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Abstract—This paper investigates the robustness of a
fractional-order controller against the load changes of a DC
motor. The gains and time constants of the DC motor are modified
by means of a change in the brake. Two different setups of a
DC motor, one with 25% brake and the other with 50% brake
are considered in the experimental evaluation. The closed-loop
performances of the fractional-order controller are compared
with integer-order controller using the same performance criteria
and the same tuning algorithm. Both controllers were designed
based on time domain specifications. The experimental results
show that the fractional-order controller outperforms the clas-
sical controller under nominal conditions as well as under gain
variations situation.

I. INTRODUCTION

Mechatronic systems are governed by many effects residing

in different engineering fields, covering problems form me-

chanical, electrical, pneumatic, thermal disciplines, compris-

ing various technological components. Thus, these types of

systems are usually characterized by significant nonlinearities

and tight performance specifications [1]. Due to these features,

the main challenge in the design and analysis of mechatronics

systems consists in an accurate modelling [2], [3]. Whenever

such a model is difficult to be obtained precisely, the controller

needs to be properly designed in order to compensate for

the modelling uncertainties and to preserve the closed-loop

performance at various operating points. Numerous control al-

gorithms have been proposed to deal with nonlinear dynamics

of the mechatronic systems. For linear mechatronic systems,

the proportional-integral-derivative (PID) controller is often

used owing to its simple structure and robustness [4]. Another

approach in dealing with mechatronic systems challenges is

the fractional-order (FO) control strategies. One of the most

common applications in all mechatronic domains is the control

of DC motors.

The control of DC motors has been the interest of many

researchers, due to the wide variety of applications that require

the use of different types of DC motors [5], [6], [7]. The

controllers designed for these DC motors range from simple

traditional PIDs to advanced control algorithms, among which

fractional-order control has been gaining more and more

popularity [8], [9], [10], [11].

Fractional calculus has been used relatively recently in

modeling and control applications [12]. The attractiveness of

the fractional-order PID controllers resides in their potential

to increase the closed-loop performance and robustness of

the closed-loop system, due to the extra tuning parameters

available, as compared to the conventional controller. With

fractional-order controllers, the order of differentiation and

integration may be used as supplementary tuning parameters

and thus more specifications can be fulfilled at the same time,

including the robustness to plant uncertainties, such as gain

and time constant changes [12], [13], [14].

In general, frequency domain tuning of the fractional-order

controllers is preferred using optimization routines to yield

the final solutions. The performance criteria are frequently

specified in terms of gain crossover frequency, phase crossover

frequency, phase margin, gain margin, and robustness to open-

loop gain variations [15], [16].

In this paper a fractional calculus based control strategy for

speed control of a DC motor with load changes is presented.

The relevance of the paper to the research field consists in the

simplicity of the approach, yet yielding a robust controller that

can meet the performance specifications for significant load

changes. The robustness of the fractional-order PI controller

and its performances are compared against an integer-order PI

controller. In order to evaluate the robustness of the controllers

a change in the motor loading unit is considered for the

conducted experiments. Due to the change in the brake unit,

the gain and time constant of the system are also modified.

The performances of both classical integer-order approach and

fractional-order approach are analyzed through simulations

and real-time experiments. The control design method and the

application are kept simple, yet effective to illustrate basic time

domain and frequency domain concepts. The experimental

results revealed better performances of the fractional approach

in comparison with the classical one.

The paper is structured as follows: Section II presents the

tuning procedure for a fractional-order PI controller. Section

III presents the description of a DC motor as well as a tuning

example for the control of the speed of a DC motor. Section IV

presents the simulation and real-time results of the conducted

experiments, while the last section includes the conclusions.

II. DESIGN OF A ROBUST FRACTIONAL-ORDER PI

CONTROLLER

Fractional calculus represents the generalization of the inte-

gration and differentiation to an arbitrary order. The Laplace



Fig. 1. General model of a DC motor

transform of the fractional-order operators are [12]:

L 〈Iαf(t)〉 = s−αF (s) (1)

for the fractional-order integral, while for the fractional-order

derivative, the equation is:

L 〈Dαf(t)〉 = sαF (s) (2)

with α ∈ (0, 1).
The transfer function of the FO-PI controller is given as:

HFO−PI(s) = kp(1 +
ki

sµ
) (3)

where kp and ki are parameters of the fractional-order PI

controller, while µ represents the fractional order.

