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Abstract— In this paper we introduce the classical EOQ model 

with a linear trend of time-dependent demand having no 

shortages using the concept of fractional calculus. The 

application of fractional calculus has been already used in 

classical EOQ model where the demand is assumed to be 

constant. In this present article fractional differential calculus 

can be used to describe EOQ model with time-dependent linear 

trend of demand to develop more generalized EOQ model. Here, 

we want to discuss more deeply its role as a tool for describing 

the traditional classical EOQ model with time dependent 

demand. 

 

 

Index Terms— Fractional differentiation, Fractional Integration, 

Fractional Differential Equation, Set up Cost, Holding Cost, 

Economic Order Quantity. 

 

I. INTRODUCTION 

Fractional calculus generalizes derivative and 

integration of a function to non-integer order. This 

generalization is a rather old problem, as demonstrated 

by a correspondence, which lasted several months in 

1695, between Leibniz and L’Hopital. Many other 

famous scientists of the past studied and contributed to 

the development of fractional calculus in the field of pure 

mathematics[12-16].In recent years the concept of 

fractional differential calculus has been applied to several 

fields of engineering, science and economics[5],[6],[10]. 

Some of the areas where Fractional Calculus has made an 

important role that are included viscoelasticity and 

rheology, electrical engineering, electrochemistry, 

biology, biophysics and bioengineering, electromagnetic 

theory, mechanics, fluid mechanics, signal and image 

processing theory, particle physics, control theory[5] and 

many other field[7], [15]. Only recently, fractional 

calculus was applied to classical EOQ model to 

generalize this model in operation research. In a previous 

paper [4], we have discussed how the fractional calculus 

can utilizes to develop the classical EOQ model to 

generalize EOQ model in operation research. In 

particular, we have seen fractional calculus has a 

potentiality to apply this concept in any other EOQ 

model. In this sense we represent the more generalize 

EOQ model using the broad concept of fractional 

calculus where demand may vary with time, say linearly 

instead of constant demand. 

The classical EOQ (Economic Order Quantity) 

[1],[3],[17],[19],[22] model assumes that the demand rate 

is constant. However, in the real market, [9] the demand 

for any product cannot be constant. Researchers have 

paid much attention to inventory modelling with time 

dependent demand. Silver and Meal [21] developed a 

heuristic approach to determine EOQ in the general case 

of a deterministic time-varying demand pattern. 

Donaldson [8] discussed the classical no-shortage 

inventory policy for the case of a linear, time dependent 

demand. This treatment was fully analytical and much 

computational effort was needed in order to get the 

optimal solution. Silver [20], using Silver-Meal heuristic 

obtained an appropriate solution procedure for the case of 

a positive linear trend in demand to reduce the 

computational effort needed in Donaldson [8]. 

Subsequent contributions in this type of modelling came 

from researchers such as Ritchie ([17],[18]), Kicks and 

Donaldson [11], and others. 

Here we have applied the concept of 

derivative/integrals with an emphasis on Caputo and 

Riemann-Liouville fractional derivatives [2],[13] and 

have some interesting results and ideas[23] that 

demonstrate the generalized EOQ based inventory model. 

Fractional derivatives and fractional integrals have 

interesting mathematical properties that may be utilized 

to develop our motivation. In this article, first we give a 

short description on general principles, definitions and 

several features of fractional derivatives/integrals and 

then we review some of our ideas and findings in 

exploring potential applications of fractional calculus in 

inventory control model. 

In section II, we represent a basic conception on 

Fractional Calculus and short history, description related 

to Fractional Differential Calculus. In section III, we 

represent the basic concept of Classical EOQ model. In 

section IV, we introduce our main work which 

emphasizes on techniques and procedure for finding our 

optimum results. Finally, In section V, we present the 

conclusion of our work. 

 

II. A SHORT DESCRIPTION ON FRACTIONAL DIFFERENTIAL 

CALCULUS 

The origin of fractional calculus goes back to Newton 

and Leibniz in the seventieth century. S.F Lacroix was 

the first to mention in some two pages a derivative of 

arbitrary order in a 700 pages text book of 1819. 
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He developed the formula for the nth derivative of 

y=
mx , m is a positive integer, 
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where n(m) is an integer.  

Replacing the factorial symbol by the well-known 

Gamma function, he obtained the formula for the 

fractional derivative, 
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Where ,  are fractional numbers. 

