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Abstract

In this paper, we introduce and study a new kind of coupled fractional differential

system involving right Caputo and left Riemann–Liouville fractional derivatives,

supplemented with nonlocal three-point coupled boundary conditions. Existence

and uniqueness results for the given problem are derived with the aid of modern

techniques of functional analysis. An example illustrating the existence of a unique

solution is presented.
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1 Introduction

In recent years, fractional order calculus has been one of the most rapidly developing ar-

eas of mathematical analysis. In fact, a natural phenomenon may not only depend on the

current time but also on its previous time history. Fractional calculus facilitates modeling

of such phenomena via nonlocal fractional differential and and integral operators. Frac-

tional order differential equations naturally appear in the mathematical modeling of sys-

tems with memory. One can find numerous applications of fractional calculus in diverse

fields such as mathematics, physics, chemistry, optimal control theory, finance, biology,

engineering, and so on [1–6].

Fractional differential equations including both left and right fractional derivatives are

also attractingmuch attention as they appear as the Euler–Lagrange equations in the study

of variational principles, for details, see [7] and the references cited therein. Some recent

results on the topic, obtained bymeans of different methods such as fixed point theorems,

upper and lower solutions method, variational methods, etc., can be found in the papers

[8–12]. In [9], the existence of extremal solutions to a nonlinear system with the right

Riemann–Liouville fractional derivative was addressed.

In [10], the authors studied the existence of solutions for a nonlinear fractional oscil-

lator equation with both Riemann–Liouville and Caputo fractional derivatives subject to
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natural boundary conditions:

ω2u – cD
p
1–D

q
0+u = f

(

t,u(t)
)

= 0, ω ∈R – {0}, 0≤ t ≤ 1,

u(0) = 0, D
q
0+u(1) = 0,

where cD
p
1– and D

q
0+ respectively denote the right Caputo fractional derivative of order

p ∈ (0, 1) and the left Riemann–Liouville fractional derivative of order q ∈ (0, 1).

In [12], the authors used the Krasnoselskii fixed point theorem to prove the existence of

solutions to the following problem involving both left Riemann–Liouville and right Ca-

puto fractional derivatives:

cDα
1–

(

D
β

0+u(t)
)

+ f
(

t,u(t)
)

= 0, 0 < t < 1,

u(0) = u′(0) = u(1) = 0,

where cDα
1– and D

β

0+ respectively denote the right Caputo fractional derivative of order

α ∈ (0, 1) and the left Riemann–Liouville fractional derivative of order β ∈ (1, 2), and f :

[0, 1]×R →R.

In [13], a nonlocal boundary value problem involving both Caputo and Riemann–

Liouville fractional derivatives was studied:

⎧

⎨

⎩

cDα
1–D

β

0+y(t) = f (t, y(t)), t ∈ J := [0, 1],

y(0) = y′(0) = 0, y(1) = δy(η), 0 < η < 1,
(1.1)

where cDα
1– and D

β

0+ denote the right Caputo fractional derivative of order α ∈ (1, 2] and

the left Riemann–Liouville fractional derivative of order β ∈ (0, 1] respectively, and f :

J ×R →R is a given function.

In this paper, we investigate a new coupled system of nonlinear fractional differential

equations involving both right Caputo and left Riemann–Liouville fractional derivatives,

equipped with nonlocal coupled boundary conditions given by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

cDα
1–D

β

0+x(t) = f (t,x(t), y(t)), t ∈ J := [0, 1],

cD
p
1–D

q
0+y(t) = g(t,x(t), y(t)), t ∈ J := [0, 1],

x(0) = x′(0) = 0, x(1) = γ y(η), 0 < η < 1,

y(0) = y′(0) = 0, y(1) = δx(θ ), 0 < θ < 1,

(1.2)

where cDα
1–,

cD
p
1– denote the right Caputo fractional derivatives of order α,p ∈ (1, 2] and

D
β

0+, D
q
0+ denote the left Riemann–Liouville fractional derivative of order β ,q ∈ (0, 1] re-

spectively, f , g : J ×R×R → R are given functions and γ , δ ∈R are appropriate constants.

