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Abstract. This paper establishes a new strategy to tune a fractional order integral
and derivative (ID) controller satisfying gain and phase margins based on Bode’s
ideal transfer function as a reference model, for a temperature profile tracking.
A systematic analysis resulting in a non-linear equation relating user-defined gain
and phase margins to the fractional order controller is derived. The closed-loop
system designed has a feature of robustness to gain variations with step responses
exhibiting a nearly iso-damping property. This paper aims to apply the analytical
tuning procedure to control the heat flow systems at selected points in Quanser
experimental platform. Thus, the main purpose of this paper is to examine perfor-
mances of two different fractional order controllers in temperature profile tracking.
From experimental comparisons with the traditional PI/PID controller based on
Ziegler–Nichols’ tuning method, it will be shown that the proposed methodolo-
gies are specifically beneficial in controlling temperature in time-delay heat flow
systems.

Keywords. Temperature control; fractional-order integral derivative control;
heat flow.

1. Introduction

This paper also briefly reviews fractional Ms constrained integral gain optimization (FMIGO)
(Varsha Bhambhani et al 2008), which is a proportional and integral (PI)-type control scheme,
and then applies this method to temperature profile tracking. Temperature control arises in
many engineering fields. For example, in cryogenic applications John et al (1985), the preci-
sion spatial temperature control via spatial heating and spatial temperature sensing is impor-
tant, and in process industry (Tsai & Lu 1998), the most common control task is to achieve
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the precise temperature profile. There are basically three types of temperature control tasks:
temperature set point regulation, temperature profile tracking, and temperature uniformity
control. For temperature set-point control, single loop commercial off-the-shelf tempera-
ture controllers can usually be used. Temperature profile tracking is to raise the temperature
according to a prescribed temperature time history, which is required for applications such as
precision heat treatment for material, batch chemical reactors, etc. The temperature unifor-
mity control is to achieve uniformly spatially distributed temperature profile. The objective of
this paper is to design a controller for temperature profile tracking at the spatially distributed
places; thus, to regulate temperatures at given sensor locations to ensure that the temperatures
be close to the desired values.

For temperature control, usually, On/Off control, proportional control, and traditional
PID controller have been widely used (see http://www.omega.com/prodinfo/temperature
controllers.html). In this paper, as a new control scheme for temperature regulation, we
suggest using fractional-order ID controller for a more accurate temperature profile track-
ing of the spatially distributed heat flow. An actual experimental task is conducted using
the heat flow equipment (HFE) of QUANSER (www.quanser.com). This paper consists
of the following sections. Section 2 briefly summarizes the role of integer order PID
controller in temperature control and section 3 lists basic definitions in fractional-order
calculus and merits of fractional-order controller. This is followed by in depth description
and derivation of proposed analytical tuning method in section 4. Then, section 5 outlines
detailed descriptions of the HFE platform, system analysis, and design of a fractional con-
troller based on the analytical tuning approach. In section 6 an extensive comparison of
existing integer order solutions and fractional order solutions is presented. Finally, sec-
tion 7 concludes this paper with some remarks on the achieved results and ideas for future
work.

2. Temperature control

In temperature control, it is difficult to find the response time constant and hence on/off control
scheme is usually used so as to regulate the output temperature within a dead band. However,
in On/Off control, the output will be oscillatory around a set-point; so an accurate temperature
profile is not achieved. For a more accurate temperature regulation, closed-loop feedback
control schemes are required. Most popular control scheme is PID control, because it does not
require the plant model and practically it is easily implementable. In traditional PID control,
the proportional term, integral term, and derivative term have different effects on the heat
flow, temperature, and speed. For temperature control, it is usually recommended to use full
PID control, but with accurately-tuned-control gains. As an example of successful industrial
applications, see http://www.w-dhave.inet.co.th/index/. To see various PID tuning methods
for temperature control, refer to http://www.lakeshore.com/pdf−files/Appendices/LSTC
−appendixF−l.pdf and “http://www.omega.com/temperature/Z/ pdf/z115-117.pdf. For a reli-
able temperature control, however there are some basic environmental requirements. The
heater should apply enough power and temperature sensors should be spatially distributed
in appropriate places. Tuning the controller means that we select the proportional, integral,
and derivative gains with a particular purpose. In fact, tuning PID gains for the temperature
control requires some physical interpretation about the system. It is necessary to understand
the effects of the proportional, integral, and derivative terms to the system. In temperature
control, individual PID gain has the following characteristics:
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2.1 Proportional gain

