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In recent years, the research of arti	cial neural networks based on fractional calculus has attractedmuch attention. In this paper, we
proposed a fractional-order deep backpropagation (BP) neural network model with �2 regularization. �e proposed network was
optimized by the fractional gradient descent method with Caputo derivative. We also illustrated the necessary conditions for the
convergence of the proposed network.�e in
uence of �2 regularization on the convergence was analyzed with the fractional-order
variational method. �e experiments have been performed on the MNIST dataset to demonstrate that the proposed network was
deterministically convergent and can e�ectively avoid over	tting.

1. Introduction

It is well known that arti	cial neural networks (ANNs)
are the abstraction, simpli	cation, and simulation of the
human brains and re
ect the basic characteristics of the
human brains [1]. In recent years, great progress has been
made in the research of deep neural networks. Due to
the powerful ability of complex nonlinear mapping, many
practical problems have been successfully solved by ANNs in
the 	elds of pattern recognition, intelligent robot, automatic
control, prediction, biology, medicine, economics, and other
	elds [2, 3]. BP neural network is one of the most basic
and typical multilayer forward neural networks, which are
trained by backpropagation (BP) algorithm. BP, which is an
e�cient way for optimization of ANNs, was 	rstly introduced
by Werbos in 1974. �en, Rumelhart and McCelland et al.
implemented the BP algorithm in detail in 1987 and applied
it to the multilayer network version of Minsky [4–6].

�e fractional calculus has a history as long as the integral
order calculus. In the past three hundred years, the theory of
fractional calculus hasmade great progresses [7–11]. Its basics
are di�erentiation and integration of arbitrary fractional
order. Nowadays, fractional calculus is widely used in di�u-
sion processes [12–14], viscoelasticity theory [15], automation
control [16–18], signal processing [19–21], image processing
[22–25], medical imaging [26–28], neural networks [29–
37], and many other 	elds. Due to the long-term memory,
nonlocality, and weak singularity characteristics [29–37],

fractional calculus has been successfully applied to ANNs.
For instance, Boroomand constructed the Hop	eld neural
networks based on fractional calculus [37]. Kaslik analyzed
the stability of Hop	eld neural networks [30]. Pu proposed
a fractional steepest descent approach and o�ered a detailed
analysis of its learning conditions, stability, and convergence
[38]. Wang applied the fractional steepest descent algorithm
to train BP neural networks and proved themonotonicity and
convergence of a three-layer example [33]. However, there are
three limitations in the proposed fractional-order BP neural
network models in [33]. First, the neural network in [33] just
had 3 layers, which was actually a shadow network and was
not proper to demonstrate its potential for deep learning.
Second, the fractional order V of this model was restricted to(0, 1]without reasonable analysis.�ird, the loss function did
not contain the regularization term, which is an e�cient way
to avoid over	tting, especially when the training set has small
scalar. Over	tting means that the model has high prediction
accuracy on training set but has the low prediction accuracy
on testing set. �is makes the generalization ability of the
model poor, and the application value is greatly reduced.

In this paper, we proposed a deep fractional-order
BP neural network with �2 regularization term, and the
fractional-order V could be any positive real number. With
the fractional-order variational method, the in
uence of �2
regularization on the convergence of the proposed model
was exploited. �e performance of the proposed model was
evaluated on the MINST dataset.
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�e structure of the paper is as follows: in Section 2, the
de	nitions and simple properties of fractional calculus are
introduced. In Section 3, the proposed fractional-order mul-
tilayer BPneural networks are given in detail. In Section 4, the
necessary conditions and the in
uence of �2 regularization
for the convergence of the proposed BP algorithm are stated.
In Section 5, experimental results are presented to illustrate
the e�ectiveness of ourmodel. Finally, the paper is concluded
in Section 6.

2. Background Theory for Fractional Calculus

In this section, the basic knowledge of fractional calculus
is introduced, including the de	nitions and several simple
properties used in this paper.

