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ABSTRACT Aiming to improve the performance of motion for autonomous underwater vehicle (AUV),

a fractional-order PID strategy is proposed. It is a more generalized form for the conventional integer-order

PID controller, keeping its simplicity and utilizing the generalized derivative and integral control actions.

The fractional-order PID controller has been successfully applied to heading control, diving control and

path-following system of AUV on sea trial. In addition, the fractional-order closed-loop system has proven

to be stable. By comparing simulations and experiments, the satisfactory performance, such as overshoot,

settling time and steady-state error, has been achieved. The cloud-model-based quantum genetic algorithm

(CQGA) is employed to tune coefficients of fractional-order PID controller. The quantum bits and quantum

superposition states avoid the pressure of selection and maintain the diversity of population in chromosome

coding. Due to the randomness and stability tendency of cloud droplets, the cloud crossover operator and the

cloud mutation operator can effectively overcome the shortcomings of premature and slow searching speed.

Numerical simulations show that the CQGA is more efficient to find the optimal coefficients of fractional-

order PID controller than GA.

INDEX TERMS Fractional-order PID, AUV, cloud-model-based quantum genetic algorithm (CQGA),

steady error.

I. INTRODUCTION

AUV has been an active field of research and development

in exploring unknown marine environment and carrying out

different military missions. Motion control systems for AUV

have become very challenging due to strong coupling, high

nonlinearity and external disturbances. A variety of control

systems are available, such as PID control [1], [2], sliding

mode control [3], [4], H∞ control [5], [6] and adaptive

control [7]. Nevertheless, the PID (proportional integral

derivative) control is still the most widely used in AUV

because of the simplicity and reliability. The fractional-order

PID [8], [9] is a more generalized form for the conven-

tional integer-order PID controller, keeping the simplicity

of PID and utilizing the generalized derivative and inte-

gral control actions. The fractional-order PID controller was

The associate editor coordinating the review of this article and approving
it for publication was Sara Dadras.

introduced by Podlubny [10], [11], namely the PIλ Dµ con-

troller, where λ and µ are the orders of the integrator and

differentiator, respectively.

Nowadays, the application of fractional-order PID con-

troller in AUV is still at primary stage. Joshi S D et al.

designed a fractional-order PID controller for depth and

steering system of AUV. Its simulation results showed

that the fractional-order PID was superior to traditional

PID with respect to overshoot and settling time [12]–[14].

Ajmal et al. dealt with the development of tuning a fractional-

order PID controller by loop shaping approach for controlling

the depth of an AUV. Through the comparison between

the simulation results it was clear that the fractional-order

PID controller can be well implemented on integer-order

depth system. The rise time, settling time, and over-

shoot are well improved than integer-order PID [15].

Radmehr et.al proposed an improved fractional-order

PID controller for the control of AUV motion with
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six degrees of freedom (DOF). Genetic algorithm (GA)

was employed to find suboptimal coefficients of fractional-

order PID controller [16]. Nevertheless, these applica-

tions have been performed in theory simulation, and little

research has been conducted to examine on sea trial. In this

paper, the fractional-order PID controller will be utilized on

AUV platform.

It is essential to study tuning methods of five parameters

(Kp, Kd , Ki, λ, µ). There are many optimization methods

for fractional-order PID controller such as genetic algo-

rithms(GA) [16], [17], particle swarm optimization(PSO)

[18], [19] and gravitational search algorithm [20]. Here we

will concentrate our attention on cloud-model-based quantum

genetic algorithm(CQGA) [22].

As a novel optimization algorithm, CQGA combines

cloud-model theory with quantum genetic algorithm(QGA).

QGA is based on the concept and principles of quantum

computing, such as a quantum bit and superposition of

states [23], [24]. It uses a Q-bit as a probabilistic represen-

tation, which is defined as the smallest unit of information.

Meanwhile, quantum rotation gate is used as the update

mechanism, which could help guide the searching direction to

the optimal area andmaintain the diversity of population [25].

The cloud-model theory [26], [27] is introduced based

on QGA. The cloud crossover operator and cloud mutation

operator are generated by cloud generator [28]. As a con-

sequence of the randomness and stability tendency of cloud

drops, the algorithm will overcome the shortcomings of pre-

mature and lower searching ability.

The remainder of this paper is organized as follows.

In Section II, a dynamic model of AUV is established and

simulations are conducted. The controller design, parameters

optimization and the proof of stability of fractional-order

closed-loop system are explained in Section III. A set of

comparisons are carried out by simulations and experiments

in Section IV, and the results are also being discussed. Finally,

Section V summarizes the key conclusions of this work.

II. VEHICLE MODEL

A. ESTABLISHING COORDINATE SYSTEM

The notation, term and coordinate system are defined by

SNAME (Society of Naval Architects and Marine Engi-

neers) and ITTC (International Towing Tank Conference).

The world-fixed coordinate system (E-ξηζ ) has its origin E

fixed to the earth [29]. The body-fixed coordinate system

(o − xyz) with origin O is a moving reference frame that is

fixed to AUV (see Fig.1).

For AUV, the motion components of six degrees of free-

dom are easily defined as surge (u), sway (v), heave (w),

roll (p), pitch (q) and yaw (r). U = [u, v,w, p, q, r]T is the

linear and angular velocities with respect to the body-fixed

reference frame, and τ = [X ,Y ,Z ,K ,M ,N ]T is a vector of

forces and moments acting on AUV with respect to the body-

fixed reference frame. The Euler angles are heading angle ψ ,

pitch angle θ and roll angle φ. PW = [ξ, η, ζ ] is a posi-

tion vector with respect to the world-fixed reference frame,

FIGURE 1. Coordinate system of AUV. {Body }: (x, y, z,u, v,w,p,q, r ),
{World } : (ξ, η, ζ, φ, θ,ψ).

TABLE 1. Notions used for AUV.

and PB = [x, y, z] is a position vector with respect to the

body-fixed reference frame [30].The notations are summa-

rized in Table 1. The transformation between the body-fixed

and world-fixed position is given by (1).