The existence and uniqueness of solutions for the given problem will be derived by apply-

ing the well-knownmethods of functional analysis such as the Banach fixed point theorem

and the Leray–Schauder alternative.

The rest of the paper is organized as follows. In Sect. 2, we recall somebasic definitions of

fractional calculus and present an auxiliary lemma, which plays a pivotal role in obtaining

the main results presented in Sect. 3. We also discuss an example for illustration of the

existence-uniqueness result.
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2 Preliminaries

This section is devoted to the preliminary concepts of fractional calculus [4] that we need

in the sequel.

Definition 2.1 We define the left and right Riemann–Liouville fractional integrals of or-

der α > 0 of a function g : (0,∞) →R respectively as

Iα0+g(t) =

∫ t

0

(t – s)α–1

Γ (α)
g(s)ds, (2.1)

Iα1–g(t) =

∫ 1

t

(s – t)α–1

Γ (α)
g(s)ds, (2.2)

provided the right-hand sides are point-wise defined on (0,∞), where Γ is the gamma

function.

Definition 2.2 The left Riemann–Liouville fractional derivative and the right Caputo

fractional derivative of order α > 0 of a continuous function g : (0,∞) → R such that

g ∈ Cn((0,∞),R) are respectively given by

Dα
0+g(t) =

dn

dtn

(

In–α
0+ g

)

(t),

cDα
1–g(t) = (–1)nIn–α

1– g(n)(t),

where n – 1 < α < n.

The following lemma, dealing with a linear variant of problem (1.2), plays an important

role in the forthcoming analysis.

Lemma 2.3 Let h,k ∈ C(J ,R) and

Λ :=
1

Γ (β + 2)Γ (q + 2)

[

1 – γ δηq+1θβ+1
]

�= 0.

Then the solution of the linear fractional differential system supplemented with nonlocal

boundary conditions

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Dα
1–D

β

0+x(t) = h(t), t ∈ J := [0, 1],

D
p
1–D

q
0+y(t) = k(t), t ∈ J := [0, 1],

x(0) = x′(0) = 0, x(1) = γ y(η), 0 < η < 1,

y(0) = y′(0) = 0, y(1) = δx(θ ), 0 < θ < 1,

(2.3)

is equivalent to a system of integral equations given by

x(t) = I
β

0+I
α
1–h(t) +

tβ+1

ΛΓ (β + 2)Γ (q + 2)

{[

γ I
q
0+I

p
1–k(η) – I

β

0+I
α
1–h(1)

]

+ γ ηq+1
[

δI
β

0+I
α
1–h(θ ) – I

q
0+I

p
1–k(1)

]}

, (2.4)
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y(t) = I
q
0+I

p
1–k(t) +

tq+1

ΛΓ (β + 2)Γ (q + 2)

{[

δI
β

0+I
α
1–h(θ ) – I

q
0+I

p
1–k(1)

]

+ δθβ+1
[

γ I
q
0+I

p
1–k(η) – I

β

0+I
α
1–h(1)

]}

. (2.5)

Proof Wefirst apply the right fractional integrals Iα1–, I
p
1– to the fractional differential equa-

tions in (2.3) and then the left fractional integrals I
β

0+, I
q
0+ to the resulting equations, and

using the properties of Caputo and Riemann–Liouville fractional derivatives, we get

x(t) = I
β

0+

(

Iα1–h(t) + c0 + c1t
)

+ c2t
β–1

= I
β

0+I
α
1–h(t) + c0

tβ

Γ (β + 1)
+ c1

tβ+1

Γ (β + 2)
+ c2t

β–1, (2.6)

y(t) = I
q
0+

(

I
p
1–k(t) + d0 + d1t

)

+ d2t
q–1

= I
q
0+I

p
1–k(t) + d0

tq

Γ (q + 1)
+ d1

tq+1

Γ (q + 2)
+ d2t

q–1. (2.7)