It requires more power proportional to the error between sensor temperature and the desired
trajectory profile. The proportional gain is used for On/Off control. That is, when the out-
put is within the proportional band, the power is off; but when it is out of the dead band,
the power is on. If the temperature is below a set point, the output will be on longer;
if the temperature is too high, the output will be off longer (http://www.omega.com/prodinfo/
temperaturecontrollers.html).

2.2 Integral gain

It provides a control signal that is proportional to the accumulated error. So, this integral
term is for slow mode reaction and forces the steady-state error to zero for a step response.
In temperature control, it adjusts the temperature to set point after stabilization.

2.3 Derivative gain

It provides the control force proportional to the rate of change of the output error. So, this
derivative term is for fast mode reaction and yields large signal with the high-frequency
control errors and with the rise or fall of system temperature.

From a literature survey, it is shown that there have been numerous applications of PID
controller or fuzzy/neural network-based PID controller for the temperature control of various
engineering objects. As some examples, Peter Galan showed that a fuzzy logic for enhanc-
ing PID controller is necessary for the satisfactory temperature profile tracking of injection
moulding processes (http://www.manufacturing.net/ctl/article/CA408369.html) and Dihac
et al (1992) used PID controller for a rapid thermal processor control. Lin et al (1999) pro-
posed a neural fuzzy inference network for the temperature control of a water bath system and
compared the performance with the PID control. Juang and Chen (2003) proposed TSK-type
recurrent neural fuzzy network based on the direct inverse control configuration, which does
not require a priori knowledge of the plant order and Ramos et al (2005) used PID controller to
control the temperature of the bath. However, there has been no trial of using fractional-order
PID controller for the temperature control of spatially distributed systems. In the next section,
we briefly summarize fractional-order IαDβ control and its benefits in temperature control.

3. Fractional-order integral and derivative control

After Newton & Leibniz discovered calculus in the 17th century, fractional-order calculus has
been studied as an alternative calculus in mathematics (Debnatho 2004). As claimed in (Chen
2004), fractional order calculus will play an important role in mechatronic and biological sys-
tems. Fractional order dynamic system and controls are relatively new research areas in control
engineering. From early 90’s, there has been steadily research in these areas as shown in (Lurie
1994, Podlubny 1999, Oustaloup et al 1995, Oustaloup et al 1996, Raynaud & Zergaïnoh
2000, Vinagre & Chen 2002, Machado 2002, Ortigueira & Machado 2003, Lazarevic &
Debeljković 2005) even though some pioneering works can be traced back to (Manabe 1960,
Manabe 1961, Oustaloup 1981, Axtell 1990). Traditional PID control method is a most popu-
lar control approach where integrator and derivative are integer order. Recently, in fractional
order calculus community, a trend of using non-integer integrator or non-integer derivative for
the accurate profile tracking in controlled-output has appeared, which is so-called fractional-
order PID control. In the following subsections, we briefly review this fractional-order PID
control (Ahn et al 2008).
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3.1 Fractional-order calculus

In this paper, fractional integral is defined as:

I αf (t) =
1

Ŵ(α)

∫ t

0
(t − τ)α−1f (τ)dτ, t > 0, α ∈ R+ (1)

and for the fractional derivative, Caputo derivative is used, which is defined as:

Dαf (t) =
dαf (t)

dtα
=

1

Ŵ(α − n)

∫ t

0

f (n)(τ )

(t − τ)α+1−n
dτ, (n − 1) < α ≤ n (2)

where Euler’s Gamma function is given as

Ŵ(x) =

∫ ∞

0
e−t tx−1dt, x > 0 (3)

with the special case when x = n:

Ŵ(n) = (n − 1)(n − 2) · · · (2)(1) = (n − 1)!.

