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Abstract. At the beginning of the paper, the fractional calculus is briefly presented. Then, the models of dielectric relaxation in supercapaci-

tors are described. On the basis of the Cole-Cole model, a fractional-order model of supercapacitor impedance is formulated. The frequency 

characteristics of selected supercapacitors and their voltage response to a current step are assumed as a basis for the analysis of their dynamics. 

An example of the fractional dynamic model application was used for the critical assessment of the IEC standard recommendation on the 

conditions of supercapacitor capacitance measurements. The presented study shows some imperfections of the IEC standard recommendations, 

which probably result from the use of an inaccurate dynamics model. At the end of the paper, the authors propose a solution to this problem by 

changing the measurement conditions and introducing a concept of dynamic capacitance. The conclusions of the paper indicate that the models 

of fractional-order dynamics may be useful not only for the control purposes but also in other domains.
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At the beginning, after some information about fractional 

calculus, the models of dielectric relaxation in supercapaci-

tors are described. On this basis, a fractional-order model of 

supercapacitor impedance is formulated. In accordance with 

the recommendation of the IEC standard concerning the re-

quirements for supercapacitor capacitance measurement [21], 

the analyses of frequency characteristics of selected superca-

pacitor samples and their voltage responses to current steps 

were made. The study shows the imperfection of the IEC stan-

dard recommendations, which probably results from the use 

of an inaccurate dynamics model. At the end of the paper, 

the authors propose a solution to this problem by changing 

the measurement conditions and by introducing a concept of 

dynamic capacitance.

2. Fractional-order dynamic models

As mentioned, most dynamic systems are described by the in-

teger order models. The dynamics is described in many ways. 

One of the widely used methods is to employ the differential 

equation of general form:
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where u(t) is the input variable, y(t) is the output variable, and 

n and m are natural numbers. Another common description is 

the transfer function:
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1. Introduction

The dynamics of systems can, in general, be described by in-

teger order differential equations. The equations can be for-

mulated as the result of identification of a system treated as 

a black box, but they are often associated with the description 

of physical phenomena. In some cases, the integer order models 

are not sufficiently accurate or effective, which often takes 

place in the description of physical phenomena, such as heat 

conduction, electrochemical phenomena, etc. [1–4]. Recently, 

some works were conducted on the fractional-order dynamics 

models destined mainly for control purposes [1, 2]. As a result 

of these works, such calculation tools are generally available 

[1, 5] that facilitate practical calculations without the intricate 

description connected with fractional calculus.

The paper presents the application of fractional calculus 

for the solution of a metrological problem on the example of 

supercapacitor capacitance measurement. Supercapacitors are 

an important group of devices storing electric energy. They are 

used to power both various mobile low-power devices, as well 

as high-power ones, such as electric vehicles. Although they 

have lower energy density than the batteries, they have a higher 

power density. As a result, their charging and discharging times 

are shorter, and they can be used e.g. for effective storage of 

breaking energy and to supply the driving energy to a vehicle 

during acceleration [19, 20]. The dynamics of supercapacitors 

can be described by integer order models [6, 8], as well as by 

fractional ones, e.g. [8, 14–16].
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where U(s) is the Laplace transform of input signal, L{u(t)} and 

Y(s) is the transform of output signal L{y(t)}. The output signal 

is determined by the inverse Laplace transform:

 y(t) = L���G(s)U(s)� 

F(jω)
jω

α

a�D��y + a���D����y + ⋯ +a�D��y + a�D��y =b�D��u + ⋯ + b�D��u + b�D��u
α β

G(s) = �������������� ⋯���������������∝�������∝����⋯����������∝�

 

C(jω)=C0ε(jω)

 (3)

The parameters ai and bi of transfer function of a real system 

are, in most cases, identified on the basis of the frequency char-

acteristics that can be approximated by the Fourier transform 

F( jω), which is associated with the Laplace transform by re-

placing the operator jω with the operator s.

Some systems, e.g. electrochemical, thermal, mechanical, 

and hydraulic systems, etc., require the use of relatively high-

order differential equations for precise description by the in-

teger order models of dynamics [6]. In many cases it is possible 

to reduce the number of parameters in the description of the 

dynamics, while improving the modelling accuracy by using 

the fractional-order differential equations. As mentioned, such 

models can often be directly associated with physical phe-

nomena.

The basic problems of the fractional calculus are described 

in numerous publications, e.g. [1, 5]. The fractional-order differ-

ential equations are based on Grünwald-Letnikov, Riemann-Li-

ouville, and Caputo definitions. Using the fractional-order op-

erator Dα, the dynamics of the system can be described as [1]:
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In the above equation, the coefficients ak, bk, and the exponents 

αk and βk are real numbers.

Analogically to the transfer function (2), the dynamics 

of a system can be described by the fractional-order transfer 

function:
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The calculation tools based on fractional calculus are gener-

ally available. One of them is the FOTF toolbox for MATLAB 

[1, 5]. It is based on the dynamics description in the form of 

transfer function (5). It enables to form the series, parallel, and 

feedback connections of dynamic blocks and to simulate time 

response.