In particular he had,  
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Again the normal derivative of a function f is defined 

as, 
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Iterating this operation yields an expression for the nth 

derivative of a function. As can be easily seen and proved 

by induction for any natural number n, 
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Or equivalently, 
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The case of n=0 can be included as well. 

The fact that for any natural number n, the calculation 

of nth derivative is given by an explicit formula (2.5) or 

(2.7). 

Now the generalization of the factorial symbol (!) by 

the gamma function allows 
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This is also valid for non-integer values of n. 

Thus on using of the idea (2.8), fractional derivative 

leads as the limit of a sum given by 
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Provided the limit exists. Using the identity  
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The result (2.9) becomes,  
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When α is an integer, the result (2.9)reduce to the 

derivative of integral order n as follows in (2.5). 

Again in 1927 Marchaud formulated the fractional 

derivative of arbitrary order α in the form given by, 
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In 1987, Samko et al had shown that (2.12) and (2.9) 

are equivalent. 

Replacing n by (-m) in (2.7), it can be shown that 
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This observation naturally leads to the idea of 

generalization of the notations of differentiation and 

integration by allowing m in (2.13) to be an arbitrary real 

or even complex number. 

A. Fractional derivatives and integrals 

The idea of fractional derivative or fractional integral 

can be described in another different ways. 

First, we consider a linear non homogeneous nth order 

ordinary differential equation , 
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is the unique solution of the equation (2.1.1) with the 

initial data y
k )(

(a)=0, 

for 10  nk . Or equivalently,  
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n
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Replacing n by  ,where Re()>0 in the above formula 

(2.1.3),we obtain the Riemann-Liouville definition of 

fractional integral that was reported by Liouville in 1832 

and by Riemann in 1876 as 
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 is the Riemann-Liouville integral operator. When 

a=0 ,(2.1.4) is the Riemann definition of integral and if 

a= -, (2.1.4) represents Liouville definition. Integral of 

this type were found to arise in theory of linear ordinary 

differential equations where they are known as Eulier 

transform of first kind. 

If a=0 and x>0 ,then the Laplace transform solution the 

initial value problem 
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Where )(sy  and )(sf  are respectively the Laplace 

transform of the function y(x) and f(x). 

The inverse Laplace transform gives the solution of the 

initial value problem (2.1.5) as 
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This is the Riemann-Liouville integral formula for an 

integer n. Replacing n by real  gives the Riemann-

Liouville fractional integral (2.1.3) with a=0. 

In complex analysis the Cauchy integral formula for 

the nth derivative of an analytic function f(z) is given by 
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Where C is closed contour on which f(z) is analytic , 

and t=z is any point inside C and t=z is a pole. 

If n is replaced by an arbitrary number  and n by 

)1(   , then a derivative of arbitrary order  can be 

defined by, 
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where t=z is no longer a pole but a branch point. 

In (2.1.10) C is no longer appropriate contour, and it is 

necessary to make a branch cut along the real axis from 

the point z=x>0 to negative infinity. 

Thus we can define a derivative of arbitrary  order by 

loop integral 
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Where )(
1

zt


= exp[-(+1)ln(t-z)] and ln(t-z) is 

real when t-z>0. Using the classical method of contour 

integration along the branch cut contour D, it can be 

shown that 
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which agrees with Riemann-Liuville definition (2.1.3) 

with z=x, and a=0, when  is replaced by - 

 

B. Fractional Integration, Fractional Differential 

Equation using Laplace Transformed Method: 
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One of the very useful results is formula for Laplace 

transform of the derivative of an integer order n of a 

function f(t) is given by 
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Where )0()( knf 
= kc  represents the physically 

realistic given initial conditions and )(sf being the 

Laplace transform of the function f(t). 

Like Laplace transform of integer order derivative, it is 

easy to shown that the Laplace transform of fractional 

order derivative is given by 
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where n-1 n  and  
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represents the initial conditions which do not have 

obvious physical interpretation. Consequently, formula 

(2.2.4) has limited applicability for finding solutions of 

initial value problem in differential equations. 