Di�erent from integer calculus, fractional derivative does
not have a uni	ed temporal de	nition expression up to
now. �e commonly used de	nitions of fractional derivative
are Grünwald-Letnikov (G-L), Riemann-Liouville (R-L), and
Caputo derivatives [7–11].

�e following is the G-L de	nition of fractional deriva-
tive:

�−�
��V

�� (�) ≜ lim
ℎ�→0

ℎ−V[(�−�)/ℎ]∑
	=0

(−V
 )� (� − 
ℎ)
≜ lim

�→∞

{((� − ) /�)−VΓ (−V)
⋅ 
−1∑
	=0

Γ (
 − V)Γ (k + 1)� (� − 
 (� − � ))}
(1)

where

(−V
 ) = (−V) (−V + 1) . . . (−V + 
 − 1)
! (2)

�−�
��V

� denotes the fractional di�erential operator based on
G-L de	nition, �(�) denotes a di�erintegrable function, V
is the fractional order, [, �] is the domain of �(�), Γ is the
Gamma function, and [⋅] is the rounding function.

�e R-L de	nition of fractional derivative is as follows:

�−�
��V

�� (�) = 1Γ (� − V) �


�� ∫
�
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� (�)(� − �)V−+1 �� (3)

where
�−�
��V

� denotes the fractional di�erential operator
based on G-L de	nition; � = [V + 1]. Moreover, the G-L
fractional derivative can be deduced from the de	nition of
the R-L fractional derivative.

�e Caputo de	nition of fractional derivative is as fol-
lows:

�
��V

�� (�) = 1Γ (� − V) ∫
�

�
(� − �)−V−1 �() (�) �� (4)

where
�
��V

� is the fractional di�erential operator based on
Caputo de	nition, � = [V + 1].

Fractional calculus is more di�cult to compute than
integer calculus. Several mathematical properties used in this
paper are given here. �e fractional di�erential of a linear
combination of di�erintegral functions is as follows:

�V

� (�� (�) + �� (�)) = ��V

�� (�) + ��V

�� (�) (5)

where �(�) and �(�) are di�erintegral functions and � and �
are constants.

�e fractional di�erential of constant function �(�) = C,
(C is a constant) is di�erent under di�erent de	nitions:

For the G-L de	nition,

�−�
��V
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{((� − ) /�)−VΓ (−V)

−1∑
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Γ (
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(6)

For the R-L de	nition,

�−�
��V

�� (�) = �(� − )−VΓ (1 − V) , V > 0 (7)

And for the Caputo de	nition

�
��V

�� (�) = 0, V > 0 (8)

According to (6), (7) and (8), we can know that for the
G-L and R-L de	nition, the fractional di�erential of constant
function is not equal to 0. Only with the Caputo de	nition,
the fractional di�erential of constant function equals to 0,
which is consistent to the integer-order calculus. �erefore,
the Caputo de	nition is widely used in solving engineering
problems and it was employed to calculate the fractional-
order derivative in this paper. �e fractional di�erential of
function �(�) = (� − )�, (� > −1) is as follows:

�V (� − )���V = Γ (� + 1) (� − )�−VΓ (� − V + 1) (9)

3. Algorithm Description

3.1. Fractional-Order Deep BP Neural Networks. In this
section, we introduce the fractional-order deep BP neural

network with L layers. ��, � = 1, 2, . . . , L, is the number

of neurons for the �-th layer. W� = ( ���)�+1×� denotes the
weight matrix connecting the �-th layer and the (� + 1)-th
layer. �� denotes the corresponding activation function for

the �-th layer."� and#� are the input and the corresponding
ideal output of the $-th sample and the training sample set is{"�, #�}��=1. %� = (&�1, &�2 . . . , &��+1) denotes the total inputs of�-th layer. If neurons in the �-th layer are not connected to any
neurons in previous layer, these neurons are called external

outputs of the �-th layer, denoted as '�1. On the contrary, if
neurons in the �-th layer are connected to every neuron in
previous layer, these neurons are called internal outputs of �-
th layer, denoted as '�2. '� = (�1, �2 . . . , ��) denotes the total
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outputs of �-th layer.�e forward computing of the fractional-
order deep BP neural networks is as follows:

'�2 = �� (%�) (10)

'� = ['�1'�2] (11)

%�+1 =W� ⋅ '� (12)

Particularly, external outputs can exist in any layer except
the last one. With the square error function, the error
corresponding to $-th sample can be denoted as:

5� = 12 66666'�� − #�666662 = 12
�∑
�=1
(��� − 7��)2 (13)

where ��� denotes the 8-th element of '��, 7�� denotes the 8-th
element of #�.