3. Dynamic characteristics of supercapacitors

The supercapacitor is schematically shown in Fig. 1 [7]. 

The electric charge is stored at the electrode/electrolyte dou-

ble-layer interface. The roles of the electrodes are played by 

the porous material (3) and the surrounding electrolyte (5). 

The dielectric layers are formed by the ions adsorbed at the 

interface between the porous electrodes and the electrolyte. 

The electric parameters of supercapacitors are closely related 

to the physical phenomena in the dielectric layers, especially to 

the dielectric relaxation phenomenon [8, 10, 11]. The parame-

ters also significantly depend on the porosity of the electrodes 

[8, 9].

The capacitor impedance is generally represented by the 

equivalent circuit diagram, presented in Fig. 2. This scheme 

includes the serial resistance Rc, the parallel resistance Ru, and 

the series inductance L. For a typical capacitor, the capacitance, 

shown in Fig. 2, may generally be regarded as a constant func-

tion of frequency. Although in the description of the superca-

pacitor impedance, the variation of capacitance with frequency 

[22] must also be taken into account.
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Fig. 1. Typical structure of a supercapacitor: 1) Power source, 
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Fig. 1. Typical structure of a supercapacitor: 1) Power source, 2) col-

lector, 3) polarized electrode, 4) Helmholtz double layer, 5) electrolyte 

having positive and negative ions, 6) separator [7]

Fig.2. An equivalent circuit of a supercapacitor
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The modelling of the supercapacitor impedance using in-

teger order models is associated with a relatively high order 

[6, 8, 17]. Linking the supercapacitor impedance with its 

physical parameters leads to description by fractional order 

equations. The description can be based on the RC distributed 

model [8, 12]. The mathematical description of the impedance 

includes, in this case, the hyperbolic function. This makes the 

impedance analysis difficult, but this inconvenience can be 
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eliminated by applying the Padé approximation [11]. The re-

sult is a simpler model described by fractional order equations.

The fractional order model can also be created by including 

in its structure the Warburg element [8], which models the dif-

fusion processes in dielectric spectroscopy. The most general 

description of the dynamic phenomena in supercapacitors is 

obtained by the use of Havriliak-Negami dielectric relaxation 

model [8].

This paper focuses on the influence of the dielectric re-

laxation phenomenon on the dynamic properties of superca-

pacitors. Typical characteristic relaxation time constants are 

in the range of a few to tens of seconds [11]. This results in 

the fact that a significant relaxation phenomenon may occur 

in the frequency range of approx. 0.001 Hz to several tens of 

Hz. Therefore, the inductance L can be omitted in these con-

siderations, because its influence can only be seen at a very 

high frequency.

The phenomenon of dielectric relaxation in supercapacitors 

for the ideal case is described by the Debye model. In practice, 

the experimental modifications of this model [13] are used. 

The description of dielectric permittivity expressed in complex 

numbers is formulated in the Havriliak-Negami model:

 ���(��) = �� + ��������(���)���≤≤γ< 

ω
ε∞
ε

γ, δ –coefficients chosen empirically. 

γ δ γ δ

���(��) = �� + �������(���)� 0≤δ <1

γ δ

���(��) = �� + �����(��� )� 0≤γ <1,
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ε∞

 Z��(s) = ���������������������������������������  
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(jω) – the impedance approximating the real 

(jω) – measured impedance of the supercapacitor, 
ω

Z��(s) = �.���� .���.�����.����.��×������.��×������.�����.����

, 0 ∙ δ < 1, 0 ∙ γ < 1, (6)

where:

	 ω – angular frequency,

	 ε∞ – permittivity at the high frequency band,

	 εs – static, low frequency permittivity,

 T – the characteristic relaxation time,

	 γ, δ – empirically-chosen coefficients.

For the Debey model in the equation (6), the coefficients 

are γ = 1 and δ = 1. For the condition of γ = 1 and δ < 1, the 
Cole-Cole model is obtained:
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  0 ∙ δ < 1, (7)

while for γ < 1 and δ = 1, the Cole-Davidson model is ob-

tained:
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(jω) 

(jω) 
ω

ZCC(s) = 1.00+13.5s0.674+7.81s1.65×10−7+2.23×10−6s0.674+0.338s

  0 ∙ γ < 1, (8)

In supercapacitors, εs >> ε∞ [22], therefore herein we as-

sume ε∞ = 0.
The application of models (6–8) leads to a description of 

the supercapacitor dynamics in the form of fractional differ-

ential equations. The problem of modelling supercapacitors 

with the application of fractional-order equations is presented 

e.g. in [14–16]. It was either based only on the arbitrarily-se-

lected Cole-Davidson model of dielectric relaxation [14], or 

was not connected with such kind of a model at all. The au-

thors of the paper examined the application of the Cole-Cole, 

Cole-Davidson, and integer order models, where in the last case, 

2nd- and 3rd-order models were analysed. Their comparison is 

contained in, among others, [18] and Table 1.