We now replace  by an integer-order integral J
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Similarly, D
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 can also be defined as the left inverse 

of J
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.We define the fractional derivative of order >0 
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On using (2.1.3) 
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Where n is an integer and the identity operator ‘I’ is 

defined by 
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ck
 in (2.2.4), Caputo and Mainardi adopted as an 

alternative new definition of fractional derivative to solve 

initial value problems. This new definition was originally 

introduced by Caputo in the form 

Dt

C 

0
f(t)= J

n 

D
n

f(t) 

= 





d
n

ft
n

t
n

)(
)(

1 )(

0

1

)( 



         (2.2.9) 

Where n-1 n  and n is an integer. 

It follows from (2.2.8) and (2.2.9) that 
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This shows that Caputo’s fractional derivative 

incorporates the initial values )0(
)(

f
k

, 

for k=0,1,2,…….,n-1. 

The Laplace transform of Caputo’s fractional 

derivative (2.2.12) gives an interesting formula  
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transform of )(
)(

tf
n

 This is a natural generalization 

of the corresponding well known formula for the Laplace 

when =n and can be used to solve the initial value 

problems in fractional differential equation with 

physically realistic initial conditions. 

 

III. BASIC CONCEPT ON CLASSICAL EOQ MODEL 

The order quantity means the quantity produced or 

procured in one production cycle or order cycle (the time 

period between placement of two successive orders (or 

production) is referred to as an order cycle (or production 

cycle). This is also termed re-order quantity when the 

size of order increases, the order costs (cost of 

purchasing , inspection, etc.) will decrease whereas the 

inventory carrying costs will increase .Thus in the 

production or purchasing case, there are two opposite 

costs, one encourages the increase in the order size and 

the other discourages. Economic order quantity (EOQ) is 

that size of order which minimizes total annual costs of 

carrying inventory and cost of ordering. 

Notations and Assumptions: 

D Demand rate 

Q Order quantity 

U Per unit cost 

C1 Holding cost per unit 

C3 Set up cost 

q(t) Stock level 

T Ordering interval 

w Dual variable of T in geometric programming 

In classical EOQ based inventory model, we already 

have 

D
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tdq

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 , for 0tT 

= 0, otherwise.                        (3.1) 

With the initial condition q(0)=Q and with the 

boundary condition q(T)=0. 

 

Fig 1.1. Development of inventory level over time 

 

By solving the equation (3.1), we have q(t)=Q-Dt, for 

0tT (3.2) 

And on using the boundary condition q(T)=0, we have 
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2
C

DTC
 .                                           (3.5) 

Total average cost over [0,T] is given by 

TAC(T)= ]
2

[
1

3

2

1 C
DTC

UQ
T

  

=
T

CDTC

T

UQ 31

2
                               (3.6) 

Then the classical EOQ model is 

Min TAC(T)=UD+
T

CDTC 31

2
                         (3.7) 

Subject to, T>0. 

Solving (3.7) we can show that TAC(T) will be 

minimum for 

T*=

1

32

C

DC
                                                         (3.8) 

and  

TAC*(T*)=UD+ DCC 312  .                               (3.9) 

 

IV. GENERALIZED EOQ MODEL WITH LINEAR TREND OF 

DEMAND 

We now generalize our discussion by accepting the 

equation (3.1) as a differential equation of fractional 

order instead of the linear order. i.e we here consider that 

demand(D) varies in fractional order say , here 

instantaneous inventory level 

D
dt

tqd




 )(
 for 0≤t≤T 

= 0 otherwise.                                           (4.1) 

where D=at+b ; a, b are constants. 

Then we have the equation (4.1) as  

)(
)(

bat
dt

tqd






 for 0≤t≤T                           (4.2) 

= 0, otherwisw 
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With the same initial and boundary condition as 

described in the previous problem in equation (3.1). i.e 

q(0)=Q and with q(T)=0. 

Equation (4.2) can be rewritten as  


t

C D0 q(t) = -(at+b) for 0≤t≤T                              (4.3) 

= 0 otherwise. 

Where 

t

C D0 
11 DJ 

 is the Caputo fractional 

derivative as described in (2.2.9) and 1D
dt

d
. 

To solve the initial value problem of fractional order 

differential equation (4.3) we apply the Laplace 

transform method. So taking Laplace transform of the 

equation (4.3), 

we have  {

t

C D0 {q(t)}= - {at+b} 

 )0()( 10 qssqs  
 =

2s

b

s

a
  ,  

)(sq being Laplace transform of q(t). 