Using the conditions x(0) = 0, x′(0) = 0, y(0) = 0, y′(0) = 0 in (2.6) and (2.7) yields c0 = 0,

d0 = 0, c2 = 0, d2 = 0. In consequence, the system of equations (2.6) and (2.7) reduces to

the form:

x(t) = I
β

0+I
α
1–h(t) + c1

tβ+1

Γ (β + 2)
, (2.8)

y(t) = I
q
0+I

p
1–k(t) + d1

tq+1

Γ (q + 2)
. (2.9)

Making use of the conditions x(1) = γ y(η), y(1) = δx(θ ) in (2.8) and (2.9) and solving the

resulting equations for c1 and d1, we find that

c1 =
1

ΛΓ (q + 2)

{[

γ I
q
0+I

p
1–k(η) – I

β

0+I
α
1–h(1)

]

+ γ ηq+1
[

δI
β

0+I
α
1–h(θ ) – I

q
0+I

p
1–k(1)

]}

,

d1 =
1

ΛΓ (β + 2)

{[

δI
β

0+I
α
1–h(θ ) – I

q
0+I

p
1–k(1)

]

+ δθβ+1
[

γ I
q
0+I

p
1–k(η) – I

β

0+I
α
1–h(1)

]}

,

which, on substituting in (2.8) and (2.9), leads to the solution system (2.4)–(2.5). The con-

verse follows by direct computation. The proof is completed. �

3 Main results

Let us introduce the space X = {x(t)|x(t) ∈ C([0, 1],R)} endowed with the norm ‖x‖ =

sup{|x(t)|, t ∈ [0, 1]} and note that (X ,‖ · ‖) is a Banach space. Then the product space

(X ×X ,‖(x, y)‖) is also a Banach space equipped with the norm ‖(x, y)‖ = ‖x‖ + ‖y‖.

In view of Lemma 2.3, we define an operator T :X ×X →X ×X by

T(x, y)(t) =

(

T1(x, y)(t)

T2(x, y)(t)

)

, (3.1)
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where

T1(x, y)(t) =

∫ t

0

(t – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
f
(

u,x(u), y(u)
)

duds

+
tβ+1

ΛΓ (β + 2)Γ (q + 2)

×

{[

γ

∫ η

0

(η – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
g
(

u,x(u), y(u)
)

duds

–

∫ 1

0

(1 – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
f
(

u,x(u), y(u)
)

duds

]

+ γ ηq+1

[

δ

∫ θ

0

(θ – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
f
(

u,x(u), y(u)
)

duds

–

∫ 1

0

(1 – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
g
(

u,x(u), y(u)
)

duds

]}

(3.2)

and

T2(x, y)(t) =

∫ t

0

(t – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
g
(

u,x(u), y(u)
)

duds

+
tq+1

ΛΓ (β + 2)Γ (q + 2)

×

{[

δ

∫ θ

0

(θ – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
f
(

u,x(u), y(u)
)

duds

–

∫ 1

0

(1 – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
g
(

u,x(u), y(u)
)

duds

]

+ δθβ+1

[

γ

∫ η

0

(η – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
g
(

u,x(u), y(u)
)

duds

–

∫ 1

0

(1 – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
f
(

u,x(u), y(u)
)

duds

]}

. (3.3)

For computational convenience, we set

Q1 =
1

Γ (α + 1)Γ (β + 1)

[

1 +
1

|Λ|Γ (β + 2)Γ (q + 2)

(

1 + |γ ||δ|ηq+1θβ
)

]

, (3.4)

Q2 =
|γ |ηq

|Λ|Γ (p + 1)Γ (q + 1)Γ (β + 2)Γ (q + 2)
(1 + η), (3.5)

Q3 =
|δ|θβ

|Λ|Γ (α + 1)Γ (β + 1)Γ (β + 2)Γ (q + 2)
(1 + θ ), (3.6)

Q4 =
1

Γ (p + 1)Γ (q + 1)

[

1 +
1

|Λ|Γ (β + 2)Γ (q + 2)