The design of the FO-PI controller is usually based on

a phase margin and a gain crossover condition, to which a

third criteria may be added in order to uniquely determine

the three controller parameters. In order to tune the fractional-

order PI controller, the open-loop transfer function needs to

be computed as:

Hopen−loop(s) = HFO−PI(s)HP (s) (4)

where HP (s) is the process to be controlled. The tuning of

the FO-PI controller implies the computation of the three

parameters kp, ki and µ according to three performance

specifications imposed. The gain crossover frequency - ωcg

- implies that the modulus of the open-loop transfer function

obeys the following:

|Hopen−loop(jωgc)| = 1 (5)

while the phase margin - ϕm - specification sets a condition

upon the phase of the open-loop system at the gain crossover

frequency, mathematically written as:

∠Hopen−loop(jωgc) = −π + ϕm (6)

The performance specifications given above may be re-

written as:

|HFO−PI(jωgc)| =
1

|HP (jωgc)|
(7)

∠HFO−PI(jωgc) = −π + ϕm − ∠HP (jωgc) (8)

which can be further detailed as:
∣

∣

∣
kp

[

1 + kiω
−µ
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=
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(10)

Since the FO-PI controller has three independent param-

eters, these can be adequately tuned to meet three perfor-

mance specifications. Thus apart from imposing a certain

gain crossover frequency and a certain phase margin, which

naturally imply a certain settling time and overshoot, a third

condition may be added to the design problem. This third

condition can refer to high frequency noise rejection, good

output disturbance rejection, robustness to variations in the

gain of the plant, etc [17].

III. CASE STUDY: DC MOTOR SPEED CONTROL USING

FO-PI CONTROLLER

DC motors are amongst the most largely used components

both academic and industrial applications. An essential feature

of any position or speed control system is an electric motor

with some associated power supply and amplifier stage to

control power input to the motor in response to a lower level

control signal. In order to adequately tune the FO-PI controller

as indicated in section II, the transfer function of the studied

DC motor needs to be determined. A general model of the DC

motor is shown in Figure 1.

The applied voltage Va, which is the manipulated variable,

will control the position θ(t), which is the controlled variable.

For the speed control, the controlled variable is the angular

velocity ω(t) and the transfer function has the form in [18]:

PDC motor(s) =
ω(s)

Va(s)
=

Km

(Las+Ra)(Js+ b) +KbKm
(11)

However, for many DC motors the time constant of the

armature τa = La

Ra
is negligible and therefore the model can



be simplified to:

PDC motor(s) = Km

Ra(Js+b)+KbKm
=

Km
Rab+KbKm

τs+1 =

= KDC motor

τs+1
(12)

where τ = RaJ
Rab+KbKm

and KDC motor = Km

Rab+KbKm
.

The transfer function from position θ(t) as output (con-

trolled variable) to armature voltage Va as input (manipulated

variable) will be:

PDC motor pos(s) =
θ(s)

Va(s)
=

KDC motor

s(τs+ 1)
(13)

The identification of the system was done based on a PRBS

(pseudo random binary signal) signal. To generate this PRBS

signal, the following command is used in Matlab:

• idinput(127, ’PRBS’, [0 1/1], [-1 1]).

By using the Prediction Error Method (PEM) for identification

[19], the system’s model is defined. The transfer function of

the DC motor voltage-speed, with 25% brake, was identified

to be:

PDC motor 1(s) =
−0.25

(1.45s+ 1)
(14)

A second transfer function for the DC motor speed, consider-

ing 50% brake, was identified as well:

PDC motor 2(s) =
−1

1.7s+ 1
(15)

The gains and time constants of the DC motor are modified

due to the change in the brake. The motor loading unit (brake

unit and inertia disc) consists of an eddy current brake and

an inertia disc which can be mounted on the armature shaft

extension. The brake has the approximate speed/torque at 1000

rpm as shown on Figure 2. For other speeds the torque is

proportional to the speed relative to the 1000 rpm. The inertia

moment of the inertia disc is about 0.001 Kg*m2.

Fig. 2. Approximate brake characteristics at 1000 rpm

If the inertia of the motor is increased the transient response

is slowed down and hence with additional inertia the maximum

acceleration and deceleration are reduced. The motor responds

fairly rapidly to the step input and its rise in speed follows an

exponential path when no discs are mounted on the output

shaft (Figure 3(a)). When the input falls to zero the decel-

eration is due almost entirely to brush friction and is linear.

If the inertia of the brake disc is added the response time is

increased (Figure 3(b)). Using the inertia disc, the response

time is greatly increased and the motor only just stop before

the step input is re-applied (Figure 3(c)). The added inertia

has little effect upon the response time, but the time for the

motor to stop is much reduced.