 )(sqs = Q
1s

2s

b

s

a
  

 )(sq = 
12 


 s

b

s

a

s

Q
 

Taking Laplace inversion of above equation we have, 

q(t) = 
)1()2(

)}({
1

1












 btat
QsqL  

So the inventory level at any time t based on α ordered 

decreasing rate of demand is  

)(tq = 
)1()2(

1











 btat
Q  for 0≤t≤T . (4.4) 

on using the boundary condition q(T)=0 implies that  

Q=
)1()2(

1










 bTaT
                                    (4.5) 

A. Generalized Holding Cost: 

Now the Holding cost of fractional order, say  i.e.  

)(THC = )(1 tqDC 

                   
                  (4.1.1) 

Case1: For =1 and =1, Holding cost is  

HC1,1(T)= )(1

1 tqDC 
= 

T

dttqC
0

1 )(  

= dtbt
at

QC

T

)
2

(
0

2

1   

On using (4.4) & (4.5) for α=1 , we have  

HC1,1(T) = )
23

(
23

1

bTaT
C                                (4.1.2) 

Case2: For =1, Holding cost is  

)(,1 THC  = 
T

dttqC
0

1 )(  

= 
T

C
0

1 (
)1()2(

1











 btat
Q )dt 

= ]
)2()3(

[
12

1










 bTaT
QTC  

= ]
)2()3(

1
[ 12

1








 








bTaTC

 
 (using (4.5))                                                         (4.1.3) 

Case3: For =1, Holding cost of order  is  

)(,1 THC  = )(1 tqDC 
 

Where q(t) = bT
aT

Q 
2

2

 

Now { )(tqD 
}=  { bt

at
Q 

2

2

)} 

=  

 )(tqD 
 = {  } 

=
)2()3()1(

12













 btatQt
 

 For t=T Holding cost 

= 1C [ 
)2()3()1(

12













 bTaTQT
]     (4.1.4) 

= ]
)2()3()1(

)
2

[(
122

1













 bTaTT
bT

aT
C   

using (4.5) for α=1 

= }
)2()3(2

)3(
{ 12

1








 








bTaTC  (4.1.5) 

Case 4: For any  and  , Holding cost is )(, THC   

= )(1 tqDC 


, 

Where,  

)(tq =
)1()2(

1











 btat
Q { )(tqD 


} 

=  {
D [

)1()2(

1











 btat
Q  ]} 

=   
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 )(tqD 


= { } 

=
)1()2()1(

1













 btatQt
 

 For t=T Holding cost  

= 1C [ 
)1()2()1(

1













 bTaTQT ]   (4.1.6) 

= 1C [ 
)1()2()1(

}
)1()2(

{
11
















 bTaTTbTaT ]  

Using (4.5) 

= 

1

1

1 1
[ { }

( 2) ( 1) ( 2)

1 1
{ }]

( 1) ( 1) ( 1)

C aT

bT

 

 

   

   

 




      

 
      

    

(4.1.7) 

B. Generalized Total Average Cost 

Total cost(TC) = Purchasing cost(PC) + Holding 

cost(HC) + Set up cost(SC). 

Total Average Cost (TAC)=
T

1
[Total Cost(TC)] 

Case1: For α=1 and β=1, Average Cost TAC*1,1(T*) 

= ])([
1

31,1 CTHCUQ
T

  

= ])
23

()
2

([
1

3

23

1

2

C
bTaT

CbT
aT

U
T

  

=
T

C
T

aC
TbCaUUb 321

1
3

)(
2

1
  

= 1E + 1F T+
2

1TG +
T

C3
                                      (4.2.1) 

Where 1E =Ub, 1F = )(
2

1
1bCaU   & 1G = 1

3

1
aC  

Here the EOQ model is, 

Min )(1,1 TTAC  = 1E + 1F T+ 1G 2T +
T

C3
 ,     (4.2.2) 

subject to T ≥0, 

(4.2.2) can be taken as a primal geometric 

programming problem with degree of difficulty (DD) =1. 

Dual form of (4.2.2) 

Max d(w) =

321

3

3

2

1

1

1

www

w

C

w

G

w

F
























,               (4.2.3) 

Subject to,  

1w + 2w + 3w =1, (normalized condition)             (4.2.4) 

1w + 2 2w - 3w =0, (orthogonal condition)            (4.2.5) 

w1, w2, w3 ≥0. 