ξ

η

ζ



 = T





x

y

z



 (1)

T =





cψcθ cψsθsφ − sψcφ sψsθsφ + cψcφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

−sθ cθsφ cθcφ



 (2)

where T is rotation matrix, c(·) denotes cos(·) and s(·) denotes
sin(·). The inverse transformation is obtained as (3).




x

y

z



 = T−1





ξ

η

ζ



 (3)

T−1 =





cψcθ sψcφ − sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθsφ − cψcφ cθcφ



 (4)

where T−1 is inverse matrix of T .

B. DYNAMIC MODEL OF AUV

It is well known that the spatial motion of AUV in six

degrees of freedom is strongly coupled and highly non-linear.

To simplify AUVmodeling for further analysis, it is assumed

that the port-starboard (xz-plane) is symmetric. In general,

the force of AUV can be separated into two types: one

is the hydrodynamic force Fvis (or resistance force) with

respected to an AUVmoving in fluid, the other is the external

force Felse, such as the rudder force, propulsion force, gravity

and buoyancy, etc. The equation can be written as (5) [31].

EU̇ = Fvis + Felse (5)

where E is defined as (6), as shown at the top of the next page,

considering xz plane of symmetry. where m: AUV mass;

xG, yG, zG: position of center of gravity for AUV;

xB, yB, zB: position of center of buoyancy for AUV;
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E =

















m− Xu̇ 0 0 0 mzG 0

0 m− Yv̇ 0 −mzG − Yṗ 0 −Yṙ
0 0 m− Zẇ 0 −Zq̇ 0

0 −mzG − Yṗ 0 Ix − Kṗ 0 −Kṙ
mzG 0 −Zq̇ 0 Iy −Mq̇ 0

0 −Yṙ 0 −Kṙ 0 Iz − Nṙ

















(6)

Ix , Iy, Iz: moments of inertia about x, y and z axes;

Xu̇, Yv̇, Yṙ , Zẇ, Zq̇, Kṗ, Kṙ , Mq̇, Nv̇, Nṙ : hydrodynamic

coefficients;

U = [u, v,w, p, q, r]T : velocity (angular velocity) of

six degrees of freedom;

U̇ = [u̇, v̇, ẇ, ṗ, q̇, ṙ]T : acceleration (angular acceleration) of

six degrees of freedom;

Fvis = [Xvis,Yvis,Zvis,Kvis,Mvis,Nvis]
T : hydrodynamic

forces and moments.


















































































































































































































































































Xvis = m(vr − wq) + 1
2
ρL4[X ′

qqq
2 + X ′

rrr
2 + X ′

rprp]

+ 1
2
ρL3[X ′

vrvr + X ′
wqwq]

+ 1
2
ρL2[X ′

uuu
2 + X ′

vvv
2 + X ′

www
2]

Yvis = m(wp− vr) + 1
2
ρL4[Y ′

pqpq+ Y ′
qrqr]

+ 1
2
ρL3[Y ′

vqvq+ Y ′
wpwp+ Y ′

wrwr]

+ 1
2
ρL3[Y ′

rur + Y ′
pup+ Y ′

v|r|
v
|v| |(v

2 + w2)
1
2 ||r|]

+ 1
2
ρL2[Y ′

0u
2 + Y ′

vuv+ Y ′
v|v||(v2 + w2)

1
2 |]

+Y ′
vwvw

Zvis = m(uq− vp) + 1
2
ρL4[Z ′

ppp
2 + Z ′

rrr
2 + Z ′

rprp]

+ 1
2
ρL3[Z ′

vrvr + Z ′
vpvp]

+ 1
2
ρL3[Z ′

quq+ Z ′
w|q|

w
|w| |(v

2 + w2)
1
2 ||q|]

+ 1
2
ρL2[Z ′

0u
2 + Z ′

wuw+ Z ′
w|w|w|(v2 + w2)

1
2 |]

+ 1
2
ρL2[Z ′

|w|u|w| + Z ′
ww|w(v2 + w2)

1
2 |]

+ 1
2
ρL2Z ′

vvv
2

Kvis = mzG(vr − wp) + 1
2
ρL5[K ′

qrqr + K ′
pqpq

+K ′
p|p|p|p|] + 1

2
ρL4[K ′

pup+ K ′
rur]

+ 1
2
ρL4[K ′

vqvq+ K ′
wpwp+ K ′

wrwr]

+ 1
2
ρL3[K ′

0u
2 + K ′

vuv+ K ′
v|v|v|(v2 + w2)

1
2 |]

+ 1
2
ρL3K ′

vwvw

Mvis = mzG(vr − wq) + 1
2
ρL5[M ′

ppp
2 +M ′

rrr
2 +M ′

rprp

+M ′
q|q|q|q|] + 1

2
ρL4[M ′

vrvr +M ′
vpvp]

+ 1
2
ρL4[M ′

quq+M ′
|w|q|(v2 + w2)

1
2 q]

+ 1
2
ρL3[M ′

0u
2 +M ′

wuw+M ′
w|w|w|(v2 + w2)

1
2 |]

+ 1
2
ρL3[M ′

|w|u|w| +M ′
ww|w(v2 + w2)

1
2 |]

+ 1
2
ρL3M ′

vvv
2 + (Iz − Ix)pr

Nvis = 1
2
ρL5[N ′

pqpq+ N ′
qrqr + N ′

r|r|r|r|]
+ 1

2
ρL4[N ′

wrwr + N ′
wpwp+ N ′

vqvq]

+ 1
2
ρL4[N ′

pup+ N ′
rur + N ′

|v|r |(v2 + w2)
1
2 r]

+ 1
2
ρL4[N ′

0u
2 + N ′

vuv+ N ′
v|v|v|(v2 + w2)

1
2 |]

+ 1
2
ρL3N ′

vwvw+ (Ix − Iy)pq

(7)