�e total error of the neural networks is de	ned as

E = �∑
�=1
5� = 12

�∑
�=1

66666'�� − #�666662 = 12
�∑
�=1

�∑
�=1
(��� − 7��)2 . (14)

In order to minimize the total error of the fractional-
order deep BP neural network, the weights are updated by the
fractional gradient descent method with Caputo derivative.

Let 8 = 1, 2, ..., ��. �e backpropagation of fractional-order
deep BP neural networks can be derived with the following
steps.

Firstly, we de	ne that

9�� = :5:&�� . (15)

According to (13), we can know that

9�� = :5:&�� =
�∑
�=1
(��� − 7��) ��� (&�� ) . (16)

�en the relationship between 9�� and 9�+1� can be given by

9�� = :5:&�� =
�+1∑
�=1

:5:&�+1�
:&�+1�:&�� =

�+1∑
�=1
9�+1� ⋅  ������ (&��)

= ��� (&��)(
�+1∑
�=1
9�+1� ⋅  ���) .

(17)

�en, according to the chain rule and (17), we have

�V

����
E = :5:&�+1� ⋅ �V

����
&�+1� = 9�+1� ⋅ �� ⋅ ( ���)

1−V

Γ (2 − V) . (18)

�e updating formula is

( ���)�+1 = ( ���)� − ?�V

����
�E (19)

where @ ∈ N denotes the @-th iteration and ? > 0 is the
learning rate.

3.2. Fractional Deep BP Neural Networks with �2 Regulariza-
tion. Fractional-order BP neural network can be over	tted
easily when the training set has small scalar. �2 regularization
is a useful way to avoid models to be over	tted without mod-
ifying the architecture of network. �erefore, by introducing
the �2 regularization term into the total error, the modi	ed
error function can be presented as

5�2 = 5 + �2 ‖C‖2 (20)

where ‖C‖2 denotes the sum of squares of all weights and� ≥ 0 denotes the regularization parameter.
By introducing (18), we have

�V

����
5�2 = �V

����
E + �( ���)2−VΓ (3 − V) . (21)

�e updating formula is

( ���)�+1 = ( ���)� − ?�V

(����)�
5�2 (22)

where @ ∈ N denotes the @-th iteration and ? > 0 is the
learning rate.

4. Convergence Analysis

In this section, the convergence of the proposed fractional-
order BP neural network is analyzed. According to previous
studies [39–42], there are four necessary conditions for the
convergence of BP neural networks:

(1) �e activation functions ��, (� = 1, 2, . . . , �) are
bounded and in	nitely di�erentiable on R and all of their
corresponding derivatives are also continuous and bounded
on F. �is condition can be easily satis	ed because the
most common sigmoid activation functions are uniformly
bounded on F and in	nitely di�erentiable.

(2) �e boundedness of the weight sequence {( ���)�} is
valid during training procedure and Ω ∈ F∑�−11 �⋅�+1 is the
domain of all weights with certain boundary.

(3) �e learning rate ? > 0 has an upper bound.
(4) Let C denote the weights matrix that consists of all

weights and H = {C | �V

�5�2 = 0} be the V-order stationary
point set of the error function. One necessary condition is
that H is a 	nite set.

�en, the in
uence of �2 regularization on the conver-
gence is derived by using the fractional-order variational
method.

According to (20), 5�2 is de	ned as a fractional-order
multivariable function. �e proposed fractional-order BP
algorithm is to minimize 5�2. Let I denote the fractional-
order extreme point of5�2 and J denotes an admissible point.