Fig. 3. The variation in the DC motor characteristic when (a) no disc is
mounted on the shaft; (b) brake disc is mounted; (c) inertia disc is mounted

To design the FO-PI controller, the PDC motor 1(s) trans-

fer function was considered as being the nominal one. The

PDC motor 2(s) transfer function is considered as a uncer-

tainty. While the time constant does not change significantly,

the gain of the DC motor transfer function changes substan-

tially. Hence, apart from setting a certain settling time and

overshoot by imposing the gain crossover frequency and phase

margin, a robust controller especially to gain variations needs

to be computed. As a consequence, to the previously defined

two performance specifications, a third condition is appended,

that refers to the robustness against gain uncertainties:

d (∠Hopen−loop(jω))

dω

∣

∣

∣

∣

ω=ωgc

= 0 (16)

also written as:

d(∠[1+kiω
−µ
gc (cos

πµ
2

−j sin πµ
2 )])

dωgc
=

= −
d(∠PDC motor 1(jωgc))

dωgc

(17)

The condition in (16) imposes a flat phase around the gain

crossover frequency. For open-loop gain changes, the gain

crossover frequency varies around the nominal value. However

a flat phase around that value, will ensure a constant phase

margin, equal to the one imposed in the design specifications,

despite the variations in the gain crossover frequency, thus

assures the robustness against gain modeling errors or uncer-

tainties.

The performance specifications regarding the gain crossover

frequency and phase margin are: ωcg = 1.5 and ϕm = 60◦.

Such performance specifications allow for a 2 second settling

time and a 5% overshoot. Using graphical methods, two curves

for the ki parameter as a function of the fractional order µ are

plotted as indicated in Figure 4. The intersection of the two

curves yields the solution for ki and µ as resulting from (10)

and (17). The final values, ki = 2.28 and µ = 0.89, are then



used to compute the value for the third parameter kp using

(9): kp = 1.37. Thus, the FO-PI controller was obtained as:

HFO PI(s) = 1.37 +
2.28

s0.89
(18)

Fig. 4. Graphical selection of the fractional order PI parameters ki and µ

To test the controller, prior to the actual implementation,

a Simulink benchmark was created in which the previously

determined FO-PI controller was implemented in its discrete

form. To obtain the discrete approximation of the FO-PI con-

troller the 9th order Tustin recursive method with a sampling

period of 0.2 seconds was chosen.

IV. RESULTS AND DISCUSSION

In this section, a part of the simulation and experimental

results that were conducted in order to validate the fractional

order controllers are presented.

Hence, a discrete time version of the controllers need to

be developed for the final implementation. The equivalent

discrete-time formulation (for sampling time 0.2s) of the

identified model for DC motor voltage-speed with 25% brake

is given by:

PDC motor 1(z) =
0.032

z − 0.87
(19)

A. Simulation Results

Before to implement and evaluate the performance of the

controllers on the real-time setup, a Simulink model has been

designed to test and validate the controllers. The simulation re-

sults for fractional-order feedback loop by using the Simulink

model are depicted in Figures 5, 6, 7. The fractional-order PI

controller is compared with the integer-order PI controller. The

integer-order PI controller has been designed using the same

performance specifications and the same tuning algorithm as

for the fractional controller. Hence, µ = 1 and the tuning

parameters are: kp = 1.23 and ki = 2.41. As observed

from the simulation results, the fractional-order controller

outperforms the classical controller.

Figure 5 shows the simulation results considering the nom-

inal case, when the DC motor transfer function is represented

by PDC motor 1(s), as well as the uncertain case, when the

DC motor transfer function is given by PDC motor 2(s). The

results concerning the nominal case, the DC motor with 25%

brake, show that there is a 4.5% overshoot, while the settling

time is 2 seconds, as expected from the required performance

criteria. The comparison of these results with those obtained

when considering a 17.25% change in the DC motor time

constant and 300% change in the DC motor gain demonstrate

the robustness of the designed controller. In the uncertain case,

when the DC motor works with a 50% brake, the overshoot is

18.5%, while the settling time is 0.4 seconds. Hence, we can

conclude that the controller is very robust given the dramatic

changes in the gain. .

Fig. 5. Simulations results considering FO-PI controller with 25% brake
(nominal case) and 50% brake (uncertain case)

Next, the results with the FO-PI controller are compared

with an integer-order PI controller. As observed from the sim-

ulation results given in Figure 6 where only the nominal case is

considered, the fractional-order controller slightly outperforms

the classical controller. To design the PI controller, the ki
parameter can be determined using either one of the conditions

specified in (10) or (17). In order to make the integer-order

PI controller more robust, (17) was used to compute the

final value for parameter ki. Thus the phase margin is no

longer a tuning criteria and (8) is no longer valid. The tuning

of the PI controller using (17) was selected since for the

FO-PI controller a value µ = 0.89 for the fractional order

was obtained as being the optimum value that meets both

performance specifications (10) and (17). Since µ = 0.89 is

close to unity, it is expected that the phase margin for µ = 1
does not decrease drastically as compared to the imposed

value of 60◦. For the integer-order PI controller, µ = 1
would then ensure a high enough phase margin, thus making

it more convenient to determine the ki parameter based on

the robustness condition. Figure 6 shows that under nominal

conditions, the overshoot is increased, while the corresponding

phase margin is in fact less than the one imposed for the design

of the FO-PI controller.