Now, considering all the initial conditions to be zero, which is a typical assumption in fractional
order derivative and fractional integral (Wen et al 2008), and using the Laplace transformation,
we have s−µF(s) = s−µ

L{f (t)} = L{I αf (t)}, µ = α, and sλF(s) = sλ
L{f (t)} =

L
{

dλf (t)

dtλ

}

. Then, the fractional PID controller can be written as (Podlubny 1999):

C(s) = Kp + Kis
−µ + Kds

λ. (4)

If we take µ = λ = 1, then we obtain the classic PID controller; with µ = 0, it is the PD
controller, and if λ = 0, it is the PI controller. Also we can consider fractional order IαDβ

controller which is an special case of fractional PID controller with Kp = 0.

3.2 Merit of using fractional-order controller

The idea of using fractional-order controllers for the dynamic system control is well-addressed
in (Oustaloup et al 1995, Podlubny et al 1997, Oustaloup 1995). Generalized fractional-order
PID controller was proposed by Podlubny et al (1996). Advantages of using fractional-order
PID controller have been introduced in a number of publications. In (Monje et al 2005), it
was claimed that, out of the following specifications:

(i) No steady-state error,
(ii) Phase margin and gain crossover frequency specifications,

(iii) Gain margin and phase crossover frequency specifications,
(iv) Robustness to variations in the gain of the plant,
(v) Robustness to high frequency noise,

(vi) Good output disturbance rejection, five specifications can be met by the closed-loop
system, because the fractional-ordrer PID controller (4) has five tuning parameters (i.e.
Kp, Ki, Kd , λ, α).

In (Vinagre 2002), some observations about fractional-order PID control were given. Par-
ticularly, by varying α from 1 to ∞, it was shown that there could be a constant increment
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in the slope of the magnitude curve varying between −20 db/dec and 0 db/dec and could
be a constant delay in the phase response varying between −π

2 and 0. Similarly, by chang-
ing λ from zero to 1, we can change the amount of phase lead and the slope of magnitude
response. Vinagre et al (2000) provided frequency domain analysis to illustrate the superior-
ity of the fractional-order PID controller applied to both the fractional dynamic system and
the integer dynamic system. (Monje et al 2005) claimed that fractional-order PID controller
is an adequate controller for the fractional-order mathematical models and it is less sensitive
to shifts of parameters of a controlled-system and to variations of parameters of the con-
troller. Particularly, in it was illustrated that the fractional-order PID controller is a suitable
way for the control of the fractional system. Hwang et al (2002) proposed the fractional-
order band-limited compensator, which has the similar response as the fractional-order PD
controller but has a less sensitivity to the high frequency noise. Leu et al (2002) provided
a differential evolution algorithm to search for optimal fractional-order PID parameters to
meet the phase margin and the gain margin specifications. Thus, fractional-order controller
could be beneficial for temperature control since there are often variations in parameters
in heat flow systems, and most of desired specifications, which are not readily achieved
simultaneously by traditional PID controller, can be ensured by fractional-order closed-loop
dynamics.

4. IIIαDβ gain tuning

If the system model is given, it is easy to design a controller to control the system. However,
it is not easy to design an appropriate controller for a system whose transfer function is time
varying and is highly dependent on the environmental change like temperature control. Hence,
it is actually quite tough to find a transfer function of the output temperature change from the
power input, because the temperature of the environment is time-dependent. Furthermore,
as shown in Petras & Vinagre (2002), the transient unit response of the heat solid system
could be fractional-order and as noted in (Aoki et al 2005) also, heat transfer coefficients may
be fractional or non-integer order. Thus, the use of fractional-order differential model may
approximate well the time-dependent behaviour of conductive systems of complex geometries
with convective heat transfer. In fact, since thermal loads involve thermal diffusion, a half-
order controller represents a better match to the physics of the plant to be controlled (Bohannan
2006). Therefore, for the temperature control, it is not a good idea to design a controller with
fixed integer gains, and since the response of the temperature output from the power input could
be fractional, the traditional integer-order controller may not provide an accurate temperature
profile tracking. Thus, this paper proposes using the fractional-order IαDβ controller for the
accurate temperature profile tracking, which will be experimentally demonstrated by the
Quanser HFE. However, note that it is very difficult to find an accurate model of transfer
function of the output temperature change from the power input; thus, we use an approximated
integer-order transfer function for heat flow, while a fractional-order IαDβ controller is used
to regulate the temperature profile. Let the plant be represented by a first order plus time delay
(FOPTD) transfer function as:

G(s) =
K

T s + 1
e−Ls, (5)

where K is the static gain or steady state gain of the system, L is the time-delay and T is the
time-constant of the system. These can be computed from an open loop step response of the
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system. The fractional controller is represented by C(s) as:

C(s) = Ki

T s + 1

sα
(6)

which can be rewritten as

C(s) = Ki

(

1

sα
+ T s1−α

)

(7)

The realization of the above fractional order controller can be done by various methods. In
this research, we use a rational approximation method in implementing sα (Podlubny et al

2002). In our implementation, we use Carlson’s iteration method. Given a fractional transfer
function H(s) = (G(s))p, where p is a fractional number, we define p = 1/q and m = q/2
in each iteration. Starting from the initial value H0(s) = 1, an approximated rational function
is obtained in the form:

Hi(s) = Hi−1(s)
(q − m)Hi−1(s)

2 + (q + m)G(s)

(q + m)Hi−1(s)2 + (q − m)G(s)
. (8)

We use three iterations to approximate sα . The above equation (7) reveals the fractional
integral derivative nature of the controller. The open-loop transfer function is given by:

C(s)G(s) = KiK
e−Ls

sα
, 1 < α < 2. (9)

The gain and phase responses of the open loop transfer function are calculated as:

|C(jω)G(jω)| =
KiK

ωα
(10)

φ = −Lω − α
π

2
. (11)

Let us suppose that the user-defined gain margin Am and phase margin φm, are given as:

|C(jωp)G(jωp)| =
1

Am

(12)

φm = π + ∠C(jωg)G(jωg), (13)

where ωp and ωg are the phase and gain crossover frequencies of the open-loop system.
On substitution, the gain relations are:

KKi

ωα
g

= 1 (14)

ωα
p

KKi

= Am (15)

and the phase relations are:

φm = π − Lωg − α
π

2
(16)

π = α
π

2
+ Lωp. (17)
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Therefore, we obtain:

Am =

(

ωp

ωg

)α

(18)

ωp

ωg

=
π − α π

2

π − φm − α π
2

, (19)

which yields

Am =

(

π − α π
2

π − φm − α π
2

)α

. (20)

Thus, it is shown that given gain and phase margins desired, the above equation (20) can
be solved for fractional order α using numerical classical approach in MATLAB. However
as shown in figure 1, given desired φm and Am, there exists α in some restricted area. For
example, if φm = 1.4 and Am = 0.01, then there does not exist a solution α. Thus, there
is an area that ensures existence of solutions. Therefore, we need to select Am and φm in an
allowed area as shown in figure 1. Though this is a limitation of our new method, it reveals a
better performance than existing methods as addressed in the next section. Once the value of
α is obtained, the corresponding values of (ωg, ωp, Ki, Kd) are computed as:

ωg =
π − φm − α π

2

L
(21)

ωp =
π − α π

2

L
(22)

Ki =
ωα

p

KAm

=
ωα

g

K
(23)

Kd = T Ki (24)

5. Experiment of HFE

Quanser HFE system (see figure 2) consists of a duct equipped with a heater and a blower
at one end and three temperature sensors located along the duct. The power delivered to the
heater is controlled using an analog signal. For the analog signal generation and measurement,
we use Quanser analog input/output libraries via MATLAB/Simulink/RTW. The fan speed of
HFE is controlled using an analog signal. Fan speed is measured using a tachometer and is an
input signal. Figure 2 shows the set of test equipment: computer, software, AD/DA converter
and QUANSER HFE. HFE system includes built-in power module, analog signals for fan
speed and power; an onboard tachometer to design speed control; and fast settling platinum
temperature transducers (3 sensors along the duct) to measure the temperature.