(

1 + |γ ||δ|ηqθβ+1
)

]

. (3.7)

Now we are ready to present our main results. In the first result, we prove the existence

and uniqueness of solutions to system (1.2) via the Banach contraction mapping princi-

ple.
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Theorem 3.1 Assume that:

(H1) f , g : [0, 1]×R×R →R are continuous functions and there exist positive constants

ℓ1 and ℓ2 such that, for all t ∈ [0, 1] and xi, yi ∈R, i = 1, 2,

∣

∣f (t,x1,x2) – f (t, y1, y2)
∣

∣ ≤ ℓ1
(

|x1 – y1| + |x2 – y2|
)

,

∣

∣g(t,x1,x2) – g(t, y1, y2)
∣

∣ ≤ ℓ2
(

|x1 – y1| + |x2 – y2|
)

.

If

(Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2 < 1,

where Qi, i = 1, 2, 3, 4 are given by (3.4)–(3.7), then system (1.2) has a unique solution [0, 1].

Proof Let us define a positive number r as follows:

r >
(Q1 +Q3)N1 + (Q2 +Q4)N2

1 – (Q1 +Q3)ℓ1 – (Q2 +Q4)ℓ2
,

N1 = supt∈[0,1] |f (t, 0, 0)| < ∞, N2 = supt∈[0,1] |g(t, 0, 0)| = N2 < ∞ and show that TBr ⊂ Br ,

where Br = {(x, y) ∈X ×X : ‖(x, y)‖ ≤ r} is a closed ball. By assumption (H1), for (x, y) ∈ Br ,

t ∈ [0, 1], we have

∣

∣f
(

t,x(t), y(t)
)
∣

∣ ≤
∣

∣f
(

t,x(t), y(t)
)

– f (t, 0, 0)
∣

∣ +
∣

∣f (t, 0, 0)
∣

∣

≤ ℓ1
(∣

∣x(t)
∣

∣ +
∣

∣y(t)
∣

∣

)

+N1

≤ ℓ1
(

‖x‖ + ‖y‖
)

+N1 ≤ ℓ1r +N1,

and

∣

∣g
(

t,x(t), y(t)
)
∣

∣ ≤ ℓ2
(

‖x‖ + ‖y‖
)

+N2 ≤ ℓ2r +N2.

Also note that

∫ t

0

(t – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
duds ≤

1

Γ (α + 1)Γ (β + 1)
,

where we have used the fact that (1– s)α ≤ 1 for 1 < α ≤ 2. Using the above arguments, we

have

∣

∣T1(x, y)(t)
∣

∣

≤

∫ t

0

(t – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
(ℓ1r +N1)duds

+
1

|Λ|Γ (β + 2)Γ (q + 2)

{[

|γ |

∫ η

0

(η – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
(ℓ2r +N2)duds

+

∫ 1

0

(1 – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
(ℓ1r +N1)duds

]
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+ |γ |ηq+1

[

|δ|

∫ θ

0

(θ – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
(ℓ1r +N1)duds

+

∫ 1

0

(1 – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
(ℓ2r +N2)duds

]}

≤
1

Γ (α + 1)Γ (β + 1)
(ℓ1r +N1)

+
1

|Λ|Γ (β + 2)Γ (q + 2)

{[

|γ |
ηq

Γ (q + 1)Γ (p + 1)
(ℓ2r +N2)

+
1

Γ (α + 1)Γ (β + 1)
(ℓ1r +N1)

]

+ |γ |ηq+1

[

|δ|
θβ

Γ (α + 1)Γ (β + 1)
(ℓ1r +N1)

+
1

Γ (p + 1)Γ )q + 1)
(ℓ2r +N2)

]}

= (Q1ℓ1 +Q2ℓ2)r +Q1N1 +Q2N2,

which implies that

∥

∥T1(x, y)
∥

∥ ≤ (Q1ℓ1 +Q2ℓ2)r +Q1N1 +Q2N2.

In the same way, we can obtain that

∥

∥T2(x, y)
∥

∥ ≤ (Q3ℓ1 +Q4ℓ2)r +Q3N1 +Q4N2.