The auxiliary equation of motion is depicted as (8).































































φ̇ = p+ ψ̇sθ

θ̇ = qcφ − rsφ

ψ̇ =
rcφ − qsφ

cθ
ξ̇ = ucθcψ + v(sφsθcψ − cψsψ)

+w(sφsψ − cφsθcψ)

η̇ = ucθsψ + v(cφcψ − sφsθsψ)

+w(cφsθsψ − sφcψ)

ζ̇ = −usθ + vcθsφ + wcθcφ

(8)

The sea is approximately homogeneous mixed layer in the

area of 0-100 meters. The influence of temperature, salinity

and density of sea water on the motion of AUV can be

neglected, therefore only the ocean current should be taken

into account [32]. The ocean current is assumed to be a

constant in time, uniform in space, and irrotational with

respect to the world-fixed coordinate system. The speed of

AUV influenced by ocean current is depicted in (9).











ur = u− Uccθc(αc − ψ)

vr = v− Ucsθ

wr = w− Ucsθc(αc − ψ)

(9)

whereUc is the ocean current velocity of an irrotational fluid,

and αc is the angle of ocean current. After the time derivative,

(9) can be written in component form as (10).











u̇r = u̇+ Ucqsθc(αc − ψ) − Ucrcθs(αc − ψ)

v̇r = v̇− Ucs(αc − ψ)

ẇr = ẇ+ Ucqcθc(αc − ψ) − Ucrsθs(αc − ψ)

(10)

Hence, the relative velocity and acceleration vectorsU and

U̇ are described in (11) and (12) respectively.

U = [u+ ur , v+ vr ,w+ wr , p, q, r] (11)

U̇ = [u̇+ u̇r , v̇+ v̇r , ẇ+ ẇr , ṗ, q̇, ṙ] (12)

C. GRAVITY

Let m be the mass of AUV, ∇ the volume displaced by

AUV, g the acceleration of gravity and ρ the seawater

density. Obviously, the weight and buoyancy are expressed
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as W = mg, B = ρg∇ respectively.

G =

















−(W − B)sθ

(W − B)cθsφ

(W − B)cθcφ

(yG − yB)Wcθcφ − (zG − zB)Wcφsφ

−(xG − xB)Wcθcφ − (zG − zB)Wsθ

(xG − xB)Wcθsφ − (yG − yB)Wsθ

















(13)

For neutrally buoyant vehicles W = B, therefore (13)

simplifies to (14).

G =

















0

0

0

(yG − yB)Wcθcφ − (zG − zB)Wcφsφ

−(xG − xB)Wcθcφ − (zG − zB)Wsθ

(xG − xB)Wcθsφ − (yG − yB)Wsθ

















(14)

An even simpler representation is obtained as shown

in (15), on account of xG = xB, yG = yB and h = zG − zB.

G =
[

0 0 0 −hWcφsφ −hWsθ 0
]T

(15)

D. EQUATION OF MOTION IN THE HORIZONTAL PLANE

In order to analyze manipulating motion, the equation of

motion can be divided into two noninteracting subsystems,

the horizontal subsystem and the vertical subsystem. The fol-

lowing assumptions will be applied to the dynamicmodel: the

AUV only moves at a low speed and the center of gravity is

in the origin of the body-fixed coordinate system. Neglecting

the elements corresponding to heave, roll and pitch, the hor-

izontal equation of motion is generalized in (16).










m(u̇− vr) = X

m(v̇+ ur) = Y

Izṙ = N

(16)

The X equation can be eliminated due to the fact that cruise

speed u is a constant and u̇ is zero. The fore and aft of AUV are

asymmetrical, therefore the linearized maneuvering equation

can be written in (17).
{

(m− Yv̇)v̇− Yvv+ Yṙ ṙ + (mu− Yr )r = Yδr δr

(Iz − Nṙ )ṙ − Nrr + Nv̇v̇− Nvv = Nδr δr
(17)

As a result of starboard-port symmetry of AUV, Yṙ and Nv̇
are zero. Equation (17) simplifies to (18).

{

(m− Yv̇)v̇− Yvv+ (mu− Yr )r = Yδr δr

(Iz − Nṙ )ṙ − Nrr − Nvv = Nδr δr
(18)

where δr is the rudder angle. Eliminating v and ignor-

ing the element corresponding to roll finally yields (19).

A1,A0,B2,B1 and B0 are presented in (20) and (21),

respectively.

B2r̈ + B1ṙ + B0r = A1δ̇r + A0δr (19)
{

A1 = (m− Yv̇)Nδr

A0 = YδrNv − NδrYv
(20)











B2 = (Iz − Nṙ )(m− Yv̇)

B1 = −Yv(Iz − Nṙ ) − Nr (m− Yv̇)

B0 = Nv(mV − Yr ) + YvNr

(21)

Hence, applications of Laplace’s transformation are pre-

sented in (22) and (23)(ψ̇ = r).

G1(s) =
r

δr
(s) =

A1s+ A0

B2s2 + B1s+ B0
(22)

G2(s) =
ψ

δr
(s) =

A1s+ A0

B2s3 + B1s2 + B1s
(23)

Substituting the hydrodynamic coefficients into (23),

the transfer function becomes (24).

G2(s) =
1.9s+ 2.8

s3 + 4.5s2 + 4.4s
(24)

E. EQUATION OF MOTION IN THE VERTICAL PLANE

Neglecting the elements corresponding to sway, roll and yaw,

the vertical equation of motion is generalized in (25).










mu̇ = X

m(ẇ+ u0q) = Z

Iyq̇ = M

(25)

The X equation can be eliminated due to the fact that cruise

speed u is a constant and u̇ is zero. The top and bottom

of AUV are asymmetrical, therefore the linearized maneuver-

ing equation can be written in (26).
{

(m− Zẇ)ẇ− Zww+ Zq̇q̇+ (mu+ Zq)q = Z0 + Zδsδs

(Iy −Mq̇)q̇−Mqq−Mẇẇ−Mww = M0 +Mδsδs +Mθθ

(26)

As a consequence of starboard-port symmetry of AUV,

Zq̇ and Mẇ are zero. Equation (26) simplifies to (27).
{

(m− Zẇ)ẇ− Zww+ (mu+ Zq)q = Z0 + Zδsδs

(Iy −Mq̇)q̇−Mqq−Mww = M0 +Mδsδs +Mθθ
(27)

where Mθθ is the righting moment, (θ̇ = q); δs is the stern

plane angle.