This section summarizes the results of open-loop step response analysis. The fan (VF)
and heater (VQ) voltages are applied in the range [0–5 Volts] and the temperature readings
(degrees) at three sensor positions are recorded. The heating operation takes effect only when
VQ > 3VDC. Figure 3, 4 and 5 are the open loop step response of sensor 1, 2 and 3 at varying
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Figure 1. Relation between Am,
φm, and α in (20).

heater (VQ) voltages but constant fan (VF) voltage of 5 VDC. The open loop response shows
an initial delay, indicating that it takes a finite time for the sensors to detect the change in the
temperature.

A FOPTD model at a desired sensor is given by:

Tn

Vq

=
K

T s + 1
e−Ls, (25)

Figure 2. The set of equipment
for heat flow test.
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Figure 3. Sensor 1 (Fan com-
mand with constant voltage = 5V,
Heat command with varying volt-
age).

where K is the open loop gain given by (Max-Min)/VQ in (C/V) and Min is the temperature
inside the tube before the experiment begins or the room temperature, and Max is the maximum
temperature reached after 60 seconds. This is, strictly speaking, not the steady state value as
the temperature is increasing. However, the rate of increase considerably slows down after
20 seconds. We now define the following parameters:

• L: The delay in the response in seconds.
• T : The time constant is given by the time it takes to reach 63% of the change in temper-

ature or the time it takes for the response to reach Min + 0.63 × (Max − Min).
• τ : The relative dead time of the response given by L/(L + T ).

Experiments were conducted to study the open loop step response of three sensors first
at constant fan voltage (5V) and varying heater voltage ranging between 3–5V. The above
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mand with constant voltage = 5V,
Heat command with varying volt-
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experiment was repeated for constant heater voltage (5V) and varying fan voltage ranging
between 3 and 5V. The step response values obtained are listed in figure 6. First, the heating-
effect is analyzed by keeping the fan speed constant. It is seen that as the distance of the sensors
from heater increases, the corresponding gain values of the first order transfer function models
of the sensors decrease and delay time increase; i.e. K1 > K2 > K3 and D1 < D2 < D3

where K1,K2 and K3 are the static gain values and D1, D2 and D3 are the delay values of
the first order transfer function models of sensor 1, sensor 2 and sensor 3. This is shown in
figures 7 and 8. There is no trend in time constant of the three sensors with distance. However
for every sensor, time constant increases as the heater voltage increases. This is shown in
figure 9.

Cooling-effect is comparatively different from heating effect. This is shown in figures 10,
11 and 12. As shown in the plots, gain values decrease as the distance from the fan increases
or fan voltage increases, i.e. K1 > K2 > K3 whereas the delay values show an increase with
distance from the blower; i.e. D1 < D2 < D3. Also there is an increase in time constant
values of sensors with increase in distance from the fan, i.e. T1 < T2 < T3. Here T1, T2 and
T3 are time constant of sensor 1, sensor 2 and sensor 3. Thus one can see that dynamics of
HFE is really very complex and permits the need of a better controller than a simple integer

Figure 6. Step response data
from open loop heat flow experi-
ment.
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Figure 7. Heating Effect: Varia-
tion of static gain of sensors with
distance.

Figure 8. Heating Effect: Varia-
tion of delay of sensors with dis-
tance.

Figure 9. Heating Effect: Time
constant of sensors with distance.
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Figure 10. Cooling Effect: Vari-
ation of static gain of sensors with
distance.

Figure 11. Cooling Effect: Vari-
ation of delay of sensors with dis-
tance.

Figure 12. Cooling Effect: Vari-
ation of time constant of sensors
with distance.
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order PI/PID controller. Next section aims at justifying the efficiency of the new method over
already existing integer and fractional order controllers.

