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ABSTRACT This paper proposes a design method for a robust fractional-order PID (FOPID) controller
for time-delay systems. A new Bode’s ideal transfer function is introduced to tolerance the time-delay in
loop. Robust stability is analyzed for the Bode’s model in terms of gain and phase margins to help the
parameter tuning. To simplify FOPID design from solving nonlinear equations, five unknown parameters
are reduced to one in the Bode shaping by data fitting between a parametric model and the real plant. Then,
the problem is simply solved by one-dimensional searching. Furthermore, the proposed FOPID controller
design is extended to multi-input and multi-output (MIMO) systems by using disturbance observer (DOB).
Finally, simulation results are presented to show the effectiveness of the proposed method.

INDEX TERMS Fractional order PID controller, time-delay system, Bode’s ideal transfer function, bode
shaping.

I. INTRODUCTION

In the past decades, an increasing number of studies are
focusing on the application of fractional calculus in many
areas of industrial engineering. Fractional system provides a
better understanding of system characteristics for many phe-
nomena such as heat transfer [1] and wave propagation [2].
Due to the reliable system description, fractional-order (FO)
model have been paid more and more attention in the aca-
demics. A recent survey on fractional system is presented
in [3], [4] and its applications are introduced in [5], [6].
In the control community, Oustaloup [7] introduced the FO
algorithm for the control system and demonstrated superior
performance.

In the industry and engineering, proportional-integral-
derivative (PID) controller still serves as the most widely
used controller because of its simple structure and easily
tuning [8], [9]. To improve robustness and performance,
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Podlubny [10] proposed a generalized PID controller, called
FOPID, including a fractional integrator and differentiator.
This new form, FOPID, has success among research because
of its flexibility and robustness. Some literature has shown
the better response of this controller, in comparison with the
classical integer PID controller [11], [12]. Different from
the classical linear integer–order PID (IOPID) controller,
FOPID controller is nonlinear naturally regarding the frac-
tional order, which brings the main difficulties in system
design and analysis.

Nowadays, various designmethods have been proposed for
FOPID controller tuning [13]–[19]. The well–known Ziegler-
Nichols tuning rule has been extended to FOPID controller
with S-shaped step response, but it only works well on some
lag–dominant process [18]. For a typical first-order-plus-
dead-time model, some tuning rules are developed to mini-
mize integrated absolute error (IAE) subject to a constraint
on the maximum sensitivity [19]. To obtain good control
performance, dominant pole placement for FOPID controller
is developed based on D-decomposition method [15]. In the
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last years, the internal-model-control (IMC) tuning method is
also introduced in the design of FOPID controller [16], [17].
Bode shaping is an effective method for control system

design in frequency domain [20]–[26] As a good open-loop
model, Bode’s ideal transfer function is discussed in [22],
which shows its stronger robustness against loop gain vari-
ation. To realize auto-tuning of PID controller, online opti-
mization technologies are employed to optimize the Bode’s
model [20] and controller parameters [21]. Due to the robust-
ness to the gain variation, Bode shaping in the frequency
domain is also used in the FOPID controller design [22]–[24]
by imposing the open-loop phase to be flat in a frequency
band. In [24], a model-based analytical method is devel-
oped for FOPID controller design via internal model con-
trol (IMC) principle and Bode’s model. In [25], a robust
FOPID controller tuning strategy is developed based on the
flat phase property and optimal Bode’s model. This popular
scheme can also be found in [13], [14], which is based on the
robustness specifications, including the desired phasemargin,
gain crossover frequency and the flatness of the phase Bode
plot. However, for time-delay process, Bode shaping become
complicated since the selection of Bode model is constrained
by the time-delay item, and often results in complex ana-
lytical design and numerical optimization [26], which moti-
vate us to investigate the Bodel’s transfer function design
and its parameter selection for time delay system in FOPID
design.
Time-delay is often encountered in industrial engineering,

