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Abstract: This research presents a new fractional-order discrete-time susceptible-infected-recovered
(SIR) epidemic model with vaccination. The dynamical behavior of the suggested model is exam-
ined analytically and numerically. Through using phase attractors, bifurcation diagrams, maximum
Lyapunov exponent and the 0−1 test, it is verified that the newly introduced fractional discrete SIR
epidemic model vaccination with both commensurate and incommensurate fractional orders has
chaotic behavior. The discrete fractional model gives more complex dynamics for incommensurate
fractional orders compared to commensurate fractional orders. The reasonable range of commensu-
rate fractional orders is between γ = 0.8712 and γ = 1, while the reasonable range of incommensurate
fractional orders is between γ2 = 0.77 and γ2 = 1. Furthermore, the complexity analysis is performed
using approximate entropy (ApEn) and C0 complexity to confirm the existence of chaos. Finally,
simulations were carried out on MATLAB to verify the efficacy of the given findings.

Keywords: discrete SIR epidemic model; commensurate order; incommensurate order; chaos; complexity

1. Introduction

Epidemiology is a topic of research in the biological sciences, which explores all the
elements that influence whether there are diseases and disorders. Over the last few years,
the outbreaks of several diseases such as SARS, Ebola, and COVID-19 have increased the
attention of many researchers to the study of epidemiology. In this regard, the construction
of infectious diseases mathematical models and discussion of their dynamics are very
significant, since these models are used to aid prevent and control diseases. Numerous
studies on mathematical epidemic models have been examined for a variety of diseases.
These models may be classified as either continuous-time [1–5] or discrete-time models.
Differential equations are used to create continuous-time models, while difference equations
are used to formulate discrete-time models. Recently, discrete models have been extensively
employed to evaluate and study infectious diseases as opposed to continuous models since
epidemic data are available during discrete time periods. Furthermore, the discrete-time
epidemic models display more complicated dynamics than the continuous-time epidemic
models. Numerous significant types of discrete models may be found in [6–9].

Vaccination is a significant component of disease prevention strategies across the
globe. A vaccine’s effectiveness is based on its ability to reduce the number of susceptible
individuals in order to prevent infectious diseases from spreading through the popula-
tion [10]. The effect of vaccination on the dynamics of an epidemic model has been studied
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by adding a component for the vaccinated individuals to the epidemic model and obtain-
ing the epidemic model with vaccination. For example, in [11] the authors studied the
dynamical behavior of a discrete SIR epidemic model with a constant vaccination strategy.
The stability and bifurcations of a discrete susceptible-infected-susceptible (SIS) epidemic
model with vaccination were investigated in [12], while Xiang et al. in [13] developed a
discrete SIRS model that included vaccination and examined its dynamical behavior.

Fractional calculus is a subject in mathematical analysis, where it can be considered as
a generalization of integer calculus [14–28]. Despite this, only in the past decades has it
been extensively examined, owing to its broad range of use in many areas. Fractional-order
derivatives are relatively more accurate than integer-order derivatives because they serve
as an effective tool for describing the memory effect throughout all types of processing
and materials [29]. Memory effects refer to the fact that the states of systems with a
fractional order are determined by all previous states. Over the last several years, numerous
academics have concentrated their efforts on discrete fractional calculus [30–32]. Following
the proposal of that special field, researchers have become more interested in its applications
in neural networks, physics, biology, etc. Meanwhile, since Wu et al. [33] suggested the first
chaotic fractional logistic map, the dynamics and control of various fractional-order chaotic
discrete-time systems have been intensively studied [34–38].

Fractional-order derivatives have been extensively used in epidemiology, with the
majority of these studies focusing on SIR-type models [39–44]. In [45], Selvam et al. investi-
gated the stability of the fractional-order SIR epidemic model using a discretization process,
whereas Naik in [46] studied the global dynamics of a fractional-order SIR epidemic model
with memory. The analysis and numerical solution of a novel fractional-order SIR dengue
model was investigated in [47]. In [48], the stability analysis and bifurcation control for a
delayed fractional-order SIR epidemic model with incommensurate order was considered.
It is worth noting that all of these studies are based on continuous-time systems. The moti-
vation behind this work, particularly with the current spread of the COVID-19 pandemic, is
to assess the benefits of the fractional discrete epidemic model in the field of epidemiology.
So far, to the best of our knowledge, the dynamic analysis of a fractional-order discrete-time
epidemic model with vaccination based on a Caputo-like difference operator has not yet
been investigated. This piqued our interest and inspired us to study the phenomenon and
investigate the behavior of a fractional SIR epidemic model with vaccination when the
fractional orders are commensurate and incommensurate.