Consequently, we get

∥

∥T(x, y)
∥

∥ ≤
[

(Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2
]

r + (Q1 +Q3)N1 + (Q2 +Q4)N2 ≤ r.

Since (x, y) ∈ Br is arbitrary, therefore it follows that TBr ⊂ Br .

Now, for (x2, y2), (x1, y1) ∈X ×X and for any t ∈ [0, 1], we get

∣

∣T1(x2, y2)(t) – T1(x1, y1)(t)
∣

∣

≤

∫ t

0

(t – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
ℓ1

(

‖x2 – x1‖ + ‖y2 – y1‖
)

duds

+
1

|Λ|Γ (β + 2)Γ (q + 2)

×

{[

|γ |

∫ η

0

(η – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
ℓ2

(

‖x2 – x1‖ + ‖y2 – y1‖
)

duds

+

∫ 1

0

(1 – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
ℓ1

(

‖x2 – x1‖ + ‖y2 – y1‖
)

duds

]

+ |γ |ηq+1

[

|δ|

∫ θ

0

(θ – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
ℓ1

(

‖x2 – x1‖ + ‖y2 – y1‖
)

duds

+

∫ 1

0

(1 – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
ℓ2

(

‖x2 – x1‖ + ‖y2 – y1‖
)

duds

]}

≤ (Q1ℓ1 +Q2ℓ2)
(

‖x2 – x1‖ + ‖y2 – y1‖
)

,



Ahmad et al. Boundary Value Problems        ( 2019)  2019:109 Page 8 of 12

which leads to the estimate

∥

∥T1(x2, y2) – T1(x1, y1)
∥

∥ ≤ (Q1ℓ1 +Q2ℓ2)
(

‖x2 – x1‖ + ‖y2 – y1‖
)

. (3.8)

Similarly, we can find that

∥

∥T2(x2, y2)(t) – T2(x1, y1)
∥

∥ ≤ (Q3ℓ1 +Q4ℓ2)
(

‖x2 – x1‖ + ‖y2 – y1‖
)

. (3.9)

Then it follows from (3.8) and (3.9) that

∥

∥T(x2, y2) – T(x1, y1)
∥

∥ ≤
[

(Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2
](

‖x2 – x1‖ + ‖y2 – y1‖
)

.

Since (Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2 < 1, therefore, T is a contraction. So, by the Banach fixed

point theorem, the operator T has a unique fixed point, which corresponds to a unique

solution of problem (1.2). This completes the proof. �

The second result is based on the Leray–Schauder alternative [14].

Lemma 3.2 (Leray–Schauder alternative [14, p. 4]) Let F : E → E be a completely contin-

uous operator (i.e., a map restricted to any bounded set in E is compact). Let

E(F) =
{

x ∈ E : x = λF(x) for some 0 < λ < 1
}

.

Then either the set E(F) is unbounded, or F has at least one fixed point.

Theorem 3.3 Assume that:

(H3) f , g : [0, 1] × R × R → R are continuous functions and there exist real constants

ki,γi ≥ 0, i = 0, 1, 2, and k0 > 0, γ0 > 0 such that

∣

∣f (t,x1,x2)
∣

∣ ≤ k0 + k1|x1| + k2|x2|,

∣

∣g(t,x1,x2)
∣

∣ ≤ γ0 + γ1|x1| + γ2|x2|, ∀xi ∈R, i = 1, 2.

Then system (1.2) has at least one solution on [0, 1] if

(Q1 +Q3)k1 + (Q2 +Q4)γ1 < 1 and (Q1 +Q3)k2 + (Q2 +Q4)γ2 < 1, (3.10)

where Qi, i = 1, 2, 3, 4 are given by (3.4)–(3.7),

Proof We first show that the operator T :X ×X →X ×X defined by (3.1) is completely

continuous. By the continuity of functions f and g , the operator T is continuous.