In addition,I is composed ofI1, I2, . . . , I�−1 whereI� (� =1, 2, . . . , � − 1) denotes the weights matrix between the �-th
and (� + 1)-th layer when 5�2 reaches the extreme value. J
is composed of J1, J2, . . . , J�−1 where J� corresponds to I�.
�e initial weights are random values, so the initial points
of weights can be represented as I + (K − 1)J, where K is a
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vector that consists of small parameters K1, K2, . . . , K�−1, andK� corresponds to I� and J�. If K = 1, it means K� = 1(� =1, 2, . . . , � − 1), then I + (K − 1)J = I, and 5�2 reaches the
extreme value. �us, the process of training the BP neural
networks from a random initial weightC to U can be treated
as the process of training K with a random initial value toK = 1.

�e fractional-order derivative of 5�2 on I + (K − 1)J is
given as

�V

�95�2LLLL�=1 = �V

� [91 (K) + 92 (K)]LLLL�=1
= �V

�5 (I + (K − 1) J) + �V

�
�2 6666I + (K − 1) J66662

LLLLLLLL�=1
= 0

(23)

where V is the fractional order, which is a positive real
number.

From (23), we can see that when K = 1, if the V-order
di�erential of 5(I + (K − 1)J) with respect to K is existent,91(K) has a V-order extreme point and we have

�V

�91 (K)LLLL�=1 = �V

�5 (I + (K − 1) J)LLLL�=1 = 0. (24)

In this case, the output of each layer in the neural
networks is still given by (10) and (11) and the input of each
layer is turned into the following:

%�+1 = (I� + (K� − 1) J�) ⋅ '�. (25)

When K� = 1, we have
%�+1 = I� ⋅ '�. (26)

Without loss of generality, according to (18), for the �-th
layer of the networks, the V-order di�erential of5with respect
to K� can be calculated as

�V

��5 (I� + (K� − 1) J�)LLLLL��=1 = :5:%�+1 ⋅ �V

��%�+1LLLLLLLL��=1
= (9�+1 ⋅ ('�)�) J� (K�)1−VΓ (2 − V)

LLLLLLLLLL��=1
= J� (9�+1 ⋅ ('�)

�)
Γ (2 − V) = 0.

(27)

where 9� denotes the column vector�1��5.
Since the value of J is stochastic, according to variation

principle [43], to allow (24) to be set up, a necessary condition
is that for every layer of the networks

(9�+1 ⋅ ('�)�)
Γ (2 − V) = 0. (28)

Secondly, without loss of generality, for 92(K) we have
�V

��92 (K�)LLLLL��=1 = �V

��
�2 66666I� + (K� − 1) J�666662LLLLLL��=1

= ∑( �I���J���Γ (2 − V) + �J���2Γ (3 − V) − �J���2Γ (2 − V))
= �Γ (2 − V) Γ (3 − V) ∑(I���J���Γ (3 − V)
+ J���2Γ (2 − V) − J���2Γ (3 − V)) = 0

(29)

To allow (29) to be set up, a necessary condition is

�Γ (2 − V) Γ (3 − V) = 0. (30)

With (28) and (30), the Euler-Lagrange equation of�V

�95�2|�=1 can be written as

(9�+1 ⋅ ('�)�)
Γ (2 − V) + �Γ (2 − V) Γ (3 − V) = 0. (31)

Equation (31) is the necessary condition for the conver-
gence of the proposed fractional-order BP neural networks
with �2 regularization. From (31), we can see that if � > 0,
then (9�+1 ⋅('�)�) ̸= 0. (9�+1 ⋅('�)�) is the 	rst-order derivative
of 5 in terms of I and can be calculated by I and input
sample". It means that the extreme point U of the proposed
algorithm is not equal to the extreme point of integer-order
BP algorithm or fractional-order BP algorithm. I changes
with the di�erent value of � and V. In addition, it is also
clear that the regularization parameter � is bounded since the
values of input samples" and weightsC are bounded and V

is a constant during the training process.