The goal of this article is to contribute to the field of epidemiology by introducing a
novel discrete-time SIR epidemic model with vaccination with both commensurate and
incommensurate fractional orders. The work is organized as follows. In Section 2, we
present the integer-order form of the discrete SIR model and we recast the mathemati-
cal model to take the form of the fractional-order discrete SIR model. In Section 3, we
look at how the range and type of chaotic behaviors are affected by commensurate and
incommensurate fractional orders. Furthermore, we use the 0−1 test method to distinguish
between regular and chaotic behavior. In Section 4, we use the C0 complexity and approx-
imate entropy (ApEn) to analyze the complexity of the proposed discrete SIR epidemic
model. Throughout the paper, numerical simulations are used to demonstrate and verify
the results.

2. Mathematical Model

In this section, we introduce the discrete SIR model as an integer-order discrete system,
and then we reformulate it as a fractional-order discrete system by employing the Caputo-
left difference operator.
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2.1. Integer-Order Discrete Model

Consider the following description of the SIR epidemic model described in [49],
in which the population densities Sm, Im, and Rm represent the number of susceptible,
infected, and recovered individuals at time m, respectively:

Sm+1 = SM −
α

N
ImSm + β(Rm + Im),

Im+1 =
α

N
ImSm + (1− β− σ)Im,

Rm+1 = (1− β)Rm + σIm,

(1)

where α > 0 is the contact number, 0 < β < 1 is is the probability of birth, and 0 < σ < 1 is
the probability of recovery. The flow diagram for model (3) is seen in Figure 1.

S

R

I

βR

σI

α
N SI

βI

Figure 1. Flow chart of the SIR epidemic model (1).

In [50], the authors focused on the dynamics of an SIR epidemic model by incorpo-
rating vaccination in the model (1). The proportion of persons who had been vaccinated
was represented by the parameter p, where 0 < p < 1; and the remainder had a risk of
susceptibility to infection in the proportion 1− p. The following is the general SIR epidemic
model with vaccination, which takes the following form:

Sm+1 = (1− p)Sm −
α

N
ImSm + β(Rm + Im),

Im+1 =
α

N
ImSm + (1− β− σ)Im,

Rm+1 = (1− β)Rm + σIm + pSm,

(2)

(S0, I0, R0) are initial conditions that are positive real values, with S0 + I0 + R0 = N. N is
the total population size. Furthermore, by employing the relation Sm + Im + Rm = N, we
replace Rm by N − Sm − Im and we get the following system:

Sm+1 = (1− p)Sm −
α

N
ImSm + β(N − Sm),

Im+1 =
α

N
ImSm + (1− β− σ)Im,

Rm+1 = (1− β)Rm + σIm + pSm,

(3)

Observing that the two equations concerning (S, I) in the SIR epidemic model (3) do
not contain R, they are thus independent of the third one. As a result, the three-dimensional
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SIR epidemic model (3) can be reduced to a two-dimensional model, which results in the
following equivalent system:

Sm+1 = (1− p)Sm −
α

N
ImSm + β(N − Sm),

Im+1 =
α

N
ImSm + (1− β− σ)Im,

(4)

when α = 4, β = 0.8, σ = 0.1, p = 0.005, and N = 100, the discrete SIR epidemic model
with vaccination (4) exhibits a chaotic attractor as shown in Figure 2.

(a) (b) (c)
Figure 2. (a) Phase space of the discrete SIR epidemic model with vaccination (4) for α = 4, β = 0.8,
σ = 0.1, p = 0.005, N = 100, and initial conditions (S(0), I(0)) = (70, 30). (b) Bifurcation diagram of
the SIR epidemic model (4) versus α. (c) The maximum Lyapunov exponents.

2.2. Fractional-Order Discrete Model

In this study, a discrete-time SIR epidemic model with vaccination with both commen-
surate and incommensurate orders is considered. Herein, the first-order difference of the
SIR model (4) is formulated as:

∆S(m) = −pS(m)− α

N
I(m)S(m) + β(N − S(m)),

∆I(s) =
α

N
I(m)S(m)− (β + σ)I(m),

(5)

As mentioned above, we use the Caputo-left difference operator to create the frac-
tional version of the discrete-time SIR epidemic model with vaccination. The Caputo-left
difference operator is defined as follows:

Definition 1. [51] The γ-Caputo fractional difference operator for a function h(s), is defined by