Let Ω ⊂X ×X be bounded. Then there exist positive constants L1 and L2 such that

∣

∣f
(

t,x(t), y(t)
)
∣

∣ ≤ L1,
∣

∣h
(

t,x(t), y(t)
)
∣

∣ ≤ L2, ∀(x, y) ∈ Ω .
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Then, for any (x, y) ∈ Ω , we have

∣

∣T1(x, y)(t)
∣

∣ ≤ L1

∫ t

0

(t – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
duds

+
1

|Λ|Γ (β + 2)Γ (q + 2)

{[

L2|γ |

∫ η

0

(η – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
duds

+ L1

∫ 1

0

(1 – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
duds

]

+ |γ |ηq+1

[

L1|δ|

∫ θ

0

(θ – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
duds

+ L2

∫ 1

0

(1 – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
duds

]}

≤ Q1L1 +Q2L2,

which implies that

∥

∥T1(x, y)
∥

∥ ≤ Q1L1 +Q2L2.

In a similar manner, one can derive that

∥

∥T2(x, y)
∥

∥ ≤ Q3L1 +Q4L2.

From the foregoing inequalities, we have ‖T(x, y)‖ ≤ (Q1 + Q3)L1 + (Q2 + Q4)L2, which

implies that the operator T is uniformly bounded.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [0, 1] with t1 < t2. Then we have

∣

∣T1

(

x(t2), y(t2)
)

– T1

(

x(t1), y(t1)
)
∣

∣

≤ L1

∣

∣

∣

∣

∫ t1

0

[(t2 – s)β–1 – (t1 – s)β–1]

Γ (β)Γ (α + 1)
ds +

∫ t2

t1

(t2 – s)β–1

Γ (β)Γ (α + 1)
ds

∣

∣

∣

∣

+
|t

β+1
2 – t

β+1
1 |

|Λ|Γ (β + 2)Γ (q + 2)

{[

L2|γ |

∫ η

0

(η – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
duds

+ L1

∫ 1

0

(1 – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
duds

]

+ |γ |ηq+1

[

L1|δ|

∫ θ

0

(θ – s)β–1

Γ (β)

∫ 1

s

(u – s)α–1

Γ (α)
duds

+ L2

∫ 1

0

(1 – s)q–1

Γ (q)

∫ 1

s

(u – s)p–1

Γ (p)
duds

]}

≤ L1
2(t2 – t1)

β + t
β

2 – t
β

1

Γ (β + 1)Γ (α + 1)
+

|t
β+1
2 – t

β+1
1 |

|Λ|Γ (β + 2)Γ (q + 2)

{

L2|γ |ηq(η + 1)

Γ (p + 1)Γ (q + 1)

+
L1(1 + |γ ||δ|ηq+1θβ )

Γ (α + 1)Γ (β + 1)

}

.
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Analogously, we can obtain

∣

∣T2

(

x(t2), y(t2)
)

– T2

(

x(t1), y(t1)
)
∣

∣

≤ L2
2(t2 – t1)

q + t
q
2 – t

q
1

Γ (q + 1)Γ (p + 1)
+

|t
β+1
2 – t

β+1
1 |

|Λ|Γ (β + 2)Γ (q + 2)

{

L1|δ|θ
β (θ + 1)

Γ (α + 1)Γ (β + 1)

+
L2(1 + |γ ||δ|ηqθβ+1)

Γ (p + 1)Γ (q + 1)

}

.

Therefore, the operator T(x, y) is equicontinuous. In consequence, from the foregoing ar-

guments, it follows that the operator T(x, y) is completely continuous.

Finally, it will be verified that the set E = {(x, y) ∈ X × X |(x, y) = λT(x, y), 0 ≤ λ ≤ 1} is

bounded. Let (x, y) ∈ E with (x, y) = λT(x, y). For any t ∈ [0, 1], we have

x(t) = λT1(x, y)(t), y(t) = λT2(x, y)(t).