Primal-dual relations are, 

1F T= 1w d(w)                                                      (4.2.6) 

1G 2T = 2w d(w)                                                  (4.2.7) 

T

C3 = 3w d(w)                                                      (4.2.8) 

Using (4.2.6) and (4.2.7)&(4.2.8) we have, 

T = 
















1

2

1

1

w

w

G

F
                                                 (4.2.9) 

And 03

2

2

3

1

3

13

2

1  wwFwCG                          (4.2.10) 

Now solve for 1w , 2w , 3w  from three system of non-

linear equations (4.2.4), (4.2.5) and (4.2.10) and obtained 

the solutions as 
*

1w ,
*

2w  and 
*

3w and then from the 

relation (4.1.16), we will able to obtain 
*T  for which 

)(1,1 TTAC  is minimum. i.e we will able to obtain 

)(*

1,1 TTAC  as the minimum of )(1,1 TTAC  in (4.2.1) 

and Q*(T) . 

Case2: For any  >0 and =1, 

Here,  

)(1, TTC
=UQ+ ]

)2()3(

1
[ 12

1








 








bTaTC  + 3C  

= 1

[ ]
( 2) ( 1)

aT bT
U

 

 




   

]
)2()3(

1
[ 12

1









 








bTaTC 3C

 

T

C
TGTFTE 3

2

1

2

2

2   

               (4.2.11) 

Where )3

1
12









aCE

 , )2(

1
2








bCaU
F

, & 

)1(
2






bU
G

 

Then total average cost )(1, TTAC  =
T

1
)(1, TTC  

T

C
TGTFTE 31

22

1

2   

 

Here generalized EOQ model is, 

Min )(1, TTAC
 

T

C
TGTFTE 31

22

1

2     ,  (4.2.12) 

subject to T ≥0, 

(4.2.12) can be taken as a primal geometric 

programming problem with degree of difficulty (DD) =2. 

Dual form of (4.2.12) 

Max d(w) =

4321

4

3

3

2

2

2

1

2

wwww

w

C

w

G

w

F

w

E
































,  (4.2.13) 

Subject to, 1w + 2w + 3w + 4w =1, (normalized 

condition) (4.2.14) 
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1w (+1)+  2w +(α-1) 3w - 4w =0, (orthogonal 

condition) (4.2.15) 

w1, w2, w3, 4w  ≥0. 

Primal-dual relations are, 

2E 1T = 1w d(w)                                             (4.2.16) 

2F T = 2w d(w)                                               (4.2.17) 

1

2

TG = 3w d(w)                                             (4.2.18) 

)(4
3 wdw

T

C


                      

                           (4.2.19) 

Using (4.2.16) and (4.2.17),(4.2.18) & (4.2.19) we 

have,  

T = 
















2

1

2

2

w

w

E

F
                                               (4.2.20) 

031

2

2

2

222  wwFwGE
       

                         (4.2.21) 

And 01

33242

1

2    wCFwwG                 (4.2.22) 

Now solve for 1w , 2w , 3w  , 4w  from four system of 

non linear equations (4.2.14), (4.2.15) and (4.2.21) & 

(4.2.22) and obtained the solutions as 
*

1w ,
*

2w  , 

*

3w &
*

4w and then from the relation (4.2.20), we will 

able to obtain 
*T  for which )(1, TTAC  is minimum. 

i.e we will able to obtain )(*

1, TTAC  as the minimum of 

)(1, TTAC  in (4.2.12) and Q*(T) . 

Case3: For =1 and for any , we have the Holding 

cost , 

)(,1 THC   = }
)2()3(2

)3(
{ 12

1








 








bTaTC  

[from(4.1.5)] 

Then Total cost  

(TC) =UQ+ }
)2()3(2

)3(
{ 12

1








 








bTaTC + 3C

 

Where Q=
bT

aT


2

2

 

Total average cost  

)(,1 TTAC 
=

T

1
2 1

1 3

( 3)
[ UQ { } ]

2 ( 3) ( 2)
C aT bT C   

 

 
  

   

 

=
T

1
[ U( bT

aT


2

2

) 

+ }
)2()3(2

)3(
{ 12

1








 








bTaTC + 3C ]   (4.2.23) 

=
T

C
THTGTFE 3

3

1

333   
 

Where, bUE 3 , 
2

3

aU
F   ,  

)3(2

)3(1
3








aC
G  , & 

)2(

1
3






bC
H  

So our model is  

min )(,1 TTAC   = 
T

C
THTGTFE 3

3

1

333      

(4.2.24) 

Subject to; T≥0 

(4.2.24) can be taken as a primal geometric 

programming problem with degree of difficulty (DD) =2. 