The Cole-Cole model (7) application leads directly to the 

description of the impedance in the canonical fractional-order 

form [1]:
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where exponents αk and βk are real numbers. This paper is con-

cerned mainly with this model because of its clarity. In the 

case of Cole-Davidson model (8), there is a binomial in the 

equation raised to a fractional power (1 + jωT)γ. To transform 

the impedance to form (9) on the basis of this model, a shift in 

the complex domain should be applied. If for the model (8) we 

assume shift α = 1/T, then, after shifting, (1 + sT)γ is replaced 

by sγ [14].

If in Fig. 2 the inductance is omitted, then the impedance of 

the analysed system can be presented as:
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(jω) – the impedance approximating the real 

(jω) – measured impedance of the supercapacitor, 
ω

Z��(s) = �.���� .���.�����.����.��×������.��×������.�����.����

. (10)

Table 1 

Comparison of approximation accuracy of frequency and time responses of supercapacitors

Capacity Standard deviation of approximation by model

2nd order integer 3nd order integer Cole-Cole Cole-Davidson

Response frequency time frequency time frequency time frequency time

0.047 F 9.8% 11.2% 5.3% 6.3% 5.1% 5.1% 3.5% 2.7%

0.1 F 10.5% 16.4% 4.4% 4.9% 4.8% 2.3% 3.8% 2.7%

0.33 F 16.3% 22.6% 7.8% 7.3% 7.8% 2.6% 5.4% 3.4%

0.6 F 13.7% 11.4% 10.0% 8.8% 10.4% 9.9% 14.0% 3.9%

100 F 8.0% 4.4% 5.8% 5.8% 6.2% 6.2% 6.0% 6.0%

2700 F 3.2% 2.4% 1.9% 2.2% 3.4% 5.4% 1.9% 3.1%
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As a result of transformations based on the Cole-Cole model, 

with the assumption that ε∞ = 0, the following is obtained:
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The measured amplitude-phase characteristics of superca-

pacitors versus frequency can be approximated by model (9) 

using the method of the least squares. The applied performance 

index takes the form of:

 

���(��) = �� + ��������(���)���≤≤γ< 

ω
ε∞
ε

γ, δ –coefficients chosen empirically. 

γ δ γ δ

���(��) = �� + �������(���)� 0≤δ <1

γ δ

���(��) = �� + �����(��� )� 0≤γ <1,

In supercapacitors ε ε∞
ε∞

Z(s) = ������������ ⋯�������������������∝�����∝��⋯��������������∝�
α β

(1 + ���)�
� = 1 �⁄ (1 +��)� ��

 ���(�) = �� + ��������(�) 

ε∞

 Z��(s) = ���������������������������������������  

 �� = ���� ∑ �����(���)���(���)����(���)� ������  

(jω) – the impedance approximating the real 

(jω) – measured impedance of the supercapacitor, 
ω

Z��(s) = �.���� .���.�����.����.��×������.��×������.�����.����

, (12)

where:

 ZCC(jω) –  the impedance approximating the real impedance 
of the supercapacitor (11),

 ZP(jω) – measured impedance of the supercapacitor,
 ωi – angular frequency for ith measuring point.

This performance index can be treated as the variance of 

the approximation error. For example, the approximation of 

the characteristics of the Panasonic 0.33 F supercapacitor is 

illustrated by a graph in Fig. 3. The approximating impedance, 

determined on the basis of minimization of performance index 

(12), in this case is:

 

𝜀𝜀𝐻𝐻𝐻𝐻(𝑗𝑗𝑗𝑗) = 𝜀𝜀∞ + 𝜀𝜀𝑠𝑠−𝜀𝜀∞[1+(𝑗𝑗𝑗𝑗𝑗𝑗)𝛿𝛿]𝛾𝛾≤≤γ  

ω
ε∞
ε

γ, δ 

γ δ γ δ

𝜀𝜀𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗) = 𝜀𝜀∞ + 𝜀𝜀𝑠𝑠−𝜀𝜀∞1+(𝑗𝑗𝑗𝑗𝑗𝑗)𝛿𝛿 0≤δ <1

γ δ

𝜀𝜀𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗) = 𝜀𝜀∞ + 𝜀𝜀𝑠𝑠−𝜀𝜀∞(1+𝑗𝑗𝑗𝑗𝑗𝑗)𝛾𝛾 0≤γ <1,

ε ε∞
ε∞

Z(s) = b0sβ0+b1sβ1+⋯+bm−1sβm−1+bmsβma0s∝0+a1s∝1+⋯+an−1sβn−1+ans∝n
α β

(1 + 𝑗𝑗𝑗𝑗𝑗𝑗)𝛾𝛾
𝛼𝛼 = 1 𝑗𝑗⁄ (1 +𝑠𝑠𝑗𝑗)𝛾𝛾 𝑠𝑠𝛾𝛾

 𝑍𝑍𝑐𝑐𝑐𝑐(𝑠𝑠) = 𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑢𝑢1+𝑠𝑠𝑅𝑅𝑢𝑢𝐶𝐶(𝑠𝑠) 

