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Abstract

This paper presents the implementation of fractional-
order algorithms in the position/force hybrid control of
robotic manipulators. The system performance and
robustness is analyzed in the time and frequency
domains. The effect of dynamic backlash and flexibility
is also investigated.

1. Introduction

In the early eighties Raibert and Craig [1] introduced
the concept of force control based on the hybrid
algorithm and, since then, several researchers developed
those ideas and proposed other schemes [2-4].

This paper studies the position/force control of robot
manipulators, required in processes that involve contact
between the gripper and the environment, using
fractional-order (FO) controllers. The application of the
theory of fractional calculus is still in a research stage,
but the recent progress in this area reveals promising
aspects for future developments [5-10].

In this line of thought the article is organized as
follows. Sections two and three introduce the
position/force hybrid controller and the fundamentals of
the fractional-order algorithms, respectively. Section four
presents several experiments for the analysis and
performance evaluation of FO and PID controllers, for
robots having several types of dynamic phenomena at the
joints. Finally, section five outlines the main conclusions.

2. The Hybrid Controller

The dynamical equation of a # dof robot is:

= H(@)ij + C(a,9) + G(@) - I (@F (1)
where T is the n x 1 vector of actuator torques, q is the
n x 1 vector of joint coordinates, H(q) is the n x n inertia
matrix, C(q,q) is the n x 1 vector of centrifugal/Coriolis

terms and G(q) is the n x 1 vector of gravitational effects.
The n x m matrix J*(q) is the transpose of the Jacobian

matrix of the robot and F is the m x 1 vector of the force
that the (m-dimensional) environment exerts in the robot

gripper.
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In this study we shall adopt as prototype manipulator the
2R robot (Fig. 1) with dynamics given by:

J]m

Figure 1 - The 2R robot and the constraint surface.
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where C;; = cos(q; + ¢;) and S; = sin(g; + g).

The numerical values adopted for the 2R robot [9] are
m =05 kg, m=625 kg, n=10 m, »=08 m,
Jim=Jdom=1.0 kgm2 and Ji, = /5, =4.0 kgmz.

The constraint plane is determined by the angle & (Fig. 1)
and the contact displacement x, of the robot gripper with the
constraint surface is modeled through a linear system with a
mass M, a damping B and a stiffness K with dynamics:

F., =MX, +Bx. +Kx, 3)



The structure of the position/force hybrid control
algorithm is depicted in Fig. 2. The diagonal n xn
selection matrix S has elements equal to one (zero) in
the position (force) controlled directions and I is the n x
n identity matrix. In this paper the y. (x.) cartesian
coordinate is position (force) controlled, yielding:

00 -1nCo11 —1Ce12 —1Cor2
s:[ } 3 :{ 4
01 (a) nSoi1 t12Se12  n2Se12 @)

where Cy; = cos(6-¢—¢q;) and Sy;; = sin(0—q—q,).
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Figure 2 — The position/force hybrid controller.

3. Fractional Order Algorithms

In this section we present the FO controllers inserted
at the position and force control loops.

The mathematical definition of a derivative of
fractional order o has been the subject of several
different approaches. For example, we can mention the
Laplace and the Griinwald-Letnikov definitions:

D*[x(n] = Lfl {Sa X(S)} (5a)
o | 1N [(a+1) ~
D)= hlino a kZ: k+1 (@k+1) de—kn)) - (sb)

where I' is the gamma function and % is the time
increment. In our case, for implementing FO algorithms
of the type C(s) = K 5%, we adopt a 4™-order discrete-time
Pade approximation (a; b; ¢ d; € ‘R, n=4):

n—1

agz" +az" " + .. +a
Cp(z)~ Kp —— : (6a)
boZ +b12 + +b
n-1
Coz +CIZ +..+¢y
Crlz)= K 6b
) doz" +diz" 4+ +d, (6b)

where Kp /K are the position/force loop gains.

4. Controller Performances

This section analyzes the system performance both for
ideal transmissions and robots with dynamic phenomena at
the joints, such as backlash and flexibility. Moreover, we
compare the response of O and the PD: Cp(s) =K, + K; s
and PI: Ci(s)=K,+K; 5! controllers, in the position and
force loops [11-13].