C∆γ
a h(s) = ∆−(m−γ)

a ∆mh(s) = 1
Γ(m−γ) ∑

s−(m−γ)
τ=a (s− τ − 1)(m−γ−1)∆mh(τ), (6)

where s ∈ Na+m−γ, m = dγe+ 1, and γ 6∈ N. (s− 1− τ)(m−γ−1) and ∆mh(τ) are the falling
factorial function and the m-th integer difference operator, respectively, which are defined as

(s− τ − 1)(m−γ−1) =
Γ(s− τ)

Γ(s− τ −m + γ + 1)
, (7)

and

∆mh(s) = ∆(∆m−1h(s)) =
m

∑
k=0

(
m
k

)
(−1)m−kh(s + k), s ∈ Na. (8)

Remark 1. If we consider that m = 1, we can define the γ-Caputo fractional difference operator by

C∆γ
a h(s) = ∆−(1−γ)

a ∆h(s) = 1
Γ(1−γ) ∑

s−(1−γ)
τ=a (s− τ − 1)(−γ)∆h(τ), s ∈ Na+1−γ (9)
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Definition 2. [30] The γ-th fractional sum for a function h is defined as

∆−γ
a h(s) =

1
Γ(γ)

s−γ

∑
τ=a

(s− 1− τ)(γ−1)h(τ), (10)

with s ∈ Na+γ, γ > 0. Na = {a, a + 1, a + 2, . . . } is a time scale, a ∈ R.

Now, the discrete SIR epidemic model with vaccination (4) may be expressed in
fractional order as follows:

C∆γ1
a S(s) = −pS(s− 1 + γ1)−

α

N
I(s− 1 + γ1)S(s− 1 + γ1) + β(N − S(s− 1 + γ2)),

C∆γ2
a I(s) =

α

N
I(s− 1 + γ2)S(s− 1 + γ2)− (β + σ)I(s− 1 + γ2),

(11)
where γi(i=1,2,3) are the fractional order such that 0 < γi < 1. Note that if γ1 = γ2, then
system (11) is referred to as a commensurate fractional-order system, whereas it is referred
to as an incommensurate fractional-order system if γ1 6= γ2.

3. Dynamical Analysis and Numerical Simulations

In this section, we investigate whether the previously suggested fractional-order
discrete-time SIR epidemic model with vaccination (11) exhibits chaotic behavior in both
the commensurate and incommensurate fractional orders. This study is conducted uti-
lizing many numerical techniques, including bifurcation diagrams, Lyapunov exponent
computations, plotting of phase portraits in S–I projection and applying the 0−1 method.

In order to show these, we first present a theorem that enables us to obtain the
numerical formula for the discrete fractional model that is subsequently discussed.

Theorem 1. [52] For the fractional difference equation{
C∆γi

a y(s) = g(s + γi − 1, y(s + γi − 1))
∆ky(s) = yk, m = dγie+ 1, k = 0, 1, . . . , m− 1,

(12)

the unique solution of this initial value problem (1) is given by

y(s) = y0(s) +
1

Γ(γi)

s−γi

∑
τ=a+m−γi

(s− σ(τ))(γi−1)g(τ + γi − 1, y(τ + γi − 1)), s ∈ Na+m,

(13)
where

y0(s) =
m−1

∑
k=0

(s− a)k

Γ(k + 1)
∆ky(a). (14)

According to Theorem 1, the numerical formula of the fractional discrete-time SIR
epidemic model (11) is designed as:

S(s) = S(a) + 1
Γ(γ1)

∑s−γ1
τ=a+m−γ1

(s− σ(τ))(γ1−1)
(
−p S(τ + γ1 − 1)− α

N I(τ + γ1 − 1)

S(τ + γ1 − 1)

+β (N − S(τ + γ1 − 1))
)

,

I(s) = I(a) + 1
Γ(γ3)

∑s−γ3
τ=a+m−γ3

(s− σ(τ))(γ3−1)
(

α
N I(τ + γ2 − 1) S(τ + γ2 − 1)

−(β + σ) I(τ + γ2 − 1)
)

. (15)
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Take a = 0 and since (s− τ + 1)(γ−1) is equal to Γ(s− τ)/Γ(s− τ − γ + 1), it follows
from Theorem 1 that the numerical formula for (11) is obtained as:

S(n) = S(0) + 1
Γ(γ1)

∑n−1
j=0

Γ(n−1−j+γ1)
Γ(n−1−j+1)

(
−p S(j)− α

N I(j) S(τ + γ1 − 1)

+β (N − S(j))
)

,

I(n) = I(0) + 1
Γ(γ2)

∑n−1
j=0

Γ(n−1−j+γ2)
Γ(n−1−j+1)

(
α
N I(j) S(j)− (β + σ) I(j)

)
,

(16)

where S(0) and I(0) are the initial conditions. This is a novel type of fractional-order
discrete-time SIR epidemic model with vaccination that possesses “memory effects”. As
seen in Equation (16), the states S(n) and I(n) are dependent on all previous variables
S(0), S(1), . . . , S(n− 1), and I(0), I(1), . . . , I(n− 1).