Eliminating w, ẇ, q, q̇ and ignoring the element corre-

sponding to roll finally yields (28). C1,C0,D3,D2,D1 and

D0 are presented in (29) and (30), respectively.

D3

...
θ + D2θ̈ + D1θ̇ + D0 = C1δ̇s + C0δs (28)

{

C1 = (m− Zẇ)Mδs

C0 = (ZδsMw − ZwMδs )Mw

(29)



















D3 = (Iy −Mq̇)(m− Zẇ)

D2 = −Mq̇(m− Zẇ) − (Iy −Mq̇)Zw

D1 = MqZw −Mθ (m− Zẇ) −Mw(mu+ Zq)

D0 = MθZw

(30)

Hence, applications of Laplace’s transformation are pre-

sented in (31).

G3(s) =
θ

δs
(s) =

C1s+ C0

D3s3 + D2s+ D1s+ D0
(31)
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FIGURE 2. Comparison of heading angle with different rudders. The red
solid line denotes δr = 10◦; the blue dots denote δr = 25◦ (δs = 0◦).

FIGURE 3. Comparison of position with different rudders. The red solid
line denotes δr = 10◦; the blue dots denote δr = 25◦ (δs = 0◦).

Substituting the hydrodynamic coefficients into (31),

the transfer function becomes (32).

G3(s) =
1.6s+ 1.8

s3 + 4.5s2 + 6s+ 0.5
(32)

F. SIMULATOINS

It is assumed that the sea is sufficiently large to sail and the

AUV can withstand significant amounts of stress.

1) SIMULATIONS IN THE HORIZONTAL PLANE

The stern rudder is kept to zero. The rotational motion is

performed and AUV’s trajectory is a circle in the horizontal

plane, as shown in Fig.2 and Fig.3. The rudder angles are

10◦ and 25◦ for 500s respectively. The turning radius is 30m

corresponding to the rudder angle 25◦, while the turning

radius is 73m corresponding to the rudder angle 10◦. The red
solid line is over twice the cycle number of the blue dots. It is

significant that the smaller the rudder angle, the bigger the

turning radius is.

2) SIMULATIONS IN THE VERTICAL PLANE

The rudder angle is kept to zero. The diving motion is per-

formed and AUV’s trajectory is a straight line in the vertical

FIGURE 4. Comparison of pitch angle with different stern rudders. The
red solid line denotes δs = 10◦; the blue dots denote δs = 25o (δr = 0◦).

FIGURE 5. Comparison of position with different stern rudders. The red
solid line denotes δs = 10o; the blue dots denote δs = 25◦ (δr = 0◦).

plane, as shown in Fig.4 and Fig.5. The stern rudder angles

are 10◦ and 25◦ for 500s respectively. The pitch angle is 8◦

corresponding to the stern rudder angle 10◦, while the pitch
angle is 21◦ corresponding to the stern rudder angle 25◦.
The depth is approximately 85m and 210m respectively. The

red solid line is over twice the depth of the blue dots. It is

significant that the bigger the stern rudder angle, the bigger

the pitch and the depth are.

3) SIMULATIONS IN THE THREE-DIMENSIONAL SPACE

The rudder angle and the stern rudder angle are kept to 10◦

and 25◦ for 1000s respectively, as shown in Fig.6 and Fig.7.

The diving and rotational motions are performed and AUV’s

trajectory is a spiral line in the three-dimensional space.

The stern rudder angles and rudder angles are 10◦ and 25◦,
respectively. The red dashed line is over twice the cycle

number of the blue line. The bigger the rudder is, the faster

the AUV dives.

III. CONTROLLER DESIGN

A. FUNDAMENTALS OF FRACTIONAL-ORDER CALCULUS

The inspiration of fractional calculus has taken birth since

300 years ago. Leibniz and L’Hôpital first discussed the
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FIGURE 6. Comparison of position with different rudders and stern
rudders in the three-dimensional space. ( The blue line indicates δr = 10◦,
δs = 10◦; the red dashed line indicates δr = 25◦, δs = 25◦).

FIGURE 7. Comparison of position with different rudders and stern
rudders in the vertical plane. ( The blue line indicates δr = 10◦, δs = 10◦;
the red dashed line indicates δr = 25◦, δs = 25◦).

TABLE 2. Parameters matric with different rudders.

fractional derivative in 1695 by giving half-order derivative.

The most commonly used for fractional order calculus defi-

nitions are given by Grünwald-Letnikov, Cauchy, Riemann-

Liouville, and Caputo.

Grünwald-Letnikov’s definition can be expressed as (33).

GL
a D

α
t f (t) = lim

h→0
h−α

[ t−ah ]
∑

i=0

(−1)i
(

a

i

)

f (t − ih) (33)

Cauchy’s definition can be expressed as (34).

aD
αf (t) =

α(α + 1)

2π j

∮

C

f (τ )

(τ − t)α+1
d(τ ) (34)

Riemann-Liouville’s definition can be expressed as (35).

RL
a D

−α
t f (t) =

1

Ŵ(α)

∫ t

a

(t − τ )(α−1)f (τ )d(τ ) (35)

Caputo’s definition can be expressed as (36).

aD
α
t f (t) =

1

Ŵ(1 − α)

∫ t

0

f (τ )

(t − τ )α
d(τ ) (36)

where Ŵ(·) is theGamma function as in (37) and α represents

the fractional order, α ∈ (0, 1).

