, has a branch

cut along the negative real axis for arguments of s on

(−π ,π) but is free of poles and zeros.

2) A dense interlacing of simple poles and zeros along

a line in the s plane is, in some way, equivalent to a

branch cut.

3) It is well known that, for interpolation or evaluation

purposes, rational functions are sometimes superior

to polynomials, roughly speaking, because of their

ability to model functions with zeros and poles. In

other words, for evaluation purposes, rational approx-

imations frequently converge much more rapidly than

PSE and have a wider domain of convergence in the

complex plane.

4) The trapezoidal rule maps adequately the stability

regions of the s plane on the z plane, and maps the

points s = 0,s = −∞ to the points z = 1 and z = −1

respectively.

It should be pointed out that, for control applications, the

obtained approximate discrete-time rational transfer function

should be stable and minimum phase. Furthermore, for a

better fit to the continuous frequency response, it would be of

high interest to obtain discrete approximations with poles and

zeros interlaced along the line z∈ (−1,1) in the z plane. As it

will be shown later, the direct discretization approximations

enjoy the above desirable properties.

B. Discrete Approximations Using CFE

The approximations, considered in the previous section,

lead to discrete transfer functions in the form of polynomials,

and this is not convenient, at least from the control point of

view. On the other hand, it can be recalled that the CFE

(continuous fractional expansion) leads to approximations in

rational form, and often converges much more rapidly than

PSE and has a wider domain of convergence in the complex

plane, and, consequently, a smaller set of coefficients will be

necessary for obtaining a good approximation.

In view of these reasons, a method for obtaining discrete

equivalents of the fractional-order operators, which combines

the well known advantages of the trapezoidal rule in the

control theory and the advantages of the CFE, is introduced

here. The method involves the following:

• Use of the generating function

ω(z−1) = 2
1− z−1

1 + z−1
,

where z is a complex variable, and z−1 is the shifting

operator,

• The continued fraction expansion (CFE) of

(
ω(z−1)

)±α
=

(
2

1− z−1

1 + z−1

)±α

for obtaining the coefficients and the form of the ap-

proximation.

It is well known that the Continued Fraction Expansion

(CFE) is a method for evaluation of functions that frequently

converges much more rapidly than power series expansions,

and in a much larger domain in the complex plane [82]. The

result of such approximation for an irrational function, G(z),
can be expressed in the form:

G(z) ≃ a0(z)+
b1(z)

a1(z)+
b2(z)

a2(z)+
b3(z)

a3(z)+ · · ·

= a0(z)+
b1(z)

a1(z)+

b2(z)

a2(z)+

b3(z)

a3(z)+
· · · (32)

where ai and bi are either rational functions of the variable z

or constants. The application of the method yields a rational

function, Ĝ(z), which is an approximation of the irrational

function G(z).
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The resulting discrete transfer function, approximating

fractional-order operators, can be expressed as:

D±α(z) =
Y (z)

F(z)
=

(
2

T

)±α

CFE

{(
1− z−1

1 + z−1

)±α
}

p,q

=

(
2

T

)±α
Pp(z

−1)

Qq(z−1)
, (33)

where T is the sample period, CFE{u} denotes the function

resulting from applying the continued fraction expansion to

the function u, Y (z) is the Z transform of the output sequence

y(nT ), F(z) is the Z transform of the input sequence f (nT ),
p and q are the orders of the approximation, and P and Q

are polynomials of degrees p and q, correspondingly, in the

variable z−1.

As for generating function for CFE, we in fact can use

any of function listed in Table VI-D. For example, Chen and

Moore in [14] used the so-called Al-Alaoui operator, which

is the weighted sum of rectangular rule or Euler operator

(0.25) and the trapezoidal rule (0.75), and CFE in the form:

D±α(z) ≈
(

8

7T

)±α

CFE

{(
1− z−1

1 + z−1/7

)±α
}

p,q

=

(
8

7T

)±α
Pp(z

−1)

Qq(z−1)
, (34)

where CFE{u} denotes the continued fraction expansion of

u; p and q are the orders of the approximation and P and Q

are polynomials of degrees p and q. Normally, we can also

set p = q = n.

We can use the well-known backward rule difference as a

generating function and apply a CFE. The better way is use a

method proposed by Vinagre [94] and obtain an IIR form of

approximation by using a PSE of backward rule difference

in the following form:

D∓α(z) =
1

(1− z−1)±α
=

T∓α

∞

∑
j=0

(−1) j

( ±α

j

)
z− j

≃ T∓α

Qq(z−1)
,

(35)

where Qq(z
−1) is polynomial of order q in variable z−1.