3.1. Commensurate Fractional Order
3.1.1. Bifurcation Diagram and Maximum LEs

To investigate the dynamic of the commensurate fractional-order discrete-time SIR
epidemic model with vaccination given in (11) regarding the fractional order γ = γ1 = γ2,
we set the parameters N = 100, β = 0.8, σ = 0.1, p = 0.005, and initial conditions
(S(0), I(0)) = (70, 30). Figure 3 displays the phase space of model (11) for γ = 1. Figure 4
shows the states of the system for 150 points. Take note that when γ = 1, the fractional
discrete model (11) refers to the integer-order model. Now, using the same initial condition
and the same system parameters, the fractional discrete model for different fractional orders
γ is presented in Figure 5. We see that as γ decreases, the phase portrait changes its shape
between chaotic and periodic trajectories, whereas if we continue to decrease γ, the states
of the fractional discrete model diverge to infinity.

The bifurcation diagrams of the fractional discrete model (11) where α varies in the
interval [3, 4.5] is presented in Figure 6. Obviously, decreasing the fractional order has an
effect on the interval in which chaos occurs, and the bifurcation diagram progressively
shifts to the right. For example, when γ = 0.98, chaos begins to appear at α = 3.915 and
the maximum chaotic range is reached at α = 4.128, whereas when γ = 0.91, chaos begins
to appear at α = 3.849 and the maximum chaotic range is reached at α = 4.047.

To further study the influence of the commensurate fractional order on the dynamics
of the fractional discrete-time SIR epidemic model (11), we plotted the bifurcation diagram
for γ as a critical parameter and the findings are presented in Figure 6a. We notice that the
fractional discrete SIR epidemic model (11) contains chaos and that the fractional order
γ has an influence on the system’s dynamics. When γ < 0.8712, the system (11) exhibits
a transient state, which means that until a minimum number of iterations is reached,
the proposed system’s states approach a limited attractor before diverging to infinity.

Figure 3. Phase portrait of the fractional SIR epidemic model in (11) with γ = 1 for N = 100, β = 0.8,
σ = 0.1, p = 0.0005, and initial conditions (S(0), I(0)) = (70, 30).
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(a)

(b)

(c)

Figure 4. Time evolution of states for (a) γ = 0.89, (b) γ = 0.93, and (c) γ = 1.

(a) γ = 0.89 (b) γ = 0.91 (c) γ = 0.93

(d) γ = 0.96 (e) γ = 0.966 (f) γ = 0.99
Figure 5. Phase portrait of the fractional SIR epidemic model (11) with commensurate fractional-order
values for N = 100, β = 0.8, σ = 0.1, p = 0.005, and initial conditions (S(0), I(0)) = (70, 30).
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(a) γ = 0.98 (b) γ = 0.91 (c) γ = 0.89
Figure 6. Bifurcation diagrams of the fractional discrete SIR model (11) for different commensurate
fractional-order values.

An important tool used in fractional discrete systems is the Lyapunov exponents,
which are used in conjunction with bifurcation diagrams to show chaos. As shown in [52],
the Jacobian matrix algorithm is used to compute or estimate the maximum Lyapunov
exponent, which is calculated in a similar way to the states in the fractional-order discrete
model (11). The tangent map Ji is defined as follows:

Ji =

(
e1 e2
f1 f2

)
(17)

where

e1(n) = e1(0) +
1

Γ(γ1)

n−1

∑
j=0

Γ(n− 1− j + γ1)

Γ(n− 1− j + 1)

(
− p e1(j)− α

N
(
e1(j) I(j) + f1(j) S(j)

)
− β e1(j)

)
,

e2(n) = e2(0) +
1

Γ(γ1)

n−1

∑
j=0

Γ(n− 1− j + γ1)

Γ(n− 1− j + 1)

(
− p e2(j)− α

N
(
e2(j) I(j) + f2(j) S(j)

)
− β e2(j)

)
,

f1(n) = f1(0) +
1

Γ(γ2)

n−1

∑
j=0

Γ(n− 1− j + γ2)

Γ(n− 1− j + 1)

( α

N
(
e1(j) I(j) + f1(j) S(j)

)
− (β + σ) f1(j)

)
,

f2(n) = f2(0) +
1

Γ(γ2)

n−1

∑
j=0

Γ(n− 1− j + γ2)

Γ(n− 1− j + 1)

( α

N
(
e2(j) I(j) + f2(j) S(j)

)
− (β + σ) f2(j)

)
.