To test the robustness of the integer-order PI controller, the

uncertain case is considered, with the DC motor working under

50% brake. The simulation results are given in Figure 7. The



Fig. 6. Comparative simulation results for DC motor speed control with 25%
brake using integer-order and fractional-order PI controllers

results considering a 50% brake show that the FO-PI controller

achieves better closed-loop performance even in the case of

gain variations as compared to the integer-order PI controller.

Fig. 7. Comparative simulation results for DC motor speed control with 50%
brake using integer-order and fractional-order PI controllers

Table 1 presents the values obtained for the overshoot and

settling time considering both FO-PI and PI controllers, under

nominal as well as uncertain situations. It is clear from this

table that the FO-PI controller achieves far better performance

results than the PI controller both under nominal conditions,

but especially under gain variations.

TABLE I
CLOSED-LOOP PERFORMANCE RESULTS OBTAINED WITH THE DESIGNED

FO-PI AND PI CONTROLLERS

Controller Overshoot Settling time

25% brake 50% brake 25% brake 50% brake

FO-PI 4.5% 18.5% 2 sec 0.4 sec
PI 12% 31.5% 2 sec 2 sec

To validate the results obtained in Simulink, real experi-

ments were conducted using both controllers under 25% brake,

as well as 50% brake.

B. Experimental Results

The performance of the PI controllers has also been eval-

uated in the real-time application using the set-up depicted

in Figure 8. After the system reaches steady state, different

changes in setpoint were applied. Again, the experimental

results from Figures 9 and 10 show that the fractional-order

controller outperforms the integer-order PI controller. If for the

setpoint tracking the superiority of the fractional controller is

slightly visible, in case of control effort the fractional-order

PI is clearly superior to the classical controller. A comparison

of the closed-loop performance of the fractional-order PI

controller when considering the DC motor with 25% brake

and 50% brake, respectively, is illustrated in Figure 11.

Fig. 8. The real set-up configuration for the DC motor

Fig. 9. Comparative real-time results for DC motor speed control with 25%
brake using fractional-order and integer-order PI controllers

The simulation and experimental results reveal that

fractional-order controller obtain better performances when

dealing with this type of process in comparison with classical



Fig. 10. Comparative real-time results for DC motor speed control with 50%
brake using fractional-order and integer-order PI controllers

Fig. 11. Comparative real-time results for DC motor speed control with 25%
and 50% brake using fractional-order PI controller

PI controller. An important issue of the real-time processes is

to have a faster convergence of the system with less control

effort. Analyzing the experimental results it can be notice that

the fractional-order controller is robust to the load changes

of the DC motor and obtain good performances without great

control effort.

V. CONCLUSION

In this paper, an illustrative example of a fractional-order

controller for speed control of a DC motor with load changes is

presented. The robustness of the fractional-order controller has

been evaluated by changing the gains and time constant of the

DC motor due to the change in the brake unit. The experimen-

tal results are performed using a fractional-order PI controller

and the output performances are compared with integer-order

PI controller. Both controllers were designed using the same

tuning algorithm. Due the flexibility of the fractional order

parameters, the system can fulfill more specifications and

thus becomes more robust to changes in the dynamics. The

experimental results show that the fractional-order controller

outperforms the classical integer-order controller. On the other

side the design of a fractional-order controller implies com-

putational complexity and also the implementation itself may

require additional effort.

ACKNOWLEDGMENT

This work was partially supported by a grant of the Ro-

manian National Authority for Scientific Research, CNCS

UEFISCDI, project number PN-II-RU-TE-2012-3-0307.

REFERENCES

[1] S. Di Cairano, A. Bemporad, I. Kolmanovsky, D. Hrovat, Model
predictive control of nonlinear mechatronic systems: An application to
a magnetically actuated, 2nd IFAC Conference on Analysis and Design

of Hybrid Systems, 2, Italy, 2006.
[2] M. Steinbuch, R. Merry, M. Boerlage, M. Ronde and M. van de

Molengraft, Advanced motion control design. In W.E. In Levin (ed.),
The Control Handbook, Control System Applications, 27–1/25. CRC
Press, 2010.

[3] R. Bishop, The Mechatronics Handbook. CRC Press, 2002.
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