such as the chemical process and networked control sys-
tem [27], and often brings in great difficulty in control system
design. For example, networked control systems are typical
time-delay systems and the time-delay introduced by the net-
work inevitably makes the system performance degraded and
may even damage the system stability [28], [29]. Although
many modern control strategies have been developed for
time-delay systems, PID control is considered as a sim-
ple yet effective manner to possess great robustness against
system time-delay [30]–[32]. In recent years, an increas-
ing number of studies can be found related to FOPID con-
trol for time-delay systems. The basic idea to cope with
time-delay is to design a robust controller that can tolerate the
time-delay in the feedback control loop. In [33], an analytical
approach for the design of FOPID controller is proposed on
the basis of the IMC scheme and the maximum sensitiv-
ity for FO systems with time-delay. As time-delay systems
have infinite-dimensional property naturally, the design of
the FOPID controller is more complex than the delay-free
case. Thus, finding the set of stabilizing FOPID controller
parameters for time-delay systems has been paid great atten-
tion. Several methods [12], [34], [35] have been proposed to
draw the stability boundary graphically in parameter space
based on the D-decomposition method with stability margin
specifications [36].
In this paper, we aim to propose a robust FOPID controller

design for time-delay systems by Bode shaping. To realize
this goal, two problems are solved in this paper:

A new Bode’s ideal transfer function is design to tol-
erance the time-delay in loop. We select a time delay
Bode’s model for FOPID design. It is well known that,
the bandwidth design for time-delay system is a critical
problem in control system design. However, this problem
is seldom discussed in the current Bode shaping meth-
ods [37], [38]. We solve this problem by investigating the
gain and phase margins for the proposed time-delay Bode’s
model.

Bode shaping for FOPID design is solved by one-
dimensional searching, rather than five parameter opti-
mizations. To simplify the design of FOPID from solving
nonlinear equations, data fitting at steady state and the
crossover frequency are derived, such that five unknown
parameters are reduced to one. Then, the problem is easily
solved by one–dimensional searching.

The rest of this paper is organized as follows.
Section 2 shows the preliminaries. Section 3 describes the
proposed FOPID design method. Section 4 extends the pro-
posed method to multivariable systems. Section 5 illustrates
comparative numerical results. Finial, Section 6 concludes
this study with final remarks.

II. PRELIMINARIES

A. FRACTIONAL CALCULUS

Fractional calculus is a generalization of the integra-
tion and differentiation to the non-integer order operator.
The differ-integral operator, denoted by aD

α
t , is defined

by

aD
α
t =























dα

dt
α > 0

1 α = 0
∫ t

a

(dτ )−α α < 0,

(1)

where α ∈ R is the order of the operator and a and
t are called lower and upper terminal, respectively. There
are several definitions for fractional derivatives [23], [39],
such as Grünwald-Letnikov (G-L) and Riemann-Liouville
(R-L) definitions. As one of the most commonly used defi-
nitions, G–L fractional differential/integral definition has the
form [39]:

aD
α
t f (t) = lim

h→0
h−α

n
∑

j=0

ω
(α)

j f (t − jh), (2)

where h is the step size, n = (t − a)/h, representing the
number of sampling points in a time interval [a, t], andω

(α)

j =

(−1)j
(

α

j

)

is a polynomial coefficient of the sampling signal

f (t− jh), with

(

α

j

)

= α!
j!(α−j)! .Note, that, fractional operator

is a nonlocal operation over an interval [a, t], i.e. the operator
symbol aDα

t is explicitly expressed over the upper and lower
terminals.
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While the R-L definition is written as

aD
α
t f (t)

=















1

Ŵ(n− α)

dn

dtn

∫ t

a

f (τ )

(t − τ )α−n+1 dτ, n− 1 < α < n

1

Ŵ(−α)

∫ t

a

f (τ )

(t − τ )α+1 dτ, α < 0,

(3)

whereŴ(·) is Euler’s gamma function. The Laplace transform
of the R-L fractional derivative/integral (3) under zero initial
conditions for the order α(0 < α < 1) is presented as

L
{

aD
±α
t f (t)

}

= s±αF(s) (4)

One point should be emphasized is that, for a wide class of
functions, the G-L and R-L definitions are equivalent [39].