(18)

Then, the Lyapunov exponents can be given by :

λk(x0) = lim
i→∞

1
i

ln |λ(i)
k | for k = 1, 2. (19)

where λk are the eigenvalues of the Jacobian matrix Ji.
The method described above can be turned into a MATLAB script to calculate the

largest LE of the fractional-order discrete-time SIR epidemic model with vaccination (11).
Because it is difficult to predict the behavior of the system using analytical techniques, we
must rely on approximate numerical approaches, which can be achieved by using MATLAB
software. For further information on how to use numerical simulation of some chaotic
systems using MATLAB, see the link in [53]. The results of the MLE for system with the
same parameters and with initial conditions (S(0), I(0)) = (70, 30) are shown in Figure 7b.
As can be seen, the system has positive LE, which shows that the MLE is compatible
with the bifurcation diagram depicted in Figure 7a. We can also see that some values of
Lyapunov exponents are negative, meaning that the system has periodic attractors, and this
is illustrated further by the phase portraits plotted in Figure 5.
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(a) (b)
Figure 7. (a) Bifurcation diagram versus γ of the fractional discrete SIR model (11) with α = 4. (b) The
maximum Lyapunov exponent.

3.1.2. The 0−1 Test

To test chaotic behavior in nonlinear systems, one can use a 0−1 test method [54].
Unlike the Lyapunov exponent approach, the 0−1 test acts directly on the time sequence,
therefore eliminating the necessity for phase reconstruction. In particular, this technique
operates on finite points (S(n))n=1,...,N and an arbitrary number c ∈ (0, π). According to
the time series (S(n)), two terms referred to as the translation variables can be defined
for n = 1, N as pc(n) = ∑n

k=1 S(k) cos(kc) and qc(n) = ∑n
k=1 S(k) sin(kc). We represent the

mean square displacement by

Mc(n) = lim
N→∞

1
N

N

∑
k=1

[(
pc(n + k)− pc(k)

)2
+
(
qc(n + k)− qc(k)

)2
]
, n ≤ N

10
. (20)

The asymptotic growth rate Kc is given by the definition

Kc = lim
n→∞

log Mc(n)
log n

. (21)

The asymptotic growth rate K = median(Kc) or the plotting of pc and qc on the p–q
plane may be used to assess if chaos occurs on the fractional discrete SIR epidemic model.
This means that the dynamics of the proposed fractional discrete SIR epidemic model
are nonchaotic when K is close to 0 and the behavior of trajectory in the (pc–qc) plane is
bounded; on the other hand, when K is close to 1 and the trajectory in the (pc–qc) plane
exhibits Brownian-like behavior, the dynamics of the fractional discrete SIR epidemic model
are chaotic.

The 0−1 test of the fractional discrete-time SIR epidemic model with vaccination (11) is
applied directly to the state S(n). Figure 8 shows the (pc–qc) plots of the fractional discrete
SIR epidemic model (11) with commensurate fractional order. Observing the pc and qc
trajectories, it is clear that the pc and qc trajectories display Brownian-like behavior when
γ = 1 and γ = 0.94, indicating that the fractional SIR model is chaotic. Otherwise, when
γ3 = 0.99 and γ3 = 0.966, the trajectories in the (pc–qc) plane exhibit a bounded behavior,
so the SIR model with commensurate order yields regular dynamics.
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(a) γ = 0.94 (b) γ = 0.966

(c) γ = 0.99 (d) γ = 1
Figure 8. The p–q trajectories of the 0−1 test of the fractional discrete SIR epidemic model (11) with
commensurate orders (γ1 = γ2).

3.2. Incommensurate Fractional Order

In the following, the chaotic behavior of the proposed fractional SIR model with incom-
mensurate fractional order (11) are carefully analyzed via the computation of bifurcation
diagrams, Lyapunov exponents, phase portraits and 0−1 test method. Similarly, the effects
of system parameter α and the fractional-order values on the dynamics of the model are
illustrated in detail. We examine the case of incommensurate orders because it is more
representative of reality than the case of commensurate orders, as each variable changes
and moves independently of the others, implying that the rank of the influencer varies
from one equation to another.