Ŵ(z) =
∫ ∞

0

e−t tz−1dt (37)

B. FRACTIONAL-ORDER PID CONTROLLER

A fractional-order PID controller is described in time domain

as (38).

u(t) = Kpe(t) + KiD
−λe(t) + KdD

µe(t) (38)

The frequency domain description of fractional-order

PID controller is given by (39).

C(s) = Kp + Kis
−λ + Kd s

µ (39)

where Kp is the proportional gain, Ki the integral gain and

Kd the differential gain, λ and µ are the order of integral and

differential controller, such that λ,µ ∈ (0, 1) respectively.

Taking λ = 1 and µ = 1, it is obtained a conventional

PID controller. λ = 1 and µ = 0 give a PI controller, λ = 0

and µ = 1 give a PD controller. It is apparent that all these

controllers are particular cases of fractional-order PID con-

troller. In a graphical way, the fractional-order PID controller

is depicted in Fig. 8, extending the four control points of

the conventional PID to the range of the quarter-plane. The

fractional-order PID controller for AUV is designed in Fig.9.

The transfer function of fractional-order closed-loop sys-

tem of heading is illustrated as (40). The parameters of

fractional-order PID controller for heading is presented

in Table 4.

Gsh(s) =
G2(s)C(s)

1 + G2(s)C(s)
=

Psh(s)

Qsh(s)
(40)

Psh(s) = (A1s+ A0)(Kp + Kis
−λ + Kd s

µ);

Qsh(s) = s(B2s
2 + B1s + B0) + (A1s + A0)(Kp +

Kis
−λ + Kd s

µ).

The transfer function of fractional-order closed-loop

system of pitch is illustrated as (41). The parameters

of fractional-order PID controller for pitch is presented

in Table 4.

Gsp(s) =
G3(s)C(s)

1 + G3(s)C(s)
=

Psp(s)

Qsp(s)
(41)

Psp(s) = (C1s+ C0)(Kp + Kis
−λ + Kd s

µ);

Qsp(s) = (D3s
3 + D2s

2 + D1s+ D0) + (C1s+ C0)(Kp +
Kis

−λ + Kd s
µ).

An appropriate approximation technique,Oustaloup recur-

sive filter, is proposed in [38]. It gives a very good
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FIGURE 8. Fractional-order PID controller plane.

FIGURE 9. The structure of FOPID controller for AUV

approximation of a fractional differentiator of order α and

a fractional integrator of order −α using (42)-(44). N is the

order of approximation in the valid frequency range. The

Oustaloup filter is employed for simulation in the frequency

range of ω = [ωb, ωh] = [0.001, 1000] rad/s and the order

of approximation is N = 5.

sα ≈ K

N
∏

k=1

s+ w′
k

s+ wk
(42)

w′
k = wb · w(2k−1−α)/N

u , wk = wb · w(2k−1+α)/N
u (43)

wu =
√

wb/wh,K = wαh (44)

C. NUMERICAL SOLUTIONS

The Grünwald-Letnikov’s definition is extremely advanta-

geous to obtain a numerical solution, as shown in (45). The

recursive formula (46) is utilized to compute the coefficients

with a fixed value of derivative and integral order α. The short

memory principlewas proposed for the numerical solution of

fractional-order PID controller.

0D
α
t f (t) ≈ t−LD

α
t f (t) ≈ h−α

N (t)
∑

i=0

ωαi f (t − ih) (45)

ωαi = (−1)i
(

a

i

)

(46)

ωα0 = 1;ωαi = (1 −
α + 1

i
)ωαi−1(i = 1, 2, · · · .) (47)

where L is the memory length, h is the step size of cal-

culation, [x] represents the integer part of x, and N (t) =
min{[ t

h
], [L

h
]} = min{m, [L

h
]}.

Considering the computational efficiency, the memory

length L is reasonably determined in a permitted range of

accuracy. Substituting (45) into (38), the numerical solution

of fractional-order PID controller is illustrated as (48).

u(m)=Kpe(m)+Kihλ
N (t)
∑

i=0

ωαi e(m−i)+Kdh−µ
N (t)
∑

i=0

ωαi e(m−i)

(48)

D. STABILITY

In the integer-order system, it is well known from the theory

of stability that all the roots of Q(s) = 0 have negative

real parts. It means that they are located on the left half of

the complex plane. The stability of fractional-order system

differs from the integer case. It is interesting that a stable

fractional system may have roots in the right half of complex

plane. The stable region of fractional-order system is given

by Fig.10.

FIGURE 10. Stable region of fractional-order systems with order
0 < α < 1.

Theorem 1 (Matignon, 1998) [33]:A commensurate-order

system described by a rational transfer function (53) is stable

if and only if the following condition is satisfied (54).

G(γ ) =
P(γ )

Q(γ )
(53)

|arg(γi)| > α
π

2
(54)

where γ = sα and γi is the i-th root of Q(γ ).

The transfer function of closed-loop fractional-order sys-

tem of heading is depicted in (49), as shown at the

bottom of the next page. The characteristic equation of

commensurate-order system is a polynomial of the com-

plex variable γ = sα , where α is assigned to 0.01,

as shown in (50), as shown at the bottom of the next page.

All the poles of γ equation is illustrated in Fig.11(left),

and the enlargement of stable region boundary is given

in Fig.11(right). The absolute value of the argument min-

imum 0.0306 rad is larger than απ/2 = 0.0157 rad .
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FIGURE 11. Stability analysis of fractional-order heading systems with commensurate-order α = 0.01, Pole positions(left),
Enlargement(right).

FIGURE 12. Stability analysis of fractional-order pitch systems with commensurate-order α = 0.01, Pole positions(left),
Enlargement(right).

The pair of complex conjugate roots (1.002 ± 0.0307i) are

located between the first Riemann sheet and stable region

boundary. The roots of γ convert into s, and they both

have the negative real parts (−1.2770± 0.1066i). Therefore,

Theorem 1 is satisfied and the closed-loop fractional-order

system of heading is stable.

