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ABSTRACT

In this paper, a general framework based on fractional-order

partial differential equations allows to solve image recon-

struction problems. The algorithm presented in this work

combines two previous notions: the fractional derivative

implementation [1] and the edge detection by topological

gradient [2]. The purpose of the paper is to extend some

existing results in image denoising problem with fractional-

order diffusion equations and presents new results in image

inpainting. The results emphasize the importance of particu-

lar fractional-orders.

Index Terms— Fractional-order partial differential equa-

tion, topological gradient, image denoising, image inpainting.

1. INTRODUCTION

Our purpose is to minimize the following functional:

Fα(u) = ‖c
1

2∇αu‖2L2(Ω) + ‖Lu− v‖2E (1)

where α represents the order of the derivative with a finite L2

norm (i.e minimization in the H2α ≡ W 2α,2 space functions

with α > 0), L is a linear observation operator and the space

E corresponds to L2(Ω) in the restoration case and L2(Ω\ω)
in the inpainting case with ω ⊂ Ω is an unkwown subset.

The main idea of this paper is to use fractional derivatives

for the regularization term instead of integer derivatives. In

the last 30 years, fractional calculus began to shift from pure

mathematics formulations to applications in various fields in-

cluding biology, physics and mechanics. In particular in the

image processing field [1, 3, 4], the nonlocal properties of

fractional differential-based approaches appear to give better

results than traditional integral-based algorithms.

The minimization of the functional (1) is equivalent to

consider the associated Euler-Lagrange equation:

{

−∇α · (c∇αu) + L∗Lu = L∗v in Ω,

∇αu · n = 0 on ∂Ω.
(2)

where n is the external normal to the boundary ∂Ω and L∗ the

adjoint operator of L.

In [1], Bai and Feng use fractional derivatives for image

denoising with an iterative process. However, the computing

time remains a major drawback of their method and the first

contribution of this paper proposes an efficient algorithm able

to solve this issue. Whereas in [1], the diffusion coefficient

c(x), which depends on the space variable, evolves during the

iterative process, we propose to fix it and reconstruct the im-

age in one iteration using the topological gradient information

[2, 5, 6]. The second contribution is related to the fact that the

algorithm is also able to solve inpainting problems.

Section 2 recalls a way to calculate fractional derivative

using Fourier transform. Section 3 is dedicated to edge de-

tection by topological gradient method. In Section 4, our

image reconstruction algorithm is presented. Section 5 com-

pares the numerical results in image denoising with the Bai

and Feng’s algorithm, and some denoising and inpainting ap-

plications are performed and compared with other established

methods involving partial differential equations.

2. FRACTIONAL DERIVATIVES

This section recalls the implementation of the fractional order

gradient from Bai and Feng [1]. For the next, let Dα ≡ ∇α be

the fractional operator having the same structure as the gradi-

ent operator, that is Dαu = ∇αu = (Dα
xu,D

α
y u). The com-

putation of fractional derivative is given for the discrete image

domain where it is assumed that u has m × m pixels. This

domain consists of uniformly spaced points starting at (0, 0),
with u(x, y) = u(x∆x, y∆y) for x, y = 0, . . . ,m−1, where

the grid size is chosen so that ∆x = ∆y = 1. The follow-

ing definition of two-dimensional Discrete Fourier Transform

(2D-DFT) is used

F (u)(w1, w2) =
1

m2

m−1
∑

x,y=0

u(x, y) exp

(

−i2π
w1x+ w2y

m

)

.

Using the gradient approximation with the finite dif-

ference, it is possible to write the relation F (u − Txu) =
K1

xF (u) where K1
x = diag

(

1− exp
(

−i2πw1

m

))

is a di-

agonal operator and Tx a translation operator with periodic

boundary conditions, Txu(x, y) = u(x− 1, y). We have

Dα
xu = F−1 (Kα

xF (u)) , (3)



where Kα
x = diag

((

1− exp
(

−i2πw1

m

))α)

.

In order to use a centred difference scheme to compute the

fractional derivative, a translation of Dα
x is made by α

2 . The

fractional derivative takes the following form

D̃α
xu = Dα

x

(

u

(

x+
α

2
, y

))

, (4)

where u is the interpolation of u outside the discrete set of

points of the image. As a correspondence of this equivalence

(4) it is possible to write the following relation:

D̃α
xu = F−1

(

K̃α
xF (u)

)

, (5)

where K̃α
x = diag

((

1− exp
(

−i2πw1

m

))α
exp

(

iπαw1

m

))

.

The adjoint operator D̃α∗
x is defined as follows:

D̃α∗
x u = F−1

(

K̃α∗
x F (u)

)

. (6)

3. TOPOLOGICAL GRADIENT

The information about the edges is determined with α = 1.