B. FOPID CONTROLLER

The generalized transfer function of the FOPID controller is
first introduced by Podlubny [10], and is defined as follows

Gc (s) = kp +
ki

sλ
+ kd s

µ, (5)

where kp is the proportional gain, ki is the integration gain,
and kd is the derivative gain; λ and µ are the integral and
derivative orders, respectively, satisfying 0 < λ,µ < 2. It can
be easily found that, by selecting λ = µ = 1, a standard
IOPID controller is obtained. As discussed in [39], the FOPID
owns an important feature that it allows for a continuous
slope compensation of the controller’s Bode plot both at low
and high frequencies, depending, respectively, on λ and µ.
Thus, this feature can be utilized for a more effective loop
shaping and better control performance [22], [23]. However,
the problem is also raised by these two additional order
parameters, which results in complex controller tuning rules
in practice because the FOPID transfer function is nonlinear
with respect to the coefficients λ and µ.

C. BODE’S IDEAL TRANSFER FUNCTION

An ideal open-loop transfer function is proposed in [22], that
is

L(s) =
(ωc

s

)α

, α ∈ R, (6)

where ωc is the gain crossover frequency of L (s), and
0 < α < 2 is a real. The parameter α determines both the
slope of the magnitude curve on Bode plot and the phase
margin of the system. In the Bode diagrams, the amplitude
of L (s) is a straight line of constant slope −20αdB/dec, and
its phase curve is a horizontal line at −απ/2 rad , which indi-
cates the Bode’s ideal transfer function L (s) possesses strong
robustness against gain variation. It means that the variation
of the process gain only changes the crossover frequency ωc
but maintains the phase margin constant π (1 − α/2)rad .

The robustness against gain variation is commonly used in
FOPID design as an additional specification [13], [14], [24],
[35], which demands that the phase Bode plot of the designed

FIGURE 1. FOPID control system.

open-loop system G(s) is flat around the gain crossover fre-
quency ωc

∣

∣

∣

∣

dArg (G (jω))

dω

∣

∣

∣

∣

ω=ωc

= 0,

Therefore, this specification requires the exact phase for-
mulation of the open-loop system being explicit to the fre-
quency variable.

The choice of L (s) as open-loop transfer function also
gives an ideal closed-loop model under a unit feedback

F(s) =
ωα
c

sα + ωα
c

, (7)

with infinite gain margin and constant phase margin.

III. THE PROPOSED METHOD

A. BASIC IDEA

The block diagram of the FOPID control system is shown
in Fig.1, where Gp(s) is the controlled plant. The following
time-delay system is considered in this paper,

Gp(s) = G0(s)e
−Ts, (8)

where T is the time-delay, and G0(s) is the normal model
delay–free. With FOPID, the closed-loop system is given by

Gp(s)Gc(s)

1 + Gp(s)Gc(s)
=

G0(s)Gc(s)

1 + G0(s)e−TsGc(s)
e−Ts. (9)

Note that the time-delay item always appears in the closed-
loop system (9). Combined with the Bode’s ideal transfer
function and the time-delay item, a desired closed-loopmodel
for time-delay systems is chosen as

H (s) =
ωα
c

sα + ωα
c

e−Ts, (10)

such that the time-delay in H (s) equals to the real one.
Aimed at the desired closed-loop model H (s), suppose

there is an process model G̃p(s), satisfying

H (s) =
G̃p(s)Gc(s)

1 + G̃p(s)Gc(s)
, (11)

We have

G̃p(s) =
H (s)

Gc(s) − H (s)Gc(s)

103502 VOLUME 8, 2020



N. Zhuo-Yun et al.: FOPID Controller Design for Time-Delay Systems Based on Modified Bode’s Ideal Transfer Function

=
ωα
c s

λ−αe−Ts

(

kpsλ + ki + kd sµ+λ
)

[

1 +
ωα
c (1−e−Ts)

sα

]

=
ωα
c s

λ−α

(

kpsα + ki + kd sµ+α
) [1 − 1(s)] e−Ts, (12)

where










1 − 1(s) = 1 −
ϕ(s)

1 + ϕ(s)
=

1

1 + ϕ(s)

ϕ(s) =
ωα
c

sα
(1 − e−Ts).