The transfer function of closed-loop fractional-order sys-

tem of pitch is described as (51), as shown at the bottom of

the this page. The characteristic equation is shown in (52),

as shown at the bottom of the this page. The poles of

γ equation are illustrated in Fig.12(left), and the enlarge-

ment of stable region boundary is given in Fig.12(right).

Gsh(s) =
112.1s2.88 + 180.5s1.89 + 165.2s1.88 + 49.4s+ 266s0.89 + 72.8

s3.89 + 4.5s2.89 + 112.1s2.88 + 184.9s1.89 + 165.2s1.88 + 49.4s+ 266s0.89 + 72.8
(49)

Gsh(s) =
112.1γ 288 + 180.5γ 189 + 165.2γ 188 + 49.4γ 100 + 266γ 89 + 72.8

γ 389 + 4.5γ 289 + 112.1γ 288 + 184.9γ 189 + 165.2γ 188 + 49.4γ 100 + 266γ 89 + 72.8
(50)

Gsp(s) =
94.4s3.09 + 106.2s2.19 + 64s2.09 + 72s1.09 + 8s+ 9

s4.09 + 94.4s3.19 + 4.5s3.09 + 106.2s2.19 + 70s2.09 + 72.5s1.09 + 8s+ 9
(51)

Gsp(s) =
94.4γ 309 + 106.2γ 219 + 64γ 209 + 72γ 109 + 8γ 100 + 9

γ 409 + 94.4γ 319 + 4.5γ 309 + 106.2γ 219 + 70γ 209 + 72.5γ 109 + 8γ 100 + 9
(52)

VOLUME 7, 2019 124835



J. Wan et al.: Fractional-Order PID Motion Control for AUV Using CQGA

The absolute value of the argument minimum 0.0287 rad is

larger than απ/2 = 0.0157 rad . There are three pairs of poles

between the first Riemann sheet and stable region boundary

(1.0009±0.0313i, 0.9929±0.0285i, 0.9832±0.0284i). The

roots of γ convert into s, and they all have the negative real

parts (−1.1542 ± 0.0183i, −0.4932 ± 0.1364i, −0.1869 ±
0.0485i). Obviously, all the poles of the closed-loop system

are located in the stable region. Therefore, Theorem 1 is

satisfied and the closed-loop fractional-order system of pitch

is stable.

E. PARAMETERS OPTIMIZATION USING

CLOUD-MODEL-BASED QUANTUM

GENETIC ALGORITHM

The fractional-order PID controller gives better perfor-

mance owing to extra two parameters introduced than con-

ventional PID. Tuning these five parameters has become

an important research subject in control systems. The

cloud-model-based quantum genetic algorithm (CQGA) is

employed to optimize the parameters of fractional-order

PID controller.

1) QUANTUM GENETIC ALGORITHM

The smallest unit of information stored in a two state quantum

computer is called a quantum bit or qubit. A qubit may be in

the ‘‘1’’ state, in the ‘‘0’’ state, or in any linear superposition

of the two. The state of a qubit can be represented as (55).

|ϕ〉 = α|0〉 + β|1〉 (55)

where α and β are complex numbers that specify the prob-

ability amplitudes of the corresponding states. |α|2 gives

the probability that the qubit will be found in the

‘‘0’’ state and |β|2 gives the probability that the qubit will

be found in the ‘‘1’’ state. Normalization of the state to unity

guarantees as (56).

|α|2 + |β|2 = 1 (56)

AQ-bit individual as a string ofmQ-bits is defined as (57).

G =
∣

∣

∣

∣

α1 α2 · · · αm
β1 β2 · · · βm

∣

∣

∣

∣

(57)

where |αi|2 +|βi|2 = 1, i = 1, 2, · · · ,m. This representation
has a quite superiority that one Q-bit individual can represent

2m states at the same time. For instance, there is a three-Q-

bits system. The state of system can be represented as (58).

However, at least eight states (000), (001), (010), (011), (100),

(101), (110) and (111) are required in binary representation.

QGA can explore the search space with a smaller number of

individuals and exploit the search space for a global solution

within a short span of time.

|ϕ〉 = a000|000〉 + a001|001〉 + a010|010〉 + a011|011〉
+ a100|100〉+a101|101〉+a110|110〉+a111|111〉 (58)

|a000|2 + |a001|2 + |a010|2 + |a011|2

+ |a100|2 + |a101|2 + |a110|2 + |a111|2 = 1 (59)

There are several quantum gates, such as the Not gate,

controlled NOT gate, rotation gate, Hadamard gate, etc,

which are selected according to the practical conditions.

The rotation gate is applied to generate the probabil-

ity amplitude of quantum states which is an important

updating method in quantum genetic algorithm. The quan-

tum rotation door for fractional-order PID optimization

problem can be chosen in order to maintain diversity of

population.

U (ϑi) =
[

cos(ϑi) −sin(ϑi)
sin(ϑi cos(ϑi)

]

(60)

where U (ϑi) is a unitary matrix, ϑi is a rotation angle.

The unitary matrix of rotation gate is employed to update

a Q-bit individual as a variation operator, the process is

as (61).
∣

∣

∣

∣

α′
i

β ′
i

∣

∣

∣

∣

= U (ϑi)

∣

∣

∣

∣

αi
βi

∣

∣

∣

∣

=
[

cos(ϑi) −sin(ϑi)
sin(ϑi cos(ϑi)

] ∣

∣

∣

∣

αi
βi

∣

∣

∣

∣

(61)

2) CLOUD MODEL

The cloud model acts as a converted model between a

qualitative concept and its quantitative expression. It has

three numerical characteristics: Ex , En, and He, as shown

in Fig.13.

FIGURE 13. Cloud model.

The expectation Ex is the position corresponding to the

center of the cloud gravity. The entropy En is the uncertainty

measurement of the qualitative concept, which is determined

by both the randomness and the fuzziness of the concept.