ε∞

 ZCC(s) = (1+RcRu)+sδ(1+RcRu)Tδ+sRcC1Ru+sδTδRu+sC  

 𝐽𝐽𝑓𝑓 = 1𝐻𝐻−1∑ (|𝑍𝑍𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗𝑖𝑖)−𝑍𝑍𝑝𝑝(𝑗𝑗𝑗𝑗𝑖𝑖)||𝑍𝑍𝑝𝑝(𝑗𝑗𝑗𝑗𝑖𝑖)| )2𝐻𝐻𝑖𝑖=1  

(jω) 

(jω) 
ω

ZCC(s) = 1.00+13.5s0.674+7.81s1.65×10−7+2.23×10−6s0.674+0.338s , (13)

where the characteristic relaxation time constant T of a dielec-

tric is 48 s.

The measured frequency response of amplitude and phase 

is approximated by (13), with the performance index (12) equal 

to 7.8%, while the Cole-Davidson model gives 5.4% (Fig. 3). 

It can be compared with integer-order models. For the sec-

ond-order model, the performance index is 16.3%, and for the 

third order it is 7.8% (Fig. 4). We also have investigated other 

supercapacitors. The results are shown in Table 1. It can be 

stated that the approximation on the basis of fractional-order 

models is better than those on the basis of the mentioned inte-

ger-order models [18]. Most often the results from the Cole-Da-

vidson model were slightly better than those from the Cole-Cole 

model. When using the analysed models, the sequence of the 

mean square error levels of the time responses to rectangular 

current waveform (Table 1) were similar to those of the fre-

quency response.

The example of time response to rectangular current wave-

form of 2 s period of the 0.33 F supercapacitor and its simula-

tion on the basis of the described models is illustrated in Fig. 5. 

The approximation errors of time responses are presented in 

Fig. 6.

The choice of sufficient accuracy of the supercapacitors 

modelling was associated, among others, with the accuracy 

and stability of their parameters. For example, for a GS-130 

supercapacitor of 2.4 F ±20% nominal capacity (made by 

CAP-XX), the equivalent serial resistance (ESR) at –40°C is 

about 2.2 times larger than that at the room temperature and 

at +70°C it is about 80% of that value [22]. So, the changes 

of the supercapacitor dynamic parameters are in the operating 

conditions relatively larger than inaccuracy of the model based 

on the Cole-Cole equation. In consequence, the choice of the 

Cole-Cole model of supercapacitor results from its form that is 

convenient for carrying out the intended analysis.

For an easier analysis of the dynamic phenomena in the 

supercapacitor, its impedance (11) can be divided into simple 

components. Since Rc = 23 Ω and Ru = 600 kΩ, then:

 

=23Ω and R =600kΩ, so 

 �� ≪ �� 

 ���(�) = ����(�) + ����(�) + ����(�) 
 ����(�) = �� (16a)  ����(�) = �������� (16b) 

, (14)

Fig. 3. The approximation of the measured frequency response of 

the 0.33 F supercapacitor (asterisks) by the fractional order transfer 

function based on the Cole-Cole and Cole-Davidson models

Fig. 4. The approximation of the measured frequency response of 

the 0.33 F supercapacitor (asterisks) by the lumped 3rd integer order 

transfer function
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and the approximating equation can be expressed as [17]:

 

=23Ω and R =600kΩ, so 

 �� ≪ �� 

 ���(�) = ����(�) + ����(�) + ����(�) 
 ����(�) = �� (16a)  ����(�) = �������� (16b) 

, (15)

where:

=23Ω and R =600kΩ, so 

 �� ≪ �� 

 ���(�) = ����(�) + ����(�) + ����(�) 
 ����(�) = �� (16a)  ����(�) = �������� (16b)  (16a)

=23Ω and R =600kΩ, so 

 �� ≪ �� 

 ���(�) = ����(�) + ����(�) + ����(�) 
 ����(�) = �� (16a)  ����(�) = �������� (16b)  (16b)

 ����(�) = ������������ (16c) 

(ω). The graph also shows the 
asymptotes associated with components (16a) - (16c). 
This diagram does not include the very low frequency 

. This 

The slope of the asymptotes at the Bode diagram 
(Fig. 7) depends on the order of the impedance of Z

(1 − �) × (−20��)
notice that the coefficient δ is the parameter of the 

(7). 

The response of this model after an initial step is a linear 
function of time. The dielectric relaxation causes that the 

 (13). For 

component of fractional order. The duration of the 

The measurements of various types of supercapacitors 

the same significance. This effect could be neglected, for 

shown in Fig.8, larger. Then, correspondingly to the 

Fig. 7. The component moduli of impedances (26) of  0.33F 

(t) of impedance (8) and its components (27a) 
– (27c) due to 8 mA step excitation 

The above considerations are based on the description 

model. The conclusions concerning the shape and time 

4. 
 