Note that, G̃p(s) in (12) can be viewed as a parametric
model of Gp(s), since all the five unknown parameters of
FOPID and as well as two parameters of the desiredmodel are
appearing explicitly in (12). The basical idea for the FOPID
controller design is to solve all the unknown parameters to
make the parametric model G̃p(s) closed to the real plant
Gp(s) by data fitting. Some optimal searching algorithms,
such as particle swarm optimization [40] and neural net-
work [41], can be used to solve the problem. The main
difficulties will come from three aspects:

1) The parametric model G̃p(s) in (12) is an infinite–
dimensional system because of the time-delay involved
in 1(s);

2) The nonlinear optimization with multi-parameter often
falls into the local optimality.

3) No stabilization controller can be found if the desired
model inappropriate.

To develop a simple yet effective design method, some
prior knowledge of the process is assumed and employed in
the design. Two assumptions are made on the process: 1) the
plant Gp(s) is stable, and 2) the plant has a nonzero steady
value, Gp(j0) 6= 0. These two assumptions are satisfied in
most of industry processes.

B. APPROXIMATE ROBUST STABILITY ANALYSIS

It is well known that the specified control performance can be
achieved by feedback control for delay–free systems theoret-
ically. Different from this case, the stability and control per-
formance of time-delay systems is physically limited by the
time-delay in the closed-loop. Intuitively, bandwidth, say ωc,
cannot be arbitrary large under the limitation of time-delay or
sampling time.
Denote the frequency response of a transfer functionW (s)

asW (jω). With assumptions discussed previously, data fitting
at the steady–state requires G̃p(j0) = Gp(j0) 6= 0, yielding
λ − α = 0 and

G̃p(s) =
ωα
c

(

kpsα + ki + kd sµ+α
) [1 − 1(s)] e−Ts. (13)

Observing the parametric model G̃p(s) in (13), it is obvious
that limiting |1(s)| in a small value can reduce the difference
between G̃p(s) and Gp(s) to benefit the data fitting. In this
manner, given a small constant ε, satisfying 0 < ε < 1,
and specified ‖1(s)‖∞ < ε, the possible choice of ωc should

satisfy

ωα
c ≤ (

ε

1 − ε
)/

∥

∥

∥
(1 − e−Ts)/sα

∥

∥

∥

∞
. (14)

Assuming that data fitting will be carried on with the con-
straint in (14), to have Gp(s) ≈ G̃p(s). In this way, the open-
loop transfer function satisfies

Gp(s)Gc(s) ≈ G̃p(s)Gc(s) =
ωα
c e

−Ts

sα
(1 − 1(s)) . (15)

Recalling that ‖1(s)‖∞ < ε and ε is a small positive
constant, we have

Gp(s)Gc(s) ≈
ωα
c e

−Ts

sα
(1 − 1(s)) ≈

ωα
c e

−Ts

sα
. (16)

As discussed previously, a system with the Bode’s ideal
transfer function owns a finite gainmargin and constant phase
margin. However, thismerit is changed by the time-delay item
of the process. Based on the approximation in (16), the gain
and phase margins of Gp(s)Gc(s) are expressed by

Am ≈

∥

∥

∥

∥

(

(2 − α)π

2Tωc

)α∥

∥

∥

∥

, (17)

γ = (π −
α

2
π − Tωc)rad = (180 − 90α − 57.3Tωc)

o,

(18)

respectively. To guarantee the closed-loop stability, it requires
Am > 1 and γ > 0, to have

ωc <
π

T
−

απ

2T
, (19)

when 0 < α < 2.
The approximate stability analysis presented above is

meaningful because it provides some guidelines to select two
important parameters in (10). Furthermore, (17) and (18)
give the estimation on the stability margins. We can design
them (Am and γ ) large enough to guaranteed the closed-loop
stability. Several remarks are given to show the details.
Remark 1: The developed conditions in (14) and (19) can

be viewed as stability constraints in the proposed FOPID
design. The selection of α and ωc based on (14) and (19)
guarantees the existing of stabilized FOPID as well as the
closed-loop performance.
Remark 2: The closed-loop bandwidth has a major impact

on the system overshoot, response speed, and disturbance
rejection performance. (14) and (19) provides an analytical
result on the performance limitation by the time-delay of a
control system. A suitable closed-loop bandwidth selection
benefits a successful controller with closed-loop stability and
performance guaranteed.
Remark 3: the analytical results on the stability in (17)

and (18) reveal a fact that a large closed-loop bandwidth will
reduce the gain and phase margins of time-delay systems.
One can also specify the robustness stability based on (17)
and (18) to have Am > A∗

m and γ > γ ∗, where A∗
m and γ ∗ are

the specified gain and phase margins, respectively.
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C. CONTROLLER DESIGN