It reflects the bandwidth of the mathematical expectation

curve of the normal cloud and represents the value region in

which the drop is accepted to the linguistic term. He is the

uncertainty measurement of the entropy-that is, the entropy

of the entropy-which is a measure of the dispersion on the

cloud drops [34](see Algorithm 1).

3) CLOUD-MODEL-BASED QUANTUM GENETIC ALGORITHM

The cloud model is introduced based on the QGA taking

advantage of randomness and stability tendency of cloud

drops. The cloud crossover operator and cloud mutation
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Algorithm 1 Forward Normal Cloud Generator

Input: (Ex ,En,He), n (the number of cloud drops);

Output: Drop(xi, µi), i = 1, 2, . . . , n; n of cloud drops x

and their certainty degree µ;

Steps:

(1) E ′
n = RANDN(En,He); Generate a normally dis-

tributed random number E ′
n with expectation En and vari-

ance He;

(2) xi = RANDN(En,E
′
n); Generate a normally distributed

random number xi
′ with expectation Ex and variance E ′

n;

(3)Evaluate µi = e

−(f−Ex )2

2E ′
n
2

(4)Drop(xi, µi); xi with certainty degree of µi is a cloud

drop

(5) Repeat steps (1)-(4) until n cloud drops are

generated.

operator are described as (62) and (63), which are generated

by cloud generator with respect to the fitness value of func-

tions (see Algorithm 2).

pc =







t1e

−(f−Ex )2

2E ′
n
2

f ≥ F̄

t2 f < F̄

(62)

pm =







s1e

−(f−Ex )2

2E ′
n
2

f ≥ F̄

s2 f < F̄

(63)

where F̄ represents the average fitness value of the

population;

f denotes the larger of the fitness values of the solutions to be

crossed;

t1, t2, s1, s2 are the constants.

Algorithm 2 Cloud-Model-Based Quantum Genetic

Algorithm

Initialization: the size of initial population, sampling time,

iterative generation, etc. αi = 1√
2
,βi = 1√

2
Generate the

initial population randomly;

(1)Evaluate the fitness value of each individual as the target

of next evolution values

(2)record the best scheduling results;

(3)Determine the iteration termination conditions: if met,

terminate the algorithm, else go on;

(4)Execute the cloud crossover operator pc;

(5)Execute the cloud mutation operator pm;

(6)Update using rotation quantum gate;

(7)Generate t = t + 1 and algorithm return to step (3).

Due to the randomness and stability tendency of cloud

droplets, the quantum genetic algorithm can be effectively

improved to overcome the shortcomings of premature and

slow searching speed by the cloud crossover operator and the

cloud mutation operator.

FIGURE 14. FOMCON Simulink library.

FIGURE 15. Simulink model of heading angle for AUV using FOPID and
PID controllers.

IV. EXPERIMENT RESULTS AND ANALYSIS

A. SIMULATIONS

In this paper, FOMCON toolbox is employed for simula-

tions. FOMCON (Fractional order Modeling and Control)

is a new MATLAB toolbox, which offers a set of tools for

researchers in the field of fractional-order control [35]–[37].

The Simulink modeling library currently provided is show-

cased in Fig.14. The blocks of fractional-order PID controller

are utilized for heading, pitch and diving system analysis.

1) HEADING ANGLE

Figure 15 illustrates the Simulink model of heading angle

using fractional-order PID and PID controllers. The compar-

isons of step response are shown in Fig.16. It is clear that

the fractional-order PID controller has lower settling time

and overshoot. The disturbance of ocean current is simulated

by white noise as shown in Fig.17. It is further proved the

availability of fractional-order PID controller.

2) PITCH ANGLE

Figure 18 illustrates the Simulink model of pitch angle using

fractional-order PID and PID controllers. The comparisons of

step response in two different scenarios are depicted in Fig.19

and Fig.20. There is no overshoot in the first scenario. They

are with the same rise time in the second scenario. The results

is reported in Table 7. It is clear that the fractional-order

PID controller has lower settling time without overshoot,

whereas it has smaller overshoot with the same settling time.

The disturbance of ocean current is simulated by white noise
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FIGURE 16. Comparison of step response of heading angle using FOPID
and PID controllers.

FIGURE 17. Comparison of white noise of heading angle using FOPID and
PID controllers.

FIGURE 18. Simulink model of pitch angle for AUV using FOPID and PID
controllers.

as shown in Fig.21. It is further demonstrated the better

performance of fractional-order PID than traditional PID.

3) PARAMETERS OPTIMIZATION

The algorithms have been solved on a 3.20 GHz Intel(R)

core(TM) i5-6500 desktop computer that has 16 GB of ram

FIGURE 19. Comparison of step response of pitch angle using FOPID and
PID controllers without overshoot.

FIGURE 20. Comparison of step response of pitch angle using FOPID and
PID controllers with the same rise-time.

FIGURE 21. Comparison of white noise of pitch angle using FOPID and
PID controllers.

andMicrosoftWindows 7 operating system. Figure 22 and 23

provide the step response of heading and pitch angle using

CQGA and GA, respectively. ITAE is adopted as objective
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TABLE 3. Performance metric of simulation for pitch angle using FOPID
and PID controllers.

FIGURE 22. Comparison of the performance of heading angle using CQGA
and GA

FIGURE 23. Comparison of the performance of pitch angle using CQGA
and GA

function, as shown in (64). The results are summarized

in Table 4. It is observed from Table 4, Fig.22 and Fig.23 that

the heading angle controlled by the CQGA-FOPID controller

exhibits smaller overshoot, shorter settling time and runtime,

compared to GA-FOPID controller.

ITAE =
∫ ∞

0

t|e(t)|dt (64)

B. EXPERIMENTS

The method proposed in this paper is validated on the Sailfish

AUV independently developed at Underwater Vehicle Lab

TABLE 4. Performance metric of parameter optimization for heading and
pitch with respect to CQGA and GA.

FIGURE 24. Photo of AUV Sailfish.