The determination of the supercapacitors capacitance 

with a constant current. The graph in the description of the 

 (16c)

Where the ZCC1 component is the equivalent serial resistance, 

associated mainly with the resistance of porous electrodes 

[11], ZCC2 is the typical impedance of the capacitor with the 

leakage resistance, and ZCC3 characterizes the relaxation phe-

nomenon and is described by a fractional order equation.

Figure 7 presents a double-logarithmic Bode graph of the 

impedance modulus ZCC(ω). The graph also shows the asymp-

totes associated with components (16a–16c). This diagram does 

not include the very low frequency range, in which the slope of 

the characteristics changes due to the influence of the leakage 

resistance RU. This effect is related to the time constant RUC 

with a value typically above 105s, whose magnitude is several 

orders higher than the characteristic time constant of dielectric 

relaxation.

The slope of the asymptotes at the Bode diagram (Fig. 7) 

depends on the order of the impedance of ZCC components. For 

the presented frequency range, the slope of the ZCC1 asymptote 

is zero and the slope of ZCC2 asymptote is –20 dB/decade. In the 

case of ZCC3 component, which is fractional order, the slope of 

the asymptote is (1 ¡ ∂)£(–20 dB)/decade. It’s worth noticing 

that the coefficient δ is the parameter of the dielectric relaxation 

phenomenon in the Cole-Cole model (7).

Voltage response VCC(t) of the supercapacitor to the step 

of charging or discharging current can be compared with the 

response of the model of a capacitor in the form of an ideal 

capacitor connected in series with a resistance. The response of 

this model after an initial step is a linear function of time. The 

dielectric relaxation causes the initial phase of the supercapac-

itor response VCC(t) to differ significantly from the mentioned 

linear change of the reference model response.

Fig. 5. The voltage time response of the 0.33 F supercapacitor to 0.5 

Hz square waveform current and its simulation on the 3rd integer order 

and Cole-Cole models basis
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Response vCC(t) can be considered as the sum of responses 

vCC1, vCC2, and vCC3, which can be attributed respectively to 

components ZCC1, ZCC2, and ZCC3 (13). For the supercapac-

itor characteristics shown in Fig. 3 the simulated response to 

charging with an 8 mA current is presented in Fig. 8. As can be 

seen, the initial response nonlinearity vCC(t) is determined by 

the vCC3(t) response of the component of fractional order. The 

duration of the significant influence of this component on the 

non-linearity of the total response is comparable to the charac-

teristic time constant T of dielectric relaxation.

The measurements of various types of supercapacitors have 

shown that not always is the dielectric relaxation influence on 

the dynamic characteristic impedance of the same significance. 

This effect could be neglected if, for example, the equivalent 

serial resistance RC was, as shown in Fig. 8, larger. Then, cor-

respondingly to the ZCC1 asymptote, it would be located higher 

on the diagram and, together with ZCC2, it would dominate over 

the asymptote ZCC3.

The above considerations are based on the description of the 

supercapacitor impedance by the fractional-order model. The 

conclusions concerning the shape and time constant of voltage 

response to the current step will be used for the analysis of 

the capacitance measurement conditions according to the IEC 

62391‒1:2006 standard.

4. The measurement of the supercapacitor 
capacitance according to the IEC standard

The determination of the supercapacitors capacitance value ac-

cording to the IEC 62391-1:2006 “Fixed electric double-layer 

capacitors for use in electronic equipment” standard [21] is 

based on the process of the capacitor discharging with a con-

stant current. The graph in the description of the standard, il-

lustrating the procedure of the initial charging to the nominal 

voltage UR and discharging, is presented in Fig. 9. 

According to the standard, the determination of capacitance 

C of a supercapacitor bases on the equation [21]:

  � = �×(�����)�����  

even tenfold, in the cases when increment ΔU

NOTE: a) If ΔU

τ=RC is determined on the basis of exponential curve 

(0)=0   ��(�) = ���1 − ��� �� � (18) 
Time constant τ is determined as t=τ, at the voltage level 

 �(�) = ��(1 − ���) = 0.632�� 

level and the conditions at which 60s≤τ≤120s is fulfilled. 

C = 10.8F in this case. Under the measurement conditions 
provided for Class 3 the result is C = 10.3F. In both cases, 

, (17)

where:

 C – the capacitance [F],

 I – the discharging current [A],

 U1 – the measurement starting voltage [V],

 U2 – the measurement end voltage [V],

 t1 – the time from discharge start to reaching U1 [s],

 t2 – the time from discharge start to reaching U2 [s],

The measurement conditions depend on the qualification of the 

supercapacitor to the application class. These conditions are 

presented in Table 2 [21].

“Note a” to the conditions presented in Table 2 admits the 

possibility of reduction of the discharge current value, even ten-

fold, in cases where the increment ΔU3 exceeds 5% of UR. How-

ever, this brings the conditions of the measurement to lower 

class, which raises doubts about the idea of the classification.