5. Experiments

In this section, the following simulations were carried out
to evaluate the performance of the presented algorithm. �e
simulations have been performed on theMNIST handwritten
digital dataset. Each digit in the dataset is a 28 × 28 image.
Each image is associated with a label from 0 to 9. We divided
each image into four parts, which were top-le�, bottom-le�,
bottom-right, and top-right, and each part was a 14 × 14
matrix. We vectorized each part of the image as a 196 × 1
vector and each label as a 10 × 1 vector.

In order to identify the handwritten digits in MNIST
dataset, a neural network with 8 layers was proposed. Figure 1
shows the topological structure of the neural networks. For
the 	rst four layers of the network, each layer has 196 external
neurons and 32 internal neurons. �e outputs of the external
neurons are in turn four parts of an image and the outputs
of the internal neurons of the 	rst layer are 1. �e last four
layers have no external neurons. �e 	�h layer, sixth layer,
and seventh layer have 64 internal nodes and the output layer
has ten nodes. �e activation functions of all neurons except
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Table 1: Performances of the algorithms when v>2.
Size of training set

V = 19/9 V = 20/9
Train Accuracy Test Accuracy Train Accuracy Test Accuracy

10000 88.65% 83.52% 76.31% 72.66%
20000 91.04% 89.52% 78.93% 75.97%
30000 93.03% 90.65% 82.51% 80.79%
40000 93.20% 90.53% 82.47% 80.61%
50000 93.02% 91.23% 82.53% 81.60%
60000 93.85% 91.71% 87.32% 86.05%

Figure 1: �e topological structure of the neural networks.

the 	rst layer are sigmoid functions, which can be given as
follows:

� (�) = 11 + U−� . (32)

�e MNIST dataset has a total number of 60000 train-
ing samples and 10000 testing samples. �e simulations
demonstrate the performance of the proposed fractional-
order BP neural network with �2 regularization, fractional-
order BP neural network, traditional BP neural network,
and traditional BP neural network with �2 regularization. To
evaluate the robustness of our proposed network for a small
set of training samples, we set the number of training samples
to be (10000, 20000, 30000, 40000, 50000, and 60000).
Di�erent fractional V-order derivatives were employed to
compute the gradient of error function, where V = 1/9, 2/9,3/9, 4/9, 5/9, 6/9, 7/9, 8/9, 9/9, 10/9, 11/9, 12/9, 13/9, 14/9,15/9, 16/9, 17/9, 19/9, and 20/9 separately (V = 9/9 =1 corresponds to standard integer-order derivative for the
commonBP; V ̸= 2 because if V = 2 the change ofweights a�er
each iteration is 0, and the weights of the neural networks
cannot be updated). �e learning rate was set to be 3 and
the batch size was set to be 100. �e number of epochs �
was 300. Two main metrics—training accuracy and testing
accuracy—were used to measure the performance of the
results from di�erent networks. Each network was trained 5
times and the average values were calculated.

In order to explore the relationship between the fractional
orders and the neural network performance, the fractional-
order neural networks with di�erent orders were trained.
Figure 2 shows the results of di�erent networks with di�erent
sizes of training set. We can 	nd that when the fractional
order V exceeds 1.6, both the training and testing accuracies
declined rapidly, and when the fractional order V > 2,
the performances of the fractional BP neural networks were
much poorer than that with 0 < V < 2.�e results of V = 19/9
and 20/9 were shown in Table 1 as examples. �is result is
consistent with that for describing physical problems, and
usually the limitation 0 < V < 2 is adopted in the fractional-
order models.

From Figure 2, it can be observed that, with the increase
of the size of training set, the performances of the networks
were improved visibly. Furthermore, it is also obvious that
the training and testing accuracies raised gradually with
increasing fractional orders and then reached the peak while
V equaled 10/9 or 11/9 order. A�er that, the training and
testing accuracies began to decline rapidly.

Table 2 shows the optimal orders under training set and
testing set separately with di�erent size of training set and it
can be noticed that the optimal orders almost concentrated in10/9 and 11/9. �e only exception is that when the number
of training samples was 50000, the training accuracy of
order 1 was slightly higher than that in 10/9 or 11/9 order
case. Generally, for the MNIST dataset the performances of
fractional-order BP neural networks are better than integer
order.
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Table 2: Optimal Orders and Highest Accuracies.