Both algorithms were tuned by trial and error having in
mind getting a similar performance in the two cases. The
resulting parameters were FO: {Kp,ap}={10’, 1/2},
{Ky ,06}={10°~1/5} and PD/PI. {K,K;={10*10"},
{K,.K; 1={10°,10*} for the position and force loops,
respectively. Moreover, it is adopted the operating point
{xy}={L,1}, a constraint surface with parameters
{OM,B.K}={r/2,10°,1.0,10°} and a controller sampling
frequency f. = 1 kHz.

In order to study the system dynamics we apply,
separately, rectangular pulses, at the position and force
references, that is, we perturb the references with
{8yca,0Fca} = {107,0} and {8yea,8Fa} = {0,107}

A. Time response

Figure 3 depicts the time response of the 2R robot under
the action of the FO and the PD/PI controllers for ideal
transmissions at the joints.

In a second phase (Fig. 4) we analyze the response of a 2R
robot with dynamic backlash at the joints [13-14]. For the
ith joint gear, with clearance #;, the backlash reveals impact
phenomena between the inertias, which obey the principle
of conservation of momentum and the Newton law:

. qi(‘]ii —&Ji )+qimJim(l+£)

qi = Jitd, (7a)

1 .iJi 1 .im Jim B Jii

)
Jii +Jim

where 0 < £< 1 is a constant that defines the type of impact
(¢=0 inelastic impact, £=1 elastic impact) and ¢; and
q;, are the inertias velocities of the joint and motor after
the collision, respectively. The parameter J;; (J;,,) stands for
the link (motor) inertias of joint i. The numerical values
adopted are h;= 1.8 10* radand 5= 0.8 (i =1, 2).

In a third phase (Fig. 5) we study the 2R robot with

compliant joints. For this case the dynamic model
corresponds to model (1) augmented by the equations:

T :qum mqm (qm _q) (Sa)
K, (@m —a)=J(a)i+C(a,q)+Gla) (8b)

where Jp,, By, and K, are the n x n diagonal matrices of the
motor and transmission inertias, damping and stiffness,
respectively. In the simulations we adopt K,; =2 10° Nm
rad”! and B,,; = 10* Nms rad™ (i=12).
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Figure 3 — Time response for the 2R ideal robot under the action of the FO and PD/PI controllers.
Table I — The time response parameters for a rectangular superior to the PD/PI in the cases with dynamical
pulse dy4 at the position reference. phenomena at the robot joints.
Jjoint PO% [ 7, Ty
deal PID | 23.48% | 99 10*2 0.122 | 0.013 B. Frequency response
0, ) . . . .
Ifl (l)) 108'397%;’ 2791 11(())73 8'22? g'gég Figures 6-7 show the transfer functions |Y.(j®)/Y.4(jo)|,
. 0 . . . . . . . . .
backlash FO 0.36% 14107 0.302 0.118 |Fc(]m)/ch(].(D)|a |Yc(]m)/ch(](D?| and |Fc(/m)/ch(](D)|
Texibl PID__| 228% | 3910° | 0403 | 1502 (where Y (jo)=F{8y.} and F(jo)=F{8F.}) for the FO
exible FO 1.80% | 1.410° | 0302 3.004 and the PD/PI controllers, in the cases of an ideal robot
and a robot with flexibility at the joints, respectively.
Table 1T — The time response parameters for rectangular The low-pass characteristics of |Y.(jo)/Y.4(j®)| and
pulse 6Fcd at the force reference. |[F(jo)/F.a(jo)| have a cut-off frequency that depends on
Jjoint PO% e 7, T, the environment parameters. On the other hand,
ideal PID | 2204% | 1.3 10’2 0083 | 0.091 |Y(jo)/Foq(jo)| and |Fo(jm)/Yea(jo)| reveal the existence of
0, )~ . .o .
Y 29:54% | 13 1072 0.089 0.093 some coupling between the position and force loops due
PID 5.98% 9.9 10 0.402 0.405 ;i .
backlash — to the non-ideal performance of both algorithms.
FO 0.86% 9.9 10 0.079 0.043 h . h £ flexibili b
bl PID 328% 199102 | 0.602 0.602 Furthermore, in the case o ) exi 11 ity we observe a
exible FO 182% | 99102 | 0.450 0.450 resonance peak for ® ~ 5.0 10°rad s™.
In order to compare the robustness of both algorithms,
The time responses (Tables I and II), namely the for a variation of constraints surface parameters, we
. 4 103 102
percent overshoot PO%, the steady-state error e, the consider the cases M={107", 10~, 10™}, B={0.5, 1.0,2.0}
peak time 7, and the settling time 7, reveal that, although and K={10, 10%, 210%. Figures 8-10 depicts the
tuned for similar performances in the first case, the FO is corresponding frequency responses |Y.(jo)/Y.4(jo)| and
|F c(im)/ F, cd(i@)l'
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Figure 4 — Time response for the 2R robot with dynamic backlash under the action of the #O and PD/PI controllers.
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Figure 5 — Time response for the 2R robot with flexible joints under the action of the FO and PD/PI controllers.
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5. Summary and Conclusions