This paper presents a simple yet effective FOPID design in the
frequency domain with one-dimensional searching. Based on
the discussion in [22], α ≈ 1 is recommended for the trade-
off between fast response and small overshoot. Therefore,
the remaining bandwidth parameter ωc is selected under the
stability constraints in (14) and (19).
Note that, the real plant Gp(s) may have high-order

dynamic or uncertainties. The parametric model G̃p(s) can be
viewed as its reduced-order nominal model which dominants
the dynamic characteristic of Gp(s). We make data fitting in
a certain frequency range [0, ωx], where ωx is selected at the
phase crossover frequency of Gp(s), such that 6 Gp(jωx) =

−π . Procedures of the proposed FOPID design are given as
following.
Step 1: Set α ≈ 1 and select ωc under the stability

constraints (14) and (19) for good robustness in terms of the
gain and phase margins in (17) and (18), respectively;
Step 2: Data fitting at the steady state. Let G̃p(j0) =

Gp(j0) 6= 0.With the integral order λ = α, the integration
gain ki is derived

ki =
ωα
c

(

1 + ωα
c lim
s→0

1−e−Ts
sα

)

Gp(j0)
. (20)

Step 3: Data fitting at the phase crossover frequency ω =

ωx Let G̃p(jωx) = Gp(jωx), that is

ωα
c

(

kpjαωα
x + ki + kd jtωt

x

) =
Gp(jωx)

(1 + 1(jωx)) e−Tjωx
= p+ qj,

(21)

where


























t = α + µ

p = Re

[

Gp(jωx)

(1 + 1(jωx)) e−T jωx

]

q = Im

[

Gp(jωx)

(1 + 1(jωx)) e−T jωx

]

,

Using Euler’s formula, jα and jt are expressed as

jt = a+ jb, jα = c+ jd,

where a = cos
(

π
2 t

)

, b = sin
(

π
2 t

)

, c = cos
(

π
2 α

)

and d =

sin
(

π
2 α

)

. Then, equation (16) yields














kd (µ) = −
(dp+ cq)ωα

x kp + kiq

(pb+ qa)ωt
x

kp(µ) =
bki(p2 + q2) − (pb+ qa)ωα

c

(da− cb)(p2 + q2)ωα
x

.

(22)

Till now, two parameters λ and ki are determined. kd and kp
are well formulated with the variable µ. Further calculation
for the derivative order µ is by one–dimensional searching to
realize model matching.
Step 4: Data fitting in the frequency range (0, ωx). The

fitting error in the frequency range (0, ωx) can be numerically

expressed by

J =

ωx
∑

ω=0

∣

∣

∣
Gp(jω) − G̃p(jω)

∣

∣

∣

2
. (23)

We can minimize J to determine the value ofµ in the range
of 0 < µ < 2

min
0<µ<2

J =

ωx
∑

ω=0

∣

∣

∣
Gp(jω) − G̃p(jω)

∣

∣

∣

2
. (24)

In (22), kd and kp can be uniquely determined if µ is
iterated. In this way, the design of FOPID is solved in (24)
by one-dimensional searching technology.

IV. EXTENSION TO MIMO SYSTEM

Consider the FOPID design for n × n MIMO sys-
tems G(s). Suppose the diagonal elements of G(s) are
{

Gp1(s),Gp2(s), · · · ,Gpn(s)
}

. The system outputs can be
expressed as Y = [y1, y2, · · · , yn]T with

yi = Gpi(ugi + di + wi), i = 1, 2, · · · , n,

where ugi is the input signal for i-th loop, di is the external dis-
turbance andwi is the equivalent coupling disturbance caused
by the other loops. Obviously, the coupling disturbance wi
will affect the control performance greatly, which is the major
difficulty in MIMO control system design.