C. Discretization by Muir’s Recursion

One of the key points of Tustin discretization of fractional-

order differentiator is how to get a recursive formula similar

to (17) in the preceding subsection. Here we introduce

the so-called Muir-recursion originally used in geophysical

data processing with applications to petroleum prospecting

[16]. The Muir-recursion motivated in computing the vertical

plane wave reflection response via the impedance of a stack

of n-layered earth can be used in recursive discretization of

fractional-order differentiator of Tustin generating function.

In the following, without loss of generality, assume that

α ∈ [−1,1]. Moreover, in order to simplify the presentation,

we only give the recursive formula for positive α (see e.g.

[14], [96]).

(ω(z−1))α = (
2

T
)α

(
1− z−1

1 + z−1

)α

= (
2

T
)α lim

n→∞

An(z
−1,α)

An(z−1,−α)
(36)

where

A0(z
−1,α) = 1, An(z

−1,α) = An−1(z
−1,α)−cnznAn−1(z,α)

(37)

and

cn =

{
α/n ; n is odd;

0 ; n is even.
(38)

For any given order of approximation n, we can use

MATLAB Symbolic Toolbox to generate an expression for

An(z
−1,α). Therefore,

sα ≈ (
2

T
)α An(z

−1,α)

An(z−1,−α)
.

For a ready reference, we listed An(z
−1,α) in Table I up to

n = 9, which should be sufficient in many applications [14].

TABLE I

TABLE OF FORMULAE An(z
−1,α) FOR n = 1, · · · ,9

n An(z
−1,α)

0 1

1 −αz−1 +1

3 − 1

3
αz−3 +

1

3
α2z−2 −αz−1 +1

5 − 1

5
αz−5 +

1

5
α2z−4 −

(
1

3
α +

1

15
α3

)
z−3 +

2

5
α2z−2 −αz−1 +1

7 − 1

7
αz−7 +

1

7
α2z−6 −

(
1

5
α +

2

35
α3

)
z−5 +(

26

105
α2 +

1

105
α4)z−4

−
(

1

3
α +

2

21
α3

)
z−3 +

3

7
α2z−2 −αz−1 +1

9 − 1

9
αz−9 +

1

9
α2z−8 −

(
1

7
α +

1

21
α3

)
z−7 +

(
34

189
α2 +

2

189
α4

)
z−6

−
(

1

5
α +

16

189
α3 +

1

945
α5

)
z−5 +

(
17

63
α2 +

1

63
α4

)
z−4

−
(

1

3
α +

1

9
α3

)
z−3 +

4

9
α2z−2 −αz−1 +1

Remark 6.1: To examine the correctness of the Muir-

recursion used for the recursive discretization of the

fractional-order derivative operator, one can compare the

symbolic Taylor expansion of (VI-B). It has been verified

that the proposed recursive formula is as correct as Taylor

series expansion till the order of approximation.

D. Other Direct Discretization Methods

Besides the above methods described we can also use an

approach proposed by Machado [40]. Instead binomial series

for expansion of generating functions may be used a Taylor

series. The fractional order conversion scheme leads to non-

rational formula, where final algorithm corresponds to a n-

term truncated series.

Approximations, listed in Table 5.5, and their proper-

ties were analyzed and implemented to control system in

Machado’s papers (see e.g. [40], [41]).

Similar approach was described by Duarte in [24], where

instead of a Tylor series,a MacLaurin series truncated after
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TABLE II

DISCRETE TIME CONVERSION RULES

Methods s → z conversion

Euler sα ≈
[

1− z−1

T

]α

Al-Alaoui sα ≈
[

8

7T

1− z−1

1+ z−1/7

]α

Tustin sα ≈
[

2

T

1− z−1

1+ z−1

]α

Simpson sα ≈
[

3

T

(1+ z−1)(1− z−1)

1+4z−1 + z−2

]α

n-th order term was used. The general expressions were

described as well.

Both mentioned approaches lead to non-rational approxi-

mation in the form of a FIR filter.

There are many other suggestions to discretize fractional

calculus and numerical solution of fractional differential

equations. We should mention Diethelm’s work [20], where

discretization algorithm was based on the quadrature formula

approach. Another method is proposed by Leszczynski. In his

proposal the algorithm for numerical solution is obtained by

using a decomposition of the fractional differential equation

into a system of ordinary differential equation of integer

order and inverse form of Abel’s integral equation [35].

Last but not least we should mention the approach proposed

by Hwang, which is based on B-splines function [29] and

Podlubny’s matrix approach [78], [81].