The minimization of F1(u), Equation (1), is equivalent to the

problem of finding u ∈ H1(Ω) such that
{

−∇ · (c∇u) + L∗Lu = L∗v in Ω,

∂nu = 0 on ∂Ω,
(7)

where ∂n denotes the normal derivative to ∂Ω.

At a given point x0 ∈ Ω, a small isolated crack σρ is

inserted and σρ = x0 + ρσ(n) where σ(n) is a straight crack,

n is a unit vector normal to the crack and ρ > 0 is the length

of the crack. Let Ωρ = Ω\σρ be the perturbed domain. The

perturbed solution uρ ∈ H1(Ωρ) satisfies










−∇ · (c∇uρ) + L∗Luρ = L∗v in Ω,

∂nuρ = 0 on ∂Ω,

∂nuρ = 0 on σρ.

(8)

The edge detection method consists in looking for a crack

σ such that the energy j(ρ) = Jρ(uρ) = 1
2

∫

Ωρ

|∇uρ|
2 is as

small as possible, see [2]. This amounts to saying that the

energy outside the edges is as small as possible.

The cost function j has the following asymptotic expan-

sion

j(ρ)− j(0) = ρ2g(x0, n) + o(ρ2), (9)

where the topological gradient g is given by

g(x0, n) = −π(∇u0(x0) ·n)(∇p0(x0) ·n)−π|∇u0(x0) ·n|
2.

(10)

The solution of the adjoint problem
{

−∇ · (c∇p0) + L∗Lp0 = −∂uJ0(u0) in Ω,

∂np0 = 0 on ∂Ω,
(11)

is p0 that, together with u0, is calculated in the initial domain

without cracks. The edges are located at points where the

topological gradient is the most negative.

4. ALGORITHM

In order to reduce the discontinuities across the image border

due to the periodization, the image is reflected symmetrically

across the border in the same way as [1].

The aim is to solve the following equation:

D̃α∗
x cxD̃

α
xu+ D̃α∗

y cyD̃
α
y u+ u = v (12)

In order to obtain a diffusion function in the vertical and hor-

izontal directions, the definition of the topological gradient g
(10) can be simplified as:

gx(x) = −πc∂1u0(x)∂1p0(x)− π(∂1u0(x))
2,

gy(x) = −πc∂2u0(x)∂2p0(x)− π(∂2u0(x))
2.

(13)

Algorithm 1 solve the image reconstruction problem (1)

Input: v, c0, ǫ and δ. Output: u

1: Initialization: ci = c0, i is x or y.

2: Compute u0 and p0, solutions of the direct (7) and adjoint

(11) problems.

3: Compute gx and gy given by Equations (13).

4: Set ci(x) =

{

ǫ if gi(x) < δ,
c0 exp ((gi(x)− δ)/|δ|) otherwise.

5: Using the Fourier transform and the centred scheme,

solve the equation D̃α∗
x cxD̃

α
xu+ D̃α∗

y cyD̃
α
y u+ u = v.

The algorithms were coded in MATLAB. The reconstruc-

tions are compared using Peak Signal to Noise Ratio (PSNR)

expressed in dB and the Structural SIMilarity (SSIM) [7].

5. NUMERICAL RESULTS

Table 1 provides a comparison between Bai and Feng algo-

rithm [1] and Algorithm 1, the images are corrupted by an ad-

ditive Gaussian noise of standard deviation σ. When σ = 15,

the diffusion coefficient c0 and the threshold δ are c0 = 1.3,

δ = −300 for the Lena and Peppers images and c0 = 1,

δ = −300 for the Boat image. When σ = 25, the diffusion

coefficient c0 and the threshold δ are c0 = 2, δ = −300 for

the Boat and Peppers images and c0 = 2.5, δ = −400 for the

Lena image. The same diffusion coefficient c0 and the thresh-

old δ are applied to all α to emphasize the fractional order

influence. One can remark that for each image, the PSNR and

SSIM values have one peak located most generally near 1.5
and 1.75. Figure 1 shows the reconstructions obtained with

σ = 15 and α = 1.5.

Table 2 compares the CPU relative to restoration pro-

cesses for α = 1 and 1.5 carried out for Bai and Feng’s

algorithm [1] and for Algorithm 1. The tests have been made

on the same computer with MATLAB. Our algorithm needs

a shorter computing time to achieve similar quality results.