Fig. 8. Step responses vCC(t) of impedance (8) and its components 

(27a–27c) due to 8 mA step excitation

Fig. 9. Voltage on the capacitor terminals during the capacitance 

measurements according to the IEC 62391-1:2006 standard [21]

 � = �×(�����)�����  

Fig. 9. Voltage on the capacitor terminals during the capacitance 

even tenfold, in the cases when increment ΔU

NOTE: a) If ΔU

τ=RC is determined on the basis of exponential curve 

(0)=0   ��(�) = ���1 − ��� �� � (18) 
Time constant τ is determined as t=τ, at the voltage level 

 �(�) = ��(1 − ���) = 0.632�� 

level and the conditions at which 60s≤τ≤120s is fulfilled. 

C = 10.8F in this case. Under the measurement conditions 
provided for Class 3 the result is C = 10.3F. In both cases, 

Table 2 

The discharge conditions according to the IEC 62391-1:2006 

standard [21]

Classification Class 1 Class 2 Class 3 Class 4

Application Memory 

backup

Energy 

storage

Power Instantaneous 

power 

Charge time 30 min. 30 min 30 min 30 min

I (mA) 1£C 0.4£CUR 4£CUR 40£CUR

U1 The value to be 80% of charging voltage (0.8£UR)

U2 The value to be 40% of charging voltage (0.4£UR)

NOTE:  a) If ΔU3 exceeds 5% (0.05£UR) of the charging voltage in the 

initial characteristics, the current value may be reduced by one half, 

one fifth, or one tenth. (…)
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0.008 A current step response, Cole-Cole model, 0.33 F
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The conditions for discharging the capacitor in order to 

determine its capacitance (Table 2) can also be characterized 

in another way. For an ideal capacitor, characterized only by 

the capacitance C, the time of complete discharge and times 

t1 and t2 would, under these conditions, have the values shown 

in Table 3.

Table 3 

Times of an ideal capacitor discharging under the conditions  

of IEC 62391-1:2006 standard

Classification Class 1 Class 2 Class 3 Class 4

Application Memory 

backup

Energy 

storage

Power Instantaneous 

power 

Time of full 

discharge

— 2500 s 250 s 25 s

t1 — 500 s 50 s 5 s

t2 — 1500 s 150 s 15 s

As mentioned, the typical characteristic relaxation time 

constants in supercapacitors have values from a few to tens of 

seconds [11], and they are of the same order as the discharging 

times of the capacitor during the measurement shown in Table 3 

for Class 4. Due to the possibility of the occurrence of a sig-

nificant response non-linearity during the measurement, this 

phenomenon can have a considerable influence on the result of 

the determined capacitance of supercapacitors.

The standard also allows alternative capacitance measure-

ment of the supercapacitor C connected via resistor R to the 

voltage source UR. The time constant τ = RC is determined on 
the basis of exponential curve uc(t), which, by definition, cor-

responds to the charging of an ideal capacitor from uc(0) = 0:

 

 � = �×(�����)�����  

even tenfold, in the cases when increment ΔU

NOTE: a) If ΔU

τ=RC is determined on the basis of exponential curve 

(0)=0   ��(�) = ���1 − ��� �� � (18) 
Time constant τ is determined as t=τ, at the voltage level 

 �(�) = ��(1 − ���) = 0.632�� 

level and the conditions at which 60s≤τ≤120s is fulfilled. 

C = 10.8F in this case. Under the measurement conditions 
provided for Class 3 the result is C = 10.3F. In both cases, 

. (18)

Time constant τ is determined as t = τ, at the voltage level:

 

 � = �×(�����)�����  

even tenfold, in the cases when increment ΔU

NOTE: a) If ΔU

τ=RC is determined on the basis of exponential curve 

(0)=0   ��(�) = ���1 − ��� �� � (18) 
Time constant τ is determined as t=τ, at the voltage level 

 �(�) = ��(1 − ���) = 0.632�� 

level and the conditions at which 60s≤τ≤120s is fulfilled. 

C = 10.8F in this case. Under the measurement conditions 
provided for Class 3 the result is C = 10.3F. In both cases, 

. (19)

Without any remark, the standard recommends 0.632 UR level 

and the conditions at which 60 s ∙ τ ∙ 120 s is fulfilled.
It should be emphasized that the manufacturers of super-

capacitors declare the values of nominal capacitance without 

taking into account the classes of applications listed in the 

standard and without specification of the measurement con-

ditions.

The effect of dielectric relaxation does not occur signifi-

cantly in all types of supercapacitors. An example of capac-

itance measurement under Class 4 conditions with the result 

close to the nominal capacitance is illustrated in Fig. 10. The 

points (U1, t1) and (U2, t2) at constant current discharge dia-

grams in Fig. 10 and next figures are marked with asterisks. The 

discharging under Class 4 conditions of a Maxwell HC series 

capacitor of 10 F nominal value is shown in Fig. 10. In this case, 

the result of the measurement is C = 10.8 F. Under the measure-

ment conditions provided for Class 3, the result is C = 10.3 F. 
In both cases, the measured capacitance does not exceed 30% 

of the tolerance limits for this type of supercapacitors.