3.2.1. Bifurcation Diagram and Maximum LEs

Here, we discuss the dynamics of the fractional discrete SIR model (11) by varying
α from 3 to 4.5 with the step size ∆α = 0.001. Figure 9 displays the bifurcation diagrams
for the fractional order values (γ1, γ2) = (0.94, 0.97), (γ1, γ2) = (0.94, 0.99), and (γ1, γ2) =
(0.99, 0.94), respectively. From Figure 9, we see that the system exhibits periodic doubling
or flip bifurcation. When α increases from 3, stability begins with a one-period orbit,
then periodic orbits of periods 2, 4, and 8 are seen, which eventually evolve into chaos.
In addition, we observe that the states of the system (11) are influenced by the fractional-
order values γi and the system parameter α, as shown in Figure 9. As can be observed,
when the incommensurate fractional orders (γ1, γ2) are changed, the interval in which
the chaos may be found shifts. Namely, when (γ1, γ2) = (0.94, 0.97) the system is chaotic
at α ∈]3.822, 3.907[∪]3.915, 4.008[∪]4.014, 4.055[, while when (γ1, γ2) = (0.99, 0.94) the
system is chaotic at α ∈]4.023, 3.136[∪]4.139, 4.1754[. As a consequence of these findings,
it can be concluded that the suggested fractional discrete SIR epidemic model (11) with
incommensurate fractional orders shows a greater variety of chaotic attractors than the
fractional discrete SIR epidemic model with commensurate fractional orders. To further
investigate the effect of the incommensurate fractional orders on the dynamics behavior
of system (11), Figure 10 displays the bifurcation diagram and the maximum Lyapunov
exponents with γ1 as a bifurcation parameter where the initial conditions are (S(0), I(0)) =
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(70, 30) , the system parameter is α = 4, and the fractional order is γ2 = 0.94. We can see
that the states of the system diverge towards infinity as soon as γ1 goes below 0.8383 and
when γ1 increases, chaos occurs with certain periodic orbits. We can also see that when γ1
approaches 1, the states become totally periodic. In Figure 10b, the maximum, Lyapunov
exponents calculated for the same parameters and initial conditions as in Figure 10a are
shown. Obviously, the maximum Lyapunov exponents have a positive number indicating
that chaos exists, which agrees with the corresponding bifurcation diagram in Figure 10a.

(a) γ1 = 0.94, γ2 = 0.97 (b) γ1 = 0.94, γ2 = 0.99 (c) γ1 = 0.99, γ2 = 0.94
Figure 9. Bifurcation diagrams of the fractional discrete SIR model (11) for different incommensurate
fractional-order values.

(a) (b)
Figure 10. (a) Bifurcation diagram versus γ1 of the fractional discrete SIR model (11) for α = 4 and
γ2 = 0.94. (b) The maximum Lyapunov exponents.

Now, the dynamic behavior with the variation of the fractional order γ2 is studied for
γ1 = 0.94. The bifurcation diagram and its corresponding maximum LE are illustrated in
Figure 11. We can see that the dynamical behavior of the fractional discrete SIR epidemic
model (11) evolves from periodic to chaos as γ2 increases. In particular, the proposed SIR
model is chaotic when γ2 ∈]0.888, 0.9494[∪]0.951, 0.979[∪]0.9836, 1]; where the maximum
LE is positive. The results illustrate that the dynamics behavior of the SIR model is affected
by the order γ2. To illustrate the dynamics of the fractional discrete SIR epidemic model
(11) better, phase portraits with different values of (γ1, γ2) are presented in Figure 12.
From Figure 12, we notice that the proposed SIR model shows different dynamic behaviors
for these corresponding different fractional-order values.

(a) (b)
Figure 11. (a) Bifurcation diagram versus γ2 of the fractional discrete SIR model (11) for α = 4 and
γ1 = 0.94. (b) The maximum Lyapunov exponents.
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(a) (γ1, γ2) = (0.88, 0.94) (b) (γ1, γ2) = (0.91, 0.94) (c) (γ1, γ2) = (0.982, 0.94)

(d) (γ1, γ2) = (0.94, 0.91) (e) (γ1, γ2) = (0.94, 0.983) (f) (γ1, γ2) = (0.94, 1)
Figure 12. Phase portrait of the fractional discrete SIR epidemic model with vaccination (11) with
incommensurate fractional-order values for N = 100, β = 0.8, σ = 0.1, p = 0.005, and initial
conditions (S(0), I(0)) = (70, 30).