Size of training set Optimal order of training set Optimal order of testing set Highest training accuracy Highest testing accuracy

10000 10/9 11/9 98.53% 90.31%
20000 10/9 10/9 98.84% 92.34%
30000 11/9 11/9 99.05% 93.50%
40000 10/9 11/9 99.18% 93.92%
50000 1 10/9 99.20% 94.56%
60000 11/9 11/9 99.20% 95.00%
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Figure 2: �e relationship between the fractional order of gradient descent method and the neural network performance.

It also can be seen that, in each case, the training accuracy
is much bigger than testing accuracy, which means that the
BP neural networks have obvious over	tting phenomenon.
To avoid over	tting, the integer-order and fractional-order
BPneural networkswith�2 regularizationwere trained.With
di�erent sizes of training set we chose the regularization

parameter � to be (2 × 10−5, 1 × 10−5, 5 × 10−6, 5 × 10−6,5 × 10−6, and 3 × 10−6). For the fractional-order neural
networks, we chose the fractional order V that had highest
testing accuracy in previous simulations. When the numbers
of training samples were (10000, 20000, 30000, 40000, 50000,
and 60000), we separately set the fractional order V to be
(11/9, 10/9, 11/9, 11/9, 10/9, 11/9).

�e performance of the proposed fractional-order BP
neural networks with �2 regularization and the performance
comparison with integer-order BP neural networks (IOBP),
integer-order BP neural networks with �2 regularization,
and fractional-order BP neural networks (FOBP) in terms of
training and testing accuracy are shown in Table 3 and the

change of the testing accuracy with the iterations was given
in Figure 3

In Table 3 and Figure 3, it can be seen that, a�er the addi-
tion of �2 regularization to BP neural networks, the training
accuracy is slightly decreased but the testing accuracy sig-
ni	cantly increased, which indicated that adding �2 regular-
ization can e�ectively suppress over	tting and improve the
generalization of BP neural networks. Furthermore, it can be
noticed that a�er adding �2 regularization the performance
of fractional-order BP neural network is better than integer
order. One important merit of the �2 regularization is that
it gained more bene	t while the training set is small. �e
most possible reason is that the network trained with the
smallest number of training samples was a�ected most by
the over	tting. With the increase of the training samples, the
model gradually changed from over	tting to under	tting, so
the improvement of the regularization method became faint.

�en, the stability and convergence of the proposed
fractional-order BP neural networks with �2 regularization
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Figure 3: Performance comparison in terms of testing accuracy.
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Figure 4: Changes of total error 5�2 during the training process.
are demonstrated in Figures 4 and 5. We used the network
with optimal order, which means that the size of training set
was 60000, fractional-order Vwas 11/9, and the regularization

parameter � was 3 × 10−6. Figure 4 shows the change of the
total error 5�2 during the training process. Without loss of
generality, the change of �V

�520,20
5�2 was randomly selected

and Figure 5 shows the change of it during the training
process. It is clear to see that 5�2 and �V

w
5�2 converged fast

and stably and were 	nally close to zero. �ese observations
e�ectively verify the proposed algorithm is deterministically
convergent.

6. Conclusion

In this paper, we applied fractional calculus and regulariza-
tion method to deep BP neural networks. Di�erent from

0 50 100 150 200 250 300
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Figure 5: Changes of�V

�520,20
5�2 during the training process.

previous studies, the proposed model had no limitations on
the number of layers and the fractional-order was extended
to arbitrary real number bigger than 0. �2 regularization
was also imposed into the errorless function. Meanwhile, we
analyzed the pro	ts introduced by the �2 regularization on
the convergence of this proposed fractional-order BP net-
work.�e numerical results support that the fractional-order
BP neural networks with �2 regularization are determinis-
tically convergent and can e�ectively avoid the over	tting
phenomenon.�en, how to apply fractional calculus to other
more complex arti	cial neural networks is an attracted topic
in our future work.
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