An example of a significant influence of dielectric relax-

ation on the measurement results can be presented on the basis 

of the capacitance measurement in Class 4 conditions of Pana-

sonic Gold Capacitor of nominal capacitance 1 F. This process 

is illustrated in Fig. 11.

Fig. 10. The discharge of the supercapacitor of 10 F nominal with 

1A current (Class 4): the measured capacitance according to the IEC 

Standard is equal 10.3 F
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Fig. 11. The discharge of the supercapacitor of 1 F nominal capacitance 

with 200 mA current (Class 4): the measured capacitance according to 

the IEC Standard is 0.08 F
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The result obtained on the basis of the determination of the 

U1 and U2 voltage levels is more than ten times smaller than 

the nominal capacitance, and it is 0.08 F.

For obvious reasons, this is not a correct measurement, so 

the recommendation of measurement current reduction should 

be applied. The right result of 1.1 F value can be obtained 

for the Class 3 conditions of the standard, at 1/10th of the 

recommended current. During the measurement in Class 4 

conditions, the time between U1 = 4V and U2 = 2V levels 
is only 0.8 s, while in Class 3 conditions it is 110 s. The 

differences are due to the relaxation phenomena, as well as 

the serial resistance Rc. For comparison of the two cases, in 

Fig. 12 the graph of the dynamic changes of supercapacitor 

voltage of this supercapacitor vs. the supplied electric charge 

Q is presented.

the time response in respect to the exponential curve obtained 

during the charging of an ideal capacitor. Furthermore, such an 

approach omits the voltage drop on serial resistance RC, which 

is the ZCC1 component of impedance (15).

In conclusion, it can be stated that the IEC 62391‒1:2006 
standard recommends the current value at which the measure-

ment duration is similar to the time constant of the superca-

pacitor dielectric relaxation. Such is the case for Class 4 of 

supercapacitor application named “instantaneous power”. The 

use of this recommendation often leads to a result even several 

times lower than that of the nominal capacitance value – con-

firmed by measurements according to the terms of a lower 

class of this standard. These results can’t therefore be the 

main base for e.g. power supply calculations. In addition, it 

should be noted that the manufacturers of supercapacitors do 

not attribute their products to the classes mentioned in the 

standard and specify only the nominal capacitances without 

any stipulations. On the other hand, it may be very important 

for both the designer and the user to know the properties of 

a given type of supercapacitor under the conditions of high 

dynamic load similar to Class 4 conditions of capacitance 

measurement.

Therefore, the authors suggest for Class 4 to take the mea-

surements of the nominal capacitance in heavier conditions, e.g. 

such as those for Class 3, and to introduce an additional new 

term of dynamic capacitance determined for high load condi-

tions. The dynamic capacitance would be determined under the 

conditions currently provided for Class 4 of the standard. The 

comparison of the nominal capacitance to the value defined 

as the dynamic capacitance would allow for determining the 

effectiveness of the use of considered type of supercapacitors 

under heavy load.

In the case of introduction of the concept of dynamic capaci-

tance, it would be worthwhile to consider giving up the division 

into the classes of applications.

5. Conclusions

Description of the dynamics by differential equations of frac-

tional order is most effective for certain kinds of systems. These 

include supercapacitors, where the influence of dielectric re-

laxation is significant. The model of dynamics expressed by 

the fractional-order differential equations can be directly as-

sociated with the equations describing the physical phenom-

enon in question. Absence of such relationship can lead to the 

acceptance of a black box model, which, by coincidence, does 

not sufficiently describe the dynamics of the whole group of 

characterized objects.

An example of formulation of such partly improper and im-

precise measurement conditions can be the IEC 62391‒1:2006 
standard, in which it is recommended, in individual cases, the 

possibility of changing these conditions. This can significantly 

affect the measurement results. The conclusions based on the 

model of the supercapacitor impedance of fractional-order pre-

sented here allow the rationalization of measurement require-

ments.

Fig. 12. The comparison of dynamic changes of 1 F capacitor voltage 

vs. charge at 20 mA current (Class 3): the measurement result is 1.1 F 

and at 200 mA (Class 4) it is 0.08 F

The effect of the measurement based on the non-linear part 

of the voltage curve shown in Fig. 11 is close to the extreme 

case. In other cases, the result of the measurement can differ 

not so much from the nominal value of the capacitance, and 

the remark “the current value may be reduced” (Table 2) in 

the standard can be ignored, because it is not formulated as 

a requirement.

According to the authors, the capacitance measurement con-

ditions described in the standard have not sufficiently taken 

into consideration the dielectric relaxation phenomenon. The 

modelling of supercapacitor dynamics treated as black boxes 

often leads to general conclusions. A particularly dubious rec-

ommendation of the standard is the abovementioned possibility 

of capacitance measurement in an RC circuit connected to a DC 

voltage source. The occurrence of the ZCC3 component in su-

percapacitor impedance (15) can greatly change the shape of 

V
o

lta
g

e
 [

V
]

Charge [C]



457Bull.  Pol.  Ac.:  Tech.  65(4)  2017

Fractional-order models: The case study of the supercapacitor capacitance measurement

References
 [1] C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, and V. Feliu-Batlle, 

Fractional-Order Systems and Controls: Fundamentals and Ap-
plications, Springer-Verlag, London, 2010.