To get a better understanding of the influence of the fractional order on the SIR
epidemic model, and in light of previous numerical findings, we compare the recent results
obtained from the integer-order SIR model with the results obtained from the fractional-
order SIR model, which are presented in Table 1. It can be observed that the maximum
number of susceptible cases obtained from the fractional-order SIR model is identical to
the maximum number obtained from the integer-order SIR model, which is 70, whereas
the minimum number of susceptible cases obtained from the fractional-order SIR model
is less than the minimum number obtained from the integer-order SIR model. On the
other hand, we see that the maximum and minimum numbers of infected cases predicted
in the fractional-order SIR model are not identical to those expected in the integer-order
SIR model. This confirms the effect of the fractional order on the SIR epidemic model in
predicting the number of susceptible individuals and infected individuals.

Table 1. The minimum and maximum numbers of expected cases for the susceptible class and
infected class.

Classes Integer-Order Model Fractional-Order Model
(min, max) (min, max)

Susceptible individuals (S) (7, 70) (4, 70)
Infected individuals (I) (30, 86) (20, 90)

3.2.2. The 0−1 Test

Similarly to the commensurate fractional orders, the 0−1 test was used to evaluate
the fractional discrete SIR epidemic model (11) with incommensurate fractional order.
The translation components pc and qc in the (pc–qc) plan are illustrated in Figure 13. As can
be observed, for (γ1, γ2) = (0.91, 0.94) and (γ1, γ2) = (0.94, 0.91), the trajectories pc and qc
display Brownian-like behavior, and a bounded behavior for (γ1, γ2) = (0.94, 0.983) and
(γ1, γ2) = (0.982, 0.94), which confirms that the fractional discrete SIR epidemic model
(11) has chaotic attractors for (γ1, γ2) = (0.97, 0.94) and (γ1, γ2) = (0.97, 1), and has a
regular behavior for (γ1, γ2) = (0.99, 0.94) and (γ1, γ2) = (0.97, 0.9). On the other side,
Figure 14 depicts the asymptotic growth rate K with fractional orders (γ1, γ2), in which
α = 4 and (S(0), I(0)) = (70, 30). As we can see, for the majority of values of γ1 and γ2,
the asymptotic growth rate K approaches 1, implying that the fractional-order discrete SIR
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model with vaccination exhibits a chaotic behavior. These findings support very well the
results of the bifurcation diagrams and the maximum Lyapunov exponents obtained before.

(a) (γ1, γ2) = (0.91, 0.94) (b) (γ1, γ2) = (0.94, 0.91)

(c) (γ1, γ2) = (0.94, 0.983) (d) (γ1, γ2) = (0.982, 0.94)
Figure 13. The p–q trajectories of the 0−1 test of the fractional discrete SIR epidemic model (11) with
incommensurate orders (γ1, γ2).

(a) (b)
Figure 14. The asymptotic growth rate K of the fractional discrete SIR epidemic model (11) with
(γ1, γ2) as critical parameters for (a) γ2 = 0.94, (b) γ1 = 0.94.

4. Complexity Analysis of the Fractional Discrete SIR Epidemic Model with
Commensurate and Incommensurate Fractional Orders

For assessing the dynamic characteristics of chaotic systems, one technique is to
consider the complexity of the chaotic characteristic. The model becomes more chaotic
as the level of complexity increases. In this section, the approximate entropy and the C0
complexity algorithm are used to assess the complexity of the fractional-order discrete-time
SIR epidemic model with vaccination.

4.1. C0 Complexity

Based on the inverse Fourier transform, the analysis of the complexity of chaotic
systems was carried out using the C0 algorithm. It divides the time series of the system
into two components, a series of regular and a series of irregular parts, where the series
of irregular parts is what we need. For a sequence [S(0), S(1), . . . , S(N − 1)] with a length
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of N, and a control parameter r, the algorithm process is defined as follows [55]. Firstly,
the discrete Fourier transform of {Sn} is determined by

XN(k) =
1
N

N−1

∑
j=0

S(j) exp−2πi( kj
N ), k = 0, 1, .., N − 1, (22)

and the mean square value is calculated as GN = 1
N ∑N−1

k=0 |XN(k)|2. We let

X̄N(k) =

{
XN(k) if |XN(k)|2 > rGN ,
0 if XN(k)|2 ≤ rGN .