A comparison is made in Table 3 with the results of Algo-

rithm 1 with α = 1.5 and two denoising algorithms. The first



α 1 1.25 1.5 1.75 2

Images Method PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

Lena BF [1] 31.58 843 32.57 865 32.77 870 32.81 870 32.26 855

σ = 15 Algo 1 32.38 845 32.58 853 32.55 858 32.29 856 32.18 854

Lena BF [1] 29.19 791 30.26 822 30.49 830 30.50 830 29.74 797

σ = 25 Algo 1 30.19 801 30.29 807 30.26 809 30.11 807 30.02 803

Boat BF [1] 29.82 792 30.53 811 30.63 814 30.61 813 30.07 795

σ = 15 Algo 1 30.43 803 30.73 815 30.76 820 30.32 812 30.06 806

Boat BF [1] 27.35 712 28.11 738 28.22 743 28.12 740 27.54 705

σ = 25 Algo 1 28.17 732 28.38 744 28.44 749 28.18 744 28.01 739

Peppers BF [1] 30.81 873 31.95 901 32.11 906 32.27 909 31.52 892

σ = 15 Algo 1 31.97 885 32.33 897 32.38 903 32.07 905 31.92 903

Peppers BF [1] 27.94 812 29.12 851 29.35 861 29.46 864 28.59 828

σ = 25 Algo 1 28.78 793 29.28 818 29.56 841 29.32 845 29.17 842

Table 1. Image denoising with Bai and Feng algorithm [1] and with Algorithm 1.

Fig. 1. From left to right, the noisy image with σ = 15, the

reconstructions with respectively Bai and Feng’s algorithm

[1] and Algorithm 1, the fractional order α is equal to 1.5.

From top to bottom, the Lena, Boat and Peppers images.

Boat BFα=1 Algoα=1 BFα=1.5 Algoα=1.5

PSNR 27.35 28.17 28.22 28.44

SSIM 712 732 743 794

CPU (s) 940 45 1820 70

Table 2. CPU for Bai and Feng’s algorithm [1] and for our

algorithm with α = 1 and 1.5 applied on the noisy Boat image

with σ = 25.

Lena Boat Peppers

Method σ PSNR / SSIM PSNR / SSIM PSNR / SSIM

Algo 1 15 32.55 / 858 30.76 / 820 32.38 / 903

α = 1.5 25 30.26 / 809 28.44 / 794 29.53 / 839

ROF 15 31.61 / 841 30.42 / 810 31.48 / 881

[8] 25 28.99 / 754 27.91 / 725 28.59 / 800

Weickert 15 29.82 / 714 29.22 / 735 29.84 / 759

[9] 25 26.00 / 535 25.69 / 573 25.91 / 592

Table 3. Comparison of different denoising algorithms.

one, the Rudin-Osher-Fatemi algorithm solves the problem

using a method based on total variation [8]. The second one

uses an algorithm proposed by Weickert [9]. One can note

that the best quality in PSNR and SSIM are obtained with the

fractional derivative denoising algorithm. Figure 2 presents

the results of the Boat image.

Lena Boat Peppers

Method PSNR / SSIM PSNR / SSIM PSNR / SSIM

Algoα=1.5 30.12 / 863 26.84 / 767 27.84 / 888

Laplacian 28.31 / 854 26.46 / 771 26.48 / 868

TV [10] 27.48 / 830 25.35 / 735 25.81 / 851

Table 4. Comparison of different inpainting algorithms with

80% unknown pixels.

A comparative study of inpainting reconstruction meth-

ods has been performed. In this experiment, the diffusion co-

efficient c0 and the threshold δ are respectively equal to 0.1
and −500. Table 4 presents the results of different numerical

schemes. The first one uses the approximation of a Laplace

equation with homogeneous boundary conditions. The sec-

ond one is based on total variation minimization; it uses the

split Bregman method improved by Goldstein and Osher [10].

Figure 3 presents the results on the Lena image from Table 4.



Fig. 2. From left to right and up to down, the noisy Boat im-

age, the reconstruction with respectively Algorithm 1, Rudin-

Osher-Fatemi’s algorithm [8] and Weickert’s algorithm [9].

Fig. 3. From left to right and up to down, the reconstruc-

tion with respectively Algorithm 1, Laplace equation and total

variation regularization [10].

6. CONCLUSION

This work proposes new applications of fractional-order par-

tial differential equations in image processing. Our studies led

to proposing a general reconstruction algorithm that incorpo-

rates the fractional derivative implementation from [1] and the

edge detection by topological gradient from [2]. Concerning

denoising, better results are obtained with an order α which

is fractional rather than integer. The interesting values for the

fractional order α seem to be around 1.5 and 1.75. It corrob-

orates previous results [1]. Contrary to existing iterative pro-

cesses with a fractional order, the algorithm presented here is

non iterative. It gives similar results for a shorter computer

time and can be used to solve inpainting problems. The com-

parison with state-of-the-art methods involving partial differ-

ential equations showed better results in terms of quality.
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