Recently, the decoupling control by disturbance
observer (DOB) has been well discussed and demonstrated
in [44]. The diagonal element Gpi is considered as a single
loop system in DOB design such that the total disturbance
di + wi can be estimated and compensated in real time.
A diagonal elementGpi is firstly decomposed into aminimum
phase transfer function, gq(s), and a non-reversible function
gp(s), containing input/output time-delay or NMP elements
with unity gain. Suppose that g̃q(s) is the nominal model of
gq(s). The low-pass filter Qi(s) with unity gain is used to
ensure the physical realization of Q(s)g̃−1

q (s). The transfer
function from u to y can be simply calculated by

Gpi(s) =
gq(s)g̃q(s)

[1 − Qi(s)gp(s)]g̃q(s) + Qi(s)gp(s)gq(s)
gp(s) (25)

Note that, if
∣

∣1 − Qi(s)gp(s)
∣

∣ is shaped zero in a wide fre-
quency range, Gpi(s) can be recovered as its nominal model
gp(s)g̃q(s), that is Gpi(s) ≈ gp(s)g̃q(s). Thus, the proposed
FOPID can be applied to Gpi(s) directly. Based on the DOB
decoupling, the proposed FOPID for MIMO system in each
loop is shown in Fig.2. The design procedures will be dis-
cussed in the simulation study in details.

V. SIMULATIONS

In this section, some typical plants, including first-order-plus-
time-delay (FOPTD) system, second-order-plus-time-delay
(SOPTD) system and uncertain system, are used to illustrate
the effectiveness of the proposed method.
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FIGURE 2. FOPID for MIMO system with DOB decoupling.

FIGURE 3. The Nyquist of G1(s).

Comparisons are made to some existing methods. Some
metrics are used to evaluate controller performance, includ-
ing, gain margin Am, phase margin γ , gain crossover fre-
quency ωγ , overshoot σ , rise time tr , settling time ts and ISE
index

ISE

∫ ∞

0
e2(t)dt. (26)

A. EXAMPLE 1; FOPTD SYSTEM

Consider a FOPTD system in literature [35]

G1(s) =
1

s+ 1
e−0.1s. (27)

We set ε = 0.36. With the stability constraints in (14) and
(19), the parameters ωc = 4.85 and α = 1.01 are selected.
The gain and phase margins are estimated by (17) and (18)
respectively, that is Am ≈ 3.2 and γ ≈ 61o.
Then, the integration gain ki is derived to have ki = 4.9272.

Asωx = 18.6 determined in Fig.3, the optimization is carried
on for (24) and the differential order is determined µ = 0.68.
We calculate the remaining parameters by (22), and the finial
FOPID controller is obtained

CT=0.1(s) = 3.1534 +
4.9272

s1.01
+ 0.1487s0.68. (28)

For this process, an integer order (IO) PI controller is
optimized following the recognized method by Astrom and
Hagglund [42] as

CIOPI (s) = 2.8236 +
4.6464

s
, (29)

FIGURE 4. Step responses using controllers in (28)–(30).

FIGURE 5. Bode diagrams with the controllers (28)–(30).

and an FO proportional–integral (FOPI) controller is
designed to fulfill a flat phase constraint by Luo [35] as

CFOPI (s) = 3.3367 +
4.6464

s1.21
. (30)

To illustrate the set-point tracking and disturbance rejec-
tion performance, step response and load disturbance
response are presented in Fig.4. Clearly, the proposed FOPID
in (28) provides better control performance than the con-
trollers in (29) and (30), which is also demonstrated by
their frequency response of open-loop transfer functions
in Fig.5.

All the compared indexes are shown in Table 1 for the set-
point response. The effectiveness of the proposed method can
also be observed that the achieved gain and phase margins
in Table 1 are closed to the estimated ones in (17) and (18).

To compare the robustness of three controllers, the step
responses with ±20% loop gain variations are presented
in Fig.6. The performance shows the system robustness to
the gain uncertainties using the proposed FOPID controller.
Compared with the step responses using the controllers (29)
and (30), the overshoots of the proposed FOPID are smaller
and with shorter settling time.