(23)

The inverse Fourier transformation of X̄N is defined as

x̄(j) =
1
N

N−1

∑
k=0

X̄N(k) exp2πi( kj
N ), j = 0, 1, .., N − 1. (24)

Then, the C0 complexity is given by:

C0 =
∑N−1

j=0 |S(j)− x̄(j)|2

∑N−1
j=0 |S(J)|2

. (25)

The C0 complexity of the fractional-order discrete-time SIR epidemic model with
vaccination (11) with varying commensurate fractional-order value γ and incommensurate
fractional-order values γ1, γ2 are calculated and the result is shown in Figure 15. Inter-
estingly, in the case of commensurate fractional-order values γ, as with the MLE, the C0
complexity value of the fractional SIR model increases rapidly when γi decreases. On the
other hand, the fractional discrete SIR epidemic model (11) with incommensurate fractional-
order values, in contrast to the case when the model has commensurate fractional-order
values, has more complexity when γ2 approaches 1. Thus, we can see that the C0 algorithm
can measure the complexity effectively. Figure 15a illustrates that model (11) has a higher
complexity when γ ∈ (0.9712, 0.9082]. When γ1 = 0.94, the high complexity region in
Figure 15c also exists in the range of γ2 ∈ [0.9836, 1], and the C0 complexity increases with
the increase of fractional order γ2.

4.2. Approximate Entropy (ApEn)

The approximate entropy is a measure of regularity that quantifies the level of com-
plexity within systems generated by a time series. Generally, time series with larger values
of ApEn are considered to be more complex [56]. Note that, the approximate entropy value
is dependent on two essential parameters: the similarity tolerance r and the embedding
dimension m. In this article, we took m = 2 and r = 0.2std(S) where std(S) represents the
standard deviation of the data S. Theoretically, the ApEn is calculated as follows:

ApEn = −Φm+1(r) + Φm(r), (26)

where Φm(r) is denoted by

Φm(r) =
1

n−m− 1

n−m+1

∑
i=1

log Cm
i (r) (27)

where Cm
i (r) = K

n−m+1 , i ∈ [1, n−m + 1], K is the number of X(j) such that d(X(j), X(i)) ≤
r, and X(i) = [x(i), x(i + 1), ..., x(i + m− 1)].

The ApEn complexity of the fractional-order discrete-time SIR epidemic model with
vaccination (11), with both commensurate and incommensurate orders (γ1, γ2) was ana-
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lyzed and the findings are reported in Table 2. It can be seen that the complexity of the
fractional discrete SIR epidemic model (11) varies when γi (i = 1, 2) varies, and the highest
ApEn is found when the model is chaotic, which agrees very well with the maximum LE
results. As a result, in order to obtain a relatively high structural complexity, we must be
cautious when choosing the values of γi in system (11).

(a) (b)

(c)
Figure 15. C0 complexity analysis of the SIR epidemic model (11) for α = 4 and (S(0), I(0)) = (70, 30)
and with fractional-order values: (a) γ1 = γ2, (b) γ1 = 0.94, and (c) γ2 = 0.94.

Table 2. Approximate entropy test of the SIR model (11) with different fractional-order values
γi, i = 1, 2.

γ1 γ2 ApEn

1 1 0.2552
0.99 0.99 0.0265
0.94 0.94 0.3718
0.94 0.983 0.0503
0.982 0.94 0.1336
0.91 0.94 0.4056

5. Conclusions

In this paper, we dealt with the dynamics of a new fractional-order discrete-time
SIR epidemic model with vaccination with commensurate and incommensurate orders.
Through phase portraits, bifurcation diagrams, and maximum LEs, the complex dynam-
ics of the proposed system were discussed. In addition, we also calculated the 0−1 test,
approximate entropy (ApEn), and C0 complexity of the fractional-order discrete SIR epi-
demic model for different fractional order values, all of which intended to demonstrate
and quantify the complex dynamics of the system. Results indicated that the fractional-
order model is more complex than the integer-order model. Furthermore, we showed that
the incommensurate fractional orders have a greater effect on the behavior of the system
than when the fractional orders are commensurate. The reasonable range of commen-
surate fractional orders is between γ = 0.8712 and γ = 1 while the reasonable range of
incommensurate fractional orders is between γ2 = 0.77 and γ2 = 1. Throughout this work,
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numerical simulations were used to explain all the findings. Due to the current spread
of the COVID-19 epidemic and the onset of the implementation of various vaccination
strategies in various countries, we will attempt to use the fractal properties of most of the
COVID-19 series in order to establish a connection between the proposed fractional model
and the stochastic self-affine characteristics of the COVID-19 times series in future research.
In addition, the determination of the coupled time-fractional differential equations of the
proposed fractional model using the Caputo fractional derivative, as well as the study of
some complex epidemiological models will be considered in our future research.
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