TABLE 5. Performance matrix of heading angle on sea trial using FOPID
and PID controllers.

of the Ocean University of China. Sailfish displacement

is 260 Kg. It measures 3.8m in length, 32.4 cm in diameter

and is equipped with several sensors(AHRS, Attitude and

Heading Reference System; DVL, Doppler Velocity Log;

GPS, Global Positioning System; SONAR, SoundNavigation

and Ranging), as shown in Fig.24. The trial has been carried

out on May 1, 2019 at NanJiang harbor, QingDao, in a sunny

day, an air temperature of 18◦C. The speed of south wind

is 3-6 knots and the ocean waves are up to 0.1-0.5 m high.

1) HEADING

The comparison of PID and fractional-order PID control on

trial is sketched in Table 5, Fig.25 and Fig.26. The desired

heading angle is 270◦, and the cruise speed is 1.0 m/s.

Table 5 reports the overshoot, settling time, RMS (root mean

square) and RMSE (root mean square error) of heading

using these two controllers. It is apparent that the overshoot

decreases 36% as well the steady-state error decreases 45%.

The experiment further shows that the fractional-order

PID controller has smaller steady-state error and overshoot.

2) DEPTH

The comparison of depth using fractional-order PID

and PID controllers on trial is sketched in Table 6,
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FIGURE 25. Comparison of the performance of heading angle using
FOPID and PID controllers

FIGURE 26. Comparison of the error of heading angle using FOPID and
PID controllers

TABLE 6. Performance matrix of depth on trail using FOPID and PID
controllers.

Fig.27 and Fig.28. The desired depth is 2.5m, and the cruise

speed is 1m/s. Table 6 reports the overshoot, settling time,

RMS and RMSE of depth using these two controllers. The

red dots indicate the depth employing fractional-order PID,

the blue dashed line indicates the depth employing PID,

and the black solid line indicates the desired depth. The

fractional-order PID has shorter settling time and lower over-

shoot than PID. Obviously, it shows that the fractional-order

PID improves the performance.

3) PATH FOLLOWING

The fractional-order PID controller is tested experimentally

in two different scenarios. In the first scenario, the AUV

follows the circle with the radius of 24m, and the cruise speed

FIGURE 27. Comparison of the performance of depth using FOPID and
PID controllers.

FIGURE 28. Comparison of the error of depth using FOPID and PID
controllers.

TABLE 7. Performance matrix of path following for a circle using FOPID
and PID controllers.

is 1m/s. The comparison using fractional-order PID and PID

controllers on sea trial is presented in Fig.29 and Table 7. The

red line with diamonds indicates the path following employ-

ing fractional-order PID, and the mean radius is 24.2922m.

The blue line with stars indicates the path following employ-

ing PID, and the mean radius is 24.7904m. The black line

indicates the desired path. The RMS errors are 0.4252m and

0.8728m, respectively. The fractional-order PID controller is

validated to enhance the performance and attain the lesser

overshoot.

Similarly, in the second scenario, the AUV follows the

square with a side of length of 100m and the cruise speed

is 1m/s. The comparison using fractional-order PID and PID
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FIGURE 29. Scenario 1: Performance of path following of circles using
FOPID and PID controllers.

FIGURE 30. Scenario 2: Performance of path following of squares using
FOPID and PID controllers.

controllers on trial is presented in Fig.30 and Fig.31. The red

line with diamonds indicates the path following employing

fractional-order PID, and the blue line with stars indicates

the path following employing PID. The black line indicates

the desired path. The red circle is the first target point,

and the green circle is the second target point. The RMS

errors are 2.4307m and 5.7728m, respectively. The average

relative errors are 0.6% and 1.4%, respectively. The error of

PID controller is more than twice as much as the fractional-

order PID controller.

When AUV moves along the desired path, the LOS (line-

of-sight) method is performed to calculate the desired head-

ing in real time. The desired heading is calculated according

to the real-time position of AUV, its projection on the desired

path and the lookahead distance. The comparisons of heading

angles using fractional-order PID and PID controllers are

illustrated in Fig.32 and Fig.33 respectively. The red rots

FIGURE 31. Scenario 2: Error of path following of squares using FOPID
and PID controllers.

FIGURE 32. Comparison of the performance of heading angle using
FOPID controller.

FIGURE 33. Comparison of the performance of heading angle using PID
controller.

indicate the measured heading via fractional-order PID and

the black line indicates the desired heading computed by

expected path. They are very close to each other. The blue

dashed line indicates the measured heading via PID and

the black line indicates the desired heading. Nevertheless,

the deviation between the measured heading and the desired
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heading is extremely large. Obviously, the performance of

heading affects AUV reaching its desired path. It can clearly

be seen that the performance of fractional-order PID con-

troller is superior to PID.

V. CONCLUSION

In this paper, a fractional-order PID using cloud-model-based

genetic algorithm is proposed. First, equations of motion in 6

freedoms of degree are established, which can be decoupled

into longitudinal and lateral motions. The transfer functions

of heading and pitch are deduced. The mathematical model

is simulated with MATLAB program. Second, fractional-

order PID controller has been designed for AUV, which

is successfully used in heading control, diving control and

path-following system on sea trial for the first time. The

fractional-order closed-loop system has proven to be stable.

By comparing simulations and experiments, the satisfactory

performance, such as overshoot, settling time and steady-

state error, has been achieved. Finally, a quantum genetic

algorithm combining with cloud model theory is proposed,

which is employed to tune parameters of fractional-order

controller. Compared with GA, the performance of CQGA

is tested by heading and pitch system. Owing to the random-

ness and stability tendency of cloud droplets, the crossover

operator andmutation operator can be effectively improved to

overcome the shortcomings of premature and slow searching

speed. Numerical simulations show that CQGA avoids the

pressure of selection, maintains the diversity of population in

chromosome coding and effectively adjusts the parameters of

the fractional-order PID controller.

In the future, CQGA will be carried out in practice, and

various ocean conditions will be taken into consideration.
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