VII. HOW TO IMPLEMENT? PROPOSED REALIZATIONS

Basically, there are two methods for realization of the

FOC. One is a digital realization based on microprocessor de-

vices and appropriate control algorithm and the second one is

an analogue realization based on analogue circuits so-called

fractance. This section describe both of the realizations.

A. Digital realization: Control algorithm

This realization can be based on implementation of the

control algorithm in the microprocessor devices, e.g.: PLC

controller [71], processor C51 or PIC [69], PCL I/O card

[95], etc. Some experimental measurements with processor

and PCL card were already done in [69], [95].

Generally, the control algorithm may be based on canon-

ical form of IIR filter, which can be expressed as follow

F(z−1) =
U(z−1)

E(z−1)
=

b0 + b1z−1 + b2z−2 + . . .+ bMz−M

a0 + a1z−1 + a2z−2 + . . .+ aNz−N
,

(39)

where a0 = 1 for compatible with the definitions used in

MATLAB. Normally, we choose M = N.

The FOC in form of IIR filter can be directly implemented

to any microprocessor based devices as for instance PLC or

PIC. A direct form of such implementation using canonical

form shown in Fig. 5, with input e(k) and output u(k)
range mapping to the interval 0−UFOC [V] divided into two

sections: initialization code and loop code. The pseudo-code

has the following form:

Fig. 5. Block diagram of the canonical representation of IIR filter form

(* initialization code *)

scale := 32752; % input and output

order := 5; % order of approximation

U_FOC := 10; % input and output voltage range:

% 5[V], 10[V], ...

a[0] := ...; a[1] := ...; a[2] := ...;

a[3] := ...; a[4] := ...; a[5] := ...;

b[0] := ...; b[1] := ...; b[2] := ...;

b[3] := ...; b[4] := ...; b[5] := ...;

loop i := 0 to order do

s[i] := 0;

endloop

(* loop code *)

in := (REAL(input)/scale) * U_FOC; feedback := 0;

feedforward := 0; loop i:=1 to order do

feedback := feedback - a[i] * s[i];

feedforward := feedforward + b[i] * s[i];

endloop

s[0] := in + a[0] * feedback;

out := b[0] * s[1] + feedforward;

loop i := order downto 1 do

s[i] := s[i-1];

endloop

output := INT(out*scale)/U_FOC;

The disadvantage with this solution is that the complete

controller is calculated using floating point arithmetic.

All discrete techniques described in Sec.VI allow us use

a fractional operator in discrete form but we have to realize

the capacity and speed limitation of real devices as for

example PIC microprocessor.

B. Analogue Realization: Fractance Circuits

A circuit exhibiting fractional-order behavior is called

a fractance [76]. The fractance devices have the following

characteristics [56], [59], [30]. First, the phase angle is con-

stant independent of the frequency within a wide frequency

band. Second, it is possible to construct a filter which has

moderated characteristics which can not be realized by using

the conventional devices.

Generally speaking, there are three basic fractance devices.

The most popular is a domino ladder circuit network. Very

often used is a tree structure of electrical elements and finally,

we can find out also some transmission line circuit. Here
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we must mention that all basic electrical elements (resistor,

capacitor and coil) are not ideal [11], [99].

Design of fractances can be done easily using any of the

rational approximations [72] or a truncated CFE, which also

gives a rational approximation.

Truncated CFE does not require any further transforma-

tion; a rational approximation based on other methods must

be transformed to the form of a continued fraction. The

values of the electric elements, which are necessary for

building a fractance, are then determined from the obtained

finite continued fraction. If all coefficients of the obtained

finite continued fraction are positive, then the fractance

can be made of classical passive elements (resistors and

capacitors). If some of the coefficients are negative, then the

fractance can be made with the help of negative impedance

converters [72].

Domino ladder lattice networks can approximate fractional

operator more effectively than the lumped networks [23].

Z1 Z Z Z2n -3 2n -1

Y Y Y Y2 2n -2 2n

3

4Z(s)

Fig. 6. Finite ladder circuit

Let us consider the circuit depicted in Fig. 6, where
Z2k−1(s) and Y2k(s), k = 1, . . . ,n, are given impedances of
the circuit elements. The resulting impedance Z(s) of the
entire circuit can be found easily, if we consider it in the
right-to-left direction:

Z(s) = Z1(s)+
1

Y2(s)+
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

Y2n−2(s)+
1

Z2n−1(s)+
1

Y2n(s)

(40)

The relationship between the finite domino ladder network,

shown in Fig. 6, and the continued fraction (40) provides an

easy method for designing a circuit with a given impedance

Z(s). For this one has to obtain a continued fraction ex-

pansion for Z(s). Then the obtained particular expressions

for Z2k−1(s) and Y2k(s), k = 1, . . . ,n, will give the types of

necessary components of the circuit and their nominal values.