 [2] S. Guermah, S. Djnnoune, and M. Bettayeb, Advances in Dis-
crete-Time Systems. Chapter 8: Discrete-Time Fractional-Order 
Systems: Modelling and Stability, Intech, 2012.

 [3] I. Petras, B.M. Vinagre, L. Dorcak, and V. Feliu, “Fractional digital 

control of a heat solid: Experimental results”, Proceedings of the 
International Carpathian Control Conference, 365–370 (2002).

 [4] C.M.A. Brett and A.M. Oliveira-Brett, Electrochemistry. Prin-
ciples, Methods, and Applications, Oxford University Press, 

Oxford, 1993.

 [5] Y.Q. Chen, I. Petras, and D. Xue, “Fractional order control – A tu-

torial”, 2009 American Control Conference, ACC ‘09, (2009).

 [6] L. Shi, M.L. Crow, “Comparison of ultracapacitor electric cir-

cuit models”, 2008 IEEE Power and Energy Society General 
Meeting – Conversion and Delivery of Electrical Energy in the 
21st Century, (2008).

 [7] G.A. Badea, “Supercapacitors – the batteries of future”, Bulletin 
Scientifique en Langues Étrangères Appliquées 3, 

  http://revues-eco.refer.org/BSLEA/index.php?id=491, (2015).

 [8] R. Martin, J.J. Quintana, A. Ramos, and I. de la Nuez, “Mod-

eling electrochemical double layer capacitor, from classical to 

fractional impedance”, Journal of Computational and Nonlinear 
Dynamics 3 (2), 61–66 (2008).

 [9] H. Göhr, “Impedance modelling of porous electrode”, Electro-
chemical Applications 1, 2–3 (1997).

 [10] X. Yang, C. Cheng, Y. Wang, L. Qiu, and D. Li, “Liquid-medi-

ated dense integration of graphene materials for compact capac-

itive energy storage”, Science 341 (6145), 534–537 (2013).

 [11] R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, R. Omar, 

J.G. Manjunatha, M.M. Ishak, N.H. Basri, and B.N.M. Dola, 

“Physical and electrochemical properties of supercapacitor elec-

trodes derived from carbon nanotube and biomass carbon”, Inter-
national Journal of Electrochemical Science 8, 257–273 (2013).

 [12] N. Bertrand, J. Sabatier, O. Briat, and J.-M. Vinassa, “Fractional 

non-linear modeling of ultracapacitors”, Communications Non-
linear Science and Numerical Simulation 15 (5), 1327–1337 

(2010).

 [13] J.-L. Déjardin and J. Jadzyn, “Determination of the nonlinear 

dielectric increment in the Cole-Davidson model”, The Journal 
of Chemical Physics 125 (11), 114503 (2006).

 [14] A. Dzieliński, G. Sarwas, and D. Sierociuk, “Comparison and 
validation of integer and fractional order ultracapacitor models”, 
Advances in Difference Equations 2011:11, (2011)

 [15] T.J. Freeborn, B. Moundy, and A.S. Elwakil, “Measurement 

of supercapacitor fractional-order model parameters from 

voltage-excited step response”, IEEE Journal on Emerging 
and Selected Topics in Circuits and Systems 3 (3), 367–376 

(2013).

 [16] N. Maim, D. Isa, and R. Arelhi, “Modelling of ultracapac-

itor using a fractional–order equivalent circuit”, International 
Journal of Renewable Energy Technology 6 (2), 142–163 

(2015).

 [17] M. Orzyłowski and M. Lewandowski, “Computer modeling of 
supercapacitor with Cole-Cole relaxation model”, Journal of 
Applied Computer Science Methods 5 (2), 105–121 (2013).

 [18] M. Lewandowski and M. Orzyłowski, “The application of frac-

tional calculus for supercapacitor dynamics modeling”, Przegląd 
Elektrotechniczny 90 (8), 13–17 (2014), [in Polish].

 [19] A. Szeląg and T. Maciołek, “A 3 kV DC electric traction system 
modernisation for increased speed and trains power demand 

– problems of analysis and synthesis”, Przegląd Elektrotech-
niczny 89 (3a), 21–28 (2013).

 [20] M. Wieczorek and M. Lewandowski, “Mathematical representa-

tion of an energy management strategy for hybrid energy storage 

system in electric vehicle and real time optimization using a ge-

netic algorithm”, Applied Energy 192, 222–233 (2017).

 [21] International	Standard	IEC	62391‒1:2006. Fixed Electric Dou-
ble-Layer Capacitors for Use in Electronic Equipment. Part 1: 
Generic Application, IEC, 2006.

 [22] GS130/GS230 Supercapacitor Datasheet V4.1, CAP-XX, 2015.