This paper presented the implementation of hybrid
controllers for manipulators with several types of
nonlinear phenomena at the joints. The system was tested
both for fractional and integer order control algorithms.
The results revealed that the fractional-order algorithms
have superior performances.
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Figure 6 — Frequency responses for the 2R ideal robot under the action of the FO and PD/PI controllers.
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Figure 7 — Frequency responses for the 2R robot with flexible joints under the action of the FO and PD/PI controllers.



S

T S —

lyclycd|

40

— FO Simulation 2
wmm FO Simulation 3

|
|
|
FO Simulation 1

PID Simulation 1
= PID Simulation 2
=1 PID Simulation 3

-60

oY

XD
X
kY
17 Y
1Y
RN
LLLLL

10"

Figure 8 — Frequency responses for the 2R ideal robot under the action of the O and PD/PI controllers for different

|Fc/Fed|

T T TTTTTTT T T TTT
[ RRR] [ |
[ RRR] [ |
5”T’\’\‘H’H‘H”T1‘TT\T\T\
[ RRR] [ |
[ RRR] [ |
0 p——
[ RRR] [ |
[ RRR] [ |
S = A HAI = = A A I =
[ RRR] [ |
[ RRR] [ |
A0 — 4+ Sl HHI— =+ A+ +4IH - —
[ RRR] [ |
5L _ { — FO Simulation 1 Lum o
|| == FO Simulation 2 || | ||
| memm FO Simulation 3 |1 11111
20F — A e PID Simulation 1 |+1-+1H — —1—
| aaa PID Simulation 2 |11
| ==+ PID Simulation 3 |! 111!
251 _ 4 Lidid— —1—
[ RRR] [ RN AR
[ RRR] [ RN AR
-30 1 NN 1 IR
10" 10° 10’ 10° 10°
w (rad/s)

surface parameters M={10"*,107,107} (simulations 1, 2 and 3).

lyc/yed|

— FO Simulation 1
=== FO Simulation 2
mmm FO Simulation 3
PID Simulation 1
=ux PID Simulation 2
= u s PID Simulation 3

lyc/ycd|

-60

AN |

=== FO Simulation 2
mmm FO Simulation 3
PID Simulation 1
=ux PID Simulation 2
= =1 PID Simulation 3

L A

10"

Figure 10 — Frequency responses for the 2R ideal robot under the action of the O and PD/PI controllers for different

10°

|Fc/Fed|

|Fc/Fed|

10 T T T T TTTT T
(RN [
(RN [

ST TnmT T r T
(RN [
RN N

0 T ——— ——
(RN [
(RN [

S e B A e Nt i B
(RN [
(RN [

A0 — 4 Sl HHI— =+~ +
(RN [

a5 - | — FO Simulation 1
=== FO Simulation 2
mmm FO Simulation 3

20 — o e PID Simulation 1
=ax PID Simulation 2
= =1 PID Simulation 3

251 - == —
(RN [
(RN [

30 Lo L

10" 10°

w (rad/s)
Figure 9 — Frequency responses for the 2R ideal robot under the action of the #O and PD/PI controllers for different
surface parameters 8={0.5,1.0,2.0} (simulations 1, 2 and 3).

10 T T T T TTTT T
(RN [
(RN [

ST TnmT T r T
(RN [
RN o

0 T ——— —
(RN [
(RN [

S-St HAIS - At
(RN [
(RN [

A0 — 4 Sl HHI— =+~ +
(RN [

5L - | — FO Simulation 1
== FO Simulation2 | |
wmm FO Simulation 3 ||| |y |

20 — o e PID Simulation 1 | +14+1+ — —1—
=ux PID Simulation2 |11 1111 |
= =1 PID Simulation3 |11 !

251 - == — Lidib - i
(RN R RI |
(RN R RI |

30 Lo Lo I

10" 10° 10’

w (rad/s)

surface parameters K={10,10%2 10?} (simulations 1, 2 and 3).

398