Then

∣

∣x(t)
∣

∣ ≤ Q1

(

k0 + k1|x| + k2|y|
)

+Q2

(

γ0 + γ1|x| + γ2|y|
)

= Q1k0 +Q2γ0 + (Q1k1 +Q2γ1)|x| + (Q1k2 +Q2γ2)|y|

and

∣

∣y(t)
∣

∣ ≤ Q3

(

k0 + k1|x| + k2|y|
)

+Q4

(

γ0 + γ1|x| + γ2|y|
)

= Q3k0 +Q4γ0 + (Q3k1 +Q4γ1)|x| + (Q3k2 +Q4γ2)|y|.

Hence we have

‖x‖ ≤ Q1k0 +Q2γ0 + (Q1k1 +Q2γ1)‖x‖ + (Q1k2 +Q2γ2)‖y‖

and

‖y‖ ≤ Q3k0 +Q4γ0 + (Q3k1 +Q4γ1)‖x‖ + (Q3k2 +Q4γ2)‖y‖,

which imply that

‖x‖ + ‖y‖ ≤ (Q1 +Q3)k0 + (Q2 +Q4)γ0 +
[

(Q1 +Q3)k1 + (Q2 +Q4)γ1
]

‖x‖

+
[

(Q1 +Q3)k2 + (Q2 +Q4)γ2)
]

‖y‖.

Consequently,

∥

∥(x, y)
∥

∥ ≤
(Q1 +Q3)k0 + (Q2 +Q4)γ0

M0

,

where M0 = min{1 – [(Q1 +Q3)k1 + (Q2 +Q4)γ1], 1 – [(Q1 +Q3)k2 + (Q2 +Q4)γ2)]}, which

proves that E is bounded. Thus, by Lemma 3.2, the operator T has at least one fixed point.

Hence problem (1.2) has at least one solution on [0, 1]. The proof is complete. �
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Example 3.4 Consider the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D3/2
1– D

1/2
0+ x(t) =

1
8(t+2)2

|x|
1+|x|

+ 1 + 1
36

sin2 y, t ∈ J := [0, 1],

D5/2
1– D

1/2
0+ y(t) =

1
32π

sin(2πu) + |y|

16(1+|y|)
+ 1

2
, t ∈ J := [0, 1],

x(0) = x′(0) = 0, x(1) = (1/2)y(3/4),

y(0) = y′(0) = 0, y(1) = 4x(2/3).

(3.11)

Here α = 3/2, β = 1/2, p = 5/2, q = 1/2, γ = 1/2, δ = 4, η = 3/4, θ = 2/3, f (t,x, y) =
1

8(t+2)2
|x|

1+|x|
+ 1 + 1

32
sin2 y, and g(t,x, y) = 1

32π
sin(2πx) + |y|

16(1+|y|)
+ 1

2
. With the given data,

we find that Q1 ≈ 6.125906, Q2 ≈ 0.439438, Q3 ≈ 13.668568, Q4 ≈ 2.874670. Note that

|f (t,x1,x2) – f (t, y1, y2)| ≤ 1
32

|x1 – x2| +
1
32

|y1 – y2|, |g(t,x1,x2) – g(t, y1, y2)| ≤ 1
16

|x1 – x2| +
1
16

|y1 – y2|, and (Q1 +Q3)ℓ1 + (Q2 +Q4)ℓ2 ≈ 0.825708 < 1. Thus all the conditions of The-

orem 3.1 are satisfied and, consequently, its conclusion applies to problem (3.11).

4 Conclusions

Wehave investigated the existence criteria for a coupled systemof nonlinear fractional dif-

ferential equations involving right Caputo and left Riemann–Liouville fractional deriva-

tives, equipped with nonlocal three-point coupled boundary conditions. We apply the

Banach contraction mapping principle and the Leray–Schauder alternative to obtain the

desired results. We emphasize that the work accomplished in this paper is new and en-

hances the scope of the literature on the topic. Moreover, we obtain new existence results

for the given coupled fractional differential system with the boundary conditions of the

form: x(0) = x′(0) = 0, x(1) = 0, y(0) = y′(0) = 0, y(1) = 0 by taking γ = 0 = δ in the results of

this paper.
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