6. Experimental tests

In this section, an extensive comparison of existing integer order solutions and fractional order
solutions is made. For integer order case both PI and PID controllers are considered based on
Ziegler–Nichols’ tuning method. The Ziegler–Nichols’ tuning formulae for a PI controller is
given as:

Kp =
0.9T

KL
(26)

Ki =
Kp

3L
(27)

For a PID controller the gain values are:

Kp =
1.2T

KL
(28)

Ki =
Kp

2L
(29)

Kd = Kp

L

2
. (30)

The other controller compared in this paper is a fractional PI controller based on Ms con-
strained FO-PI controller (FMIGO) tuning method (Varsha Bhambhani et al 2008) outlined
as:

C(s) = K∗
p +

K∗
i

sα
, (31)

where K∗
p and K∗

i and α values are given by:

K∗
p =

0.2978

K(τ + .000307)
(32)

K∗
i = T

.8578

τ 2 − 3.402τ + 2.405
(33)

α =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0.7, if τ < 0.1

0.9, if 0.1 ≤ τ < 0.4

1.0, if 0.4 ≤ τ < 0.6

1.1, if τ ≥ 0.6

. (34)

As explained in (Bhaskaran et al 2007), FMIGO is a tuning method for fractional-order con-
troller on the base of Ms constrained integral optimization (MIGO), which was developed
in (Astrom et al 1998; Astrom et al 2002). The motivation of MIGO is to improve upon the
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Figure 13. Controller perfor-
mances for sensor 1 in real time.

Ziegler–Nichols’ tuning rules to overcome two major drawbacks: (i) very little process infor-
mation was taken into account as the rules were based on the two parameter characterization
of the system dynamics based on step response data and (ii) the quarter amplitude damp-
ing design method exhibits very poor robustness. To overcome these drawbacks, in (Astrom
et al 1998; Astrom et al 2002), a new criterion for developing tuning method for the PI con-
trollers based on robust loop shaping is employed. The FMIGO is a generalized version of
MIGO method aiming at obtaining the gains of the PIα at any given fractional order α (Varsha
Bhambhani et al 2008).
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Figure 14. Controller perfor-
mances for sensor 2 in real time.
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Figure 15. Controller perfor-
mances for sensor 3 in real time.

The controller performances for all the three sensors are compared in real time as shown
in figures 13, 14 and 15. As is clear from the figures, the fractional controllers outperform
simple integer order PI/PID controller. The new controller (fractional ID controller) is tuned
better in comparison to Ms constrained FO-PI controller (FMIGO) for sensor 1 whereas for
sensor 2 and sensor 3 both the fractional order controllers perform more or less the same.
The same results in MATLAB Simulink environment are shown in figure 16, which is the
controller performances for sensor1. The simulation and actual lab results showed some mis-
matchings indicating that the linear model was unable to model the system nonlinearities. The
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Figure 16. Controller perfor-
mances for sensor1 in Simulink.
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discrepancy between simulation and experimental results may be due to employing integer-
order model of the heat flow (5) for tuning fractional-order controller (7). It is noticeable that
fractional order controllers could be regarded as interpolations of conventional PI, PD, and
PID controllers. Fuzzy and neural network controllers may have a similar effect as fractional
order controllers. However, fuzzy PID controllers or neural network PID controllers try to
find optimal control gains using input and output mappings (Malki et al 1997, Tang et al 2001,
Wang et al 2007). Thus, though fuzzy PID and neural network PID could be considered as
optimal tuning methods of traditional integer order controllers when the control structure is
fixed, they cannot represent fractional order effects.

7. Conclusions

The objective of this paper is to introduce a novel analytical tuning method for a fractional
integral derivative (IαDβ) controller (FO-ID) and apply the results to analyse the heat flow in
HFE module. The performance of new FO-ID controller was compared to the integer-order
PI/PID controller and FO-PI controller. Our observation is that since the HFE systems have
very small relative dead time, a full integrator is not necessary. The FO-PI controller gives
a strong competition to FO-ID controller tuned by new analytical method for some cases.
For FO-ID method introduced, the resulting closed loop system has the desirable feature of
being robust to gain variations with step responses exhibiting a nearly iso-damping prop-
erty. Extensive simulation results are included to illustrate the simple yet practical nature
of the developed new tuning rules. However as admitted in the previous section, there is a
discrepancy between simulation and experimental results due to inaccurate modelling of the
temperature system. In our future research efforts, we would like to consider a model uncer-
tainty problem by employing a robust fractional order controller, which is to be researched
further in this field.

The reviewers’ comments, which have improved the quality of this paper, are greatly appre-
ciated. The research of this paper was supported in part by Korea Science and Engineering
Foundation (KOSEF, Project No. 2009-0071105) and in part by a grant from the Institute of
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