For further investigation, the proposed FOPID design is
tested for different time-delay cases, T = 0.3 and T = 0.5.
Two FOPID controllers are obtained as follows

CT=0.3(s) = 0.405 +
3.1104

s0.85
+ 0.7895s0.529, (31)
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FIGURE 6. Step responses with open-loop gain variations ±20%.

FIGURE 7. Step responses of the control system using controllers in (28),
(31) and (32).

TABLE 1. Frequency and time domain performance for example 1.

and

CT=0.5(s) = 0.5728 +
1.458

s0.93
+ 1.231s0.24. (32)

The step responses are shown in Fig.7 for the control systems
with (28), (31) and (32). It is obvious that, with proper param-
eter selection for ωc and α, the proposed method is applicable
to large time-delay case.

FIGURE 8. Step responses using controllers in (34)–(36).

B. EXAMPLE 2: SOPTD SYSTEM

Consider the SOPTD system in literature [43]

G2(s) =
0.5

2s2 + 3s+ 1
e−0.2s, (33)

ε = 0.36 is set to limit the value of 1(s) in (16). We select
ωc = 2.5 and α = 0.98 for the robust stability according to
(14), (17)–(19). The gain and phase margins are estimated by
(17) and (18) respectively, that is Am ≈ 3.12 and γ ≈ 63.15o.
The crossover frequency ωx = 2.77 is determined by the

Nyquist plot of G2(s). The proposed FOPID controller is
calculated by data fitting in the frequency range [0, ωx), to
have

Cproposed (s) = 10.0796 +
4.9092

s0.98
+ 7.0213s1.064. (34)

Optimal searching algorithms are often used to solve the
design problem of FOPID. In this example, we illustrate
the effectiveness of (34) compared with two optimal FOPID
controllers in [43], using Grey wolf optimization (FGWO)
and Nelder’s-Mead optimization (FNM), respectively:

CFGWO(s) = 5.8208 +
3.3408

s0.75712
+ 5.5551s0.65412, (35)

CFNM (s) = 0.055 +
7.4342

s0.51094
+ 8.2837s0.50076. (36)

Fig. 8 shows the step and load disturbance responses of
three resultant control systems. The control performances are
compared in Table 2. The results demonstrated that, com-
pared to five parameters searching schemes, one-dimensional
searching used in this paper also provides a satisfactory con-
trol performance but with a simple calculation. The Bode
plots are shown in Fig. 9, which shows a larger phase margin
of the proposed FOPID (34) and the flatness of the phase plot.
For further investigation on the robustness of three con-

trollers, Fig.10 shows the step responses when ±40% gain
variation occurring in the open-loop plant. The simulation
results indicate the proposed FOPID owns better robustness
on the gain variation than the controllers (34) and (35). This
result can be well understood due to the flatness on the phase
plot providing more robustness to gain variation.

C. EXAMPLE 3: UNCERTAIN SYSTEM

In this example, the real system is:

G3(s) =
1

(s+ 1)4
. (37)
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FIGURE 9. Bode diagrams with the controllers (34)–(36).

FIGURE 10. Step responses with open-loop gain variations ±40%.

TABLE 2. Frequency and time domain performance for example 2.

As discussed in [37], this plant can be approximated by the
following time-delay low-order model

G4(s) =
0.22287e−0.5532s

s2.2251 + 0.86316s1.0389 + 0.22394
. (38)

FIGURE 11. Step responses and load disturbance responses of the
control system using controllers in (39)–(41).

FIGURE 12. Bode diagrams with the controllers (39)–(41).

We use (38) as the nominal model to design the FOPID
controller. With the selection of ε = 0.36, ωc = 0.3 and
α = 1.01, the proposed FOPID is designed

Cproposed (s) = 0.9403 +
0.2964

s1.01
+ 1.7067s0.923. (39)

For the comparison, the FOPID controllers using the meth-
ods in [37] and [38] are obtained as

CFOPID1(s) =
0.3252

s0.0369

(

1+
0.2594

s1.0389
+1.1585s1.1862

)

, (40)

CFOPID2(s) = 0.3677 +
0.0781

s1.1204
+

0.0992

s1.0158
, (41)

respectively.
Simulation comparisons are carried on for the real

plant (37). Fig.11 shows the step responses and load dis-
turbance responses. The corresponding control performances
are given in Table 3. It can easily be seen that both the step
response and disturbance rejection performance are better
than two compared FOPID controllers. These results are
also supported by their frequency response in Bode plots, as
shown in Fig. 12. The open-loop system using the FOPID
controller (39) provides a larger phase crossover frequency to
generate a fast system response and a flatness of phase plot
around ω = ωc.