Rational approximation of the fractional integra-

tor/differentiator can be formally expressed as:

s±α ≈
{

Pp(s)

Qq(s)

}

p,q

= Z(s), (41)

where p and q are the orders of the rational approximation,

P and Q are polynomials of degree p and q, respectively.

For direct calculation of circuit elements was proposed

method by Wang [98]. This method was designed for con-

structing resistive-capacitive ladder network and transmission

lines that have a generalized Warburg impedance As−α ,

where A is independent of the angular frequency and 0 <
α < 1. This impedance may appear at an electrode/electrolyte

interface, etc. The impedance of the ladder network (or trans-

mission line) can be evaluated and rewritten as a continued

fraction expansion:

Z(s) = R0 +
1

C0s+

1

R1+

1

C1s+

1

R2+

1

C2s+
. . . (42)

If we consider that Z2k−1 ≡ Rk−1 and Y2k ≡ Ck−1 for k =
1, . . . ,n in Fig. 6, then the values of the resistors and

capacitors of the network are specified by

Rk = 2hαP(α)
Γ(k + α)

Γ(k + 1−α)
−hαδko

Ck = h1−α(2k + 1)
Γ(k + 1−α)

P(α)Γ(k + 1 + α)
,

P(α) =
Γ(1−α)

Γ(α)
, (43)

where 0 < α < 1, h is an arbitrary small number, δko is the

Kronecker delta, and k is an integer, k ∈ [0,∞).

_
_


+


_


+


R

1


R

2


E(s)


U(s)
+


_


_


+


R

3


R

4


Z(s)

i


R

i


_


+


Z(s)

d


R

d


_


+


output


input


Fig. 7. Analogue fractional-order PIλ Dδ controller

Figure 7 depicts an analogue implementation of fractional-

order PIλ Dδ controller. Fractional order differentiator is

approximated by general Warburg impedance Z(s)d and

fractional order integrator is approximated by impedance

Z(s)i, where orders of both approximations are 0 < α < 1.

For orders greater than 1, the Warburg impedance can be

combined with classical integer order circuit block. Usually

we assume R2 = R1 in Fig. 7.

For proportional gain Kp we can write the formula:

Kp =
R3

R4

.
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The integration constant Ti can be computed from relation-

ship

Ti =
Z(s)i

Ri

.

For derivative constant Td we can write formula:

Td =
Rd

Z(s)d

.

In the case, if we use identical resistors (R-series) and

identical capacitors (C-shunt) in the fractances, then the

behavior of the circuit will be as a half-order integra-

tor/differentiator. Realization and measurements of such kind

controllers were done in [72].

Instead of fractance circuit the new electrical element

introduced by G. Bohannan called Fractor can be used

as well [9]. This element - Fractor made from a material

with the properties of LiN2H5SO4 has been already used for

temperature control [5].

Last but not least we should mention the implementa-

tion technique based on the memristive devices recently

suggested in [17]. This new implementation involves using

memristors and other memristive systems for realization of

the fractional-order controllers.

VIII. CONCLUSIONS AND FUTURE PERSPECTIVES

In this tutorial article, we offer a tutorial on fractional

calculus in controls. Basic definitions of fractional calculus,

fractional order dynamic systems and controls are presented

first. Then, fractional order PID controllers are introduced

which may make fractional order controllers ubiquitous in

industry. Additionally, several typical known fractional order

controllers are introduced and commented. Numerical meth-

ods for simulating fractional order systems are given in detail

so that a beginner can get started quickly. Discretization

techniques for fractional order operators are introduced in

some details. Both analog and digital realization of fractional

operators are introduced.

As for the future perspectives, we briefly offer the follow-

ing remarks for future investigation

• Power law Lyapunov stability theory should replace the

exponential law based Lyapunov stability theory?

• Power law phenomena are due to time-/spatial-fractional

order dynamics?

• Time frequency analysis, multi-resolution analysis

(wavelet), fractional Fourier transformation, and frac-

tional order calculus are inter-related?

• Long range dependence of stochastic process is due to

fractional order dynamics?

• · · ·
Some of our recent investigations have already shown that,

some of the above speculations are true.

As final remarks, the readers are reminded that whenever

the following words appears:

• power law

• long range dependence

• porous media

• particulate

• granular

• lossy

• anomaly

• disorder

• scale-free, scale-invariant

• complex dynamic system

• · · ·
please think about fractional order dynamics and controls. In

general, fractional order dynamics and controls are ubiqui-

tous.
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