Dual form of (4.2.24) 

Max d(w)=

4321

4

3

3

3

2

3

1

3

wwww

w

C

w

H

w

G

w

F
































 

Subject to,  

1w + 2w + 43 ww  =1 (normalized condition)  (4.2.25) 

1 2 3 4( 1)w w w w     =0  

(orthogonal condition)                                        (4.2.26) 

the primal-dual relations are 

TF3 = 1w d(w) 

1

3

TG = 2w d(w) , 

)(33 wdwTH 
 

And )(4
3 wdw

T

C
  

On using the above primal dual relation we get 





















3

2

4

4

w

w

G

H
T                                             (4.2.27) 

0233123

1

3  wwFwwHG 

   
                   (4.2.28) 

And 04

2

2

2

331

2

33

2

3  wwHFwwCG               (4.2.29) 

Now solve for 1w , 2w , 3w  , 4w  from system of four 

non-linear equations (4.2.25), (4.2.26) and (4.2.28) & 

(4.2.29) and obtained the solutions as 
*

1w ,
*

2w  , 

*

3w &
*

4w and then from the relation (4.2.27), we will 

able to obtain 
*T  for which )(,1 TTAC   is minimum. 

i.e we will able to obtain )(*

,1 TTAC   as the minimum 

of )(,1 TTAC   in (4.2.24) and Q*(T) . 

Case4: For any α >0 and any  >0, we have the 

Holding cost as 

)(, THC   =  
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1

1

1 1
{ }

( 2) ( 1) ( 2)

1 1
{ }

( 1) ( 1) ( 1)

aT

C

bT

 

 

   

   

 



 
       

 
 
         

 [from(4.1.7)] 

Then Total cost  

)(, TTC   =UQ+ 

1

1

1 1
{ }

( 2) ( 1) ( 2)

1 1
{ }

( 1) ( 1) ( 1)

aT

C

bT

 

 

   

   

 



 
       

 
 
         

+ 3C  

Where Q is given in(4.5)                                     (4.2.30) 

Total average cost is given by 

)(, TTAC  =
T

1
{ UQ+ 

1

1

1 1
( )

( 2) ( 1) ( 2)
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Where 4E =
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So our model is  

min )(, TTAC 
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THTGTF 31
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subject to; T≥0

 Now to minimize )(, TTAC  , we apply geometric 

programming method, and the degree of difficulty(DD) 

is=3. 

Max d(w) = 
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Subject to,  

1w + 2w + 3w 54 ww  =1  

(normalized condition)                                       (4.2.32) 

(-1) 1w + 2w
 

543 )1()( www    =0  

(orthogonal condition)                                        (4.2.33) 

w1, w2, w3, 
54 , ww  ≥ 0. 

Again the primal-dual variable relations are given by 
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On using the above primal dual relation we get 
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031444244  wwHFwwGE                        (4.2.35) 
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Now solve for 1w , 2w , 3w  , 4w  , 5w from above five 

system of non-linear equations (4.2.32), (4.2.33) and 

(4.2.35) , (4.2.36) &(4.2.37) and obtained the solutions as 
*

1w ,
*

2w  , 
*

3w ,
*

4w
*

5, w and then from the relation 

(4.2.34), we will able to obtain 
*T  for which 

)(, TTAC   is minimum. i.e we will able to obtain 

*)(*

, TTAC   as the minimum of )(, TTAC   in 

(4.2.31) and Q*(T) 

 

V. CONCLUSION 

In this paper, we have developed a classical EOQ 

model to a generalized EOQ model using the concept of 

fractional order differential calculus on the assumption 

that the demand to be a linearly increasing function of 

time and no shortage to be allowed. Although fractional 

calculus is much more complicated, still it has a 

potentiality to describe any other classical model to more 

general model precisely. Here it is shown that classical 

EOQ model is the particular case of generalized EOQ 

model. In future work, fractional differential calculus can 

be used to develop any other EOQ model in its more 

generalized form. 
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