As a robustness analysis, the step responses of the three
FOPID controllers in Fig. 13 are obtainedwhen the open-loop
system has ±50% gain variations. It can be seen that even
large gain variation occurring, the control performance still
maintains quite well.
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FIGURE 13. Step responses with open-loop gain variations ±40%.

FIGURE 14. Closed-loop responses to the sequential step changes in the
set-point for the VL column (loop1).

D. EXAMPLE 4: MIMO SYSTEM

A 24-tray tower separating a mixture of methanol and water,
examined by Luyben [45] has the following transfer function
matrix

G(s) =









−2.2e−s

7s+ 1

1.3e−0.3s

7s+ 1
−2.8e−1.8s

9.5s+ 1

4.3e−0.35s

9.2s+ 1









(42)

According to section IV, MIMO processes can be compen-
sated by DOB in the inner loops for performance recovery
as shown in Fig.2. According to the design method in [44],
we select

Q1(s) =
s+ 1

0.1s+ 1
,Q2(s) =

0.35s+ 1

0.5s+ 1

FIGURE 15. Closed-loop responses to the sequential step changes in the
set-point for the VL column (loop2).

TABLE 3. Frequency and time domain performance for example 3.

TABLE 4. The optimal fopid values and ISE FOR example 4.

for loop 1 and loop 2, respectively. Then, we design FOPID
controller just like a single loop for the diagonal processes

g1(s) =
−2.2e−s

7s+ 1
, g2(s) =

4.3e−0.35s

9.2s+ 1

directly. Consequently, ε1 = 0.36 and ε2 = 0.5 are set to limit
the value of 1(s) in (16). We select ωc1 = 1.5, ωc2 = 0.14
and α1 = 1.06, α2 = 0.95 for the robust stability according
to (14), (17)-(19). The crossover frequency ωx1 = 5.28 and
ωx2 = 5.65 are selected according to the Nyquist plot of g1(s)
and g2(s). The proposed FOPID controllers are calculated by
data fitting between the frequency range [0, ωx1) and [0, ωx2),
to have

Cloop1(s) = −0.652 −
0.141

s1.06
− 0.212s0.805 (43)

Cloop2(s) = 0.455 +
0.165

s0.95
+ 0.091s1.477 (44)

For this process, we make comparisons to the FOPID
design methods in [46] and [47]. The comparison results are
depicted in Fig.14, Fig.15 and Table 4. In the simulation
study, the step inputs for two loops are set r1(t) = 1(t) and
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r2(t) = 1(t − 50), respectively. From Figs.14 and 15, we can
observe that, the coupling effects between two loops are very
strong in the cases of [46] and [47], generate large overshoot
and oscillations in two loops response. While in our case, the
coupling effects are well overcome by the proposed control
scheme, provide good control performance. The results are
also confirmed by ISE index in Table 4.

VI. CONCLUSION

This paper presents a simple yet effective FOPID controller
tuning method for time-delay systems. A time-delay closed-
loop model with Bode’s ideal transfer function is introduced
for control system design. Robust stability is analyzed in
terms of gain and phase margins. Bandwidth selection is a
critical problem in time-delay system design but is seldom
discussed in the current FOPID works [22], [23], [37], [38].
We give an analytical method to solve this problem based
on the proposed stability conditions. To simplify the design
of FOPID from solving nonlinear equations, five unknown
parameters are reduced to one by data fitting. Then, one-
dimensional searching is used to find the solution. Further-
more, the proposed FOPID controller design is extended to
MIMO systems. Finally, the effectiveness of the proposed
method is illustrated by numerical simulations and compar-
isons. The further work is to investigate the discretization for
fractional operator such that the proposed FOPID controller
can be applied in a real control system.
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