
Citation: Li, G.; Chen, B.; Chen, H.;

Deng, W. Fractional-Order PIλDµ

Controller Using Adaptive Neural

Fuzzy Model for Course Control of

Underactuated Ships. Appl. Sci. 2022,

12, 5604. https://doi.org/10.3390/

app12115604

Academic Editor: Federico Divina

Received: 24 April 2022

Accepted: 30 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Fractional-Order PIλDµ Controller Using Adaptive Neural
Fuzzy Model for Course Control of Underactuated Ships
Guangyu Li 1, Baojie Chen 2, Huayue Chen 3,* and Wu Deng 4,5,*

1 School of Software, Dalian Jiaotong University, Dalian 116026, China; ligyu@djtu.edu.cn
2 Haifeng General Aviation Technology Company Ltd., Beijing 100070, China; chenbaojie@hfga.com.cn
3 School of Computer Science, China West Normal University, Nanchong 637002, China
4 School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
5 Traction Power State Key Laboratory of Southwest Jiaotong University, Chengdu 610031, China
* Correspondence: sunnyxiaoyue20@cwnu.edu.cn (H.C.); wdeng@cauc.edu.cn (W.D.)

Abstract: For the uncertainty caused by the time-varying modeling parameters with the sailing speed
in the course control of underactuated ships, a novel identification method based on an adaptive
neural fuzzy model (ANFM) is proposed to approximate the inverse dynamic characteristics of the
ship in this paper. This model adjusts both its own structure and parameters as it learns, and is
able to automatically partition the input space, determine the number of membership functions and
the number of fuzzy rules. The trained ANFM is used as an inverse controller, in parallel with a
fractional-order PIλDµ controller for the course control of underactuated ships. Meanwhile, the
sine wave curve and the sawtooth wave curve are considered as the input learning samples of
ANFM, respectively, and the inverse dynamics simulation experiments of the ship are carried out.
Two different ANFM structures are obtained, which are connected in parallel with the fractional-
order PIλDµ controller respectively to control the course of ship. The simulation results show
that the proposed method can effectively overcome the influence of uncertainty of ship modeling
parameters, track the desired course quickly and effectively, and has a good control effect. Finally,
comparative experiments of four different controllers are carried out, and the results show that the
FO PIλDµ controller using ANFM has the advantages of small overshoot, short adjustment time, and
precise control.

Keywords: adaptive neural fuzzy model; system identification; inverse dynamic characteristics;
fractional-order PIλDµ controller; underactuated ships; course control

1. Introduction

In recent years, the problem of motion control of underactuated ships has been a hot
research topic [1–6]. Ships rely on two control quantities, the turning torque generated by
the rudder device and the longitudinal propulsion force generated by the main propeller,
to simultaneously control the movement of the ship in three degrees of freedom in both
horizontal plane position and course, which constitute an underactuated system [7]. The
dynamics of underactuated ships have the characteristics of large inertia, large time delay,
nonlinearity, and the uncertainty problems which have always been concerned [8–11].
Changes in navigation conditions and the influence of external disturbances have caused
uncertainty in the parameters of the ship’s mathematical model and even structural per-
turbations, which have always been a problem for researchers [12–16]. However, most of
the existing linear or nonlinear ship’s motion control methods are required to be based
on accurate mathematical models, which affect the performance of the control system.
However, due to the uncertainties inherent in the controlled object of a ship, these methods
usually fail to achieve the expected research results. Therefore, it is very important to
explore new control methods to solve the uncertainty problem in ship motion control.
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Due to the complexity and uncertainty of the model of underactuated ships, artificial
neural networks can be used to approximate their inverse dynamic characteristics. Artificial
neural networks have approximation ability of any smooth nonlinear function with the re-
quired accuracy. The unique advantages of artificial neural networks make them powerful
tools for solving such problems. Many methods based on artificial neural networks can be
used in the design of autopilot for ships. These methods can be divided into two kinds. The
first one is to train the artificial neural networks controller using another controller [17–20].
The main problems with this method are that another well-known controller is required
and the lack of adaptation, because a supervisor controller based on a concrete regime is
designed. To improve this situation, the controllers designed for different operating condi-
tions can provide an alternative to adaptive control or gain scheduling in this application.
The second one is to use the artificial neural networks identification approach [21–28]. An
approximator based on artificial neural networks is proposed to evaluate the uncertain
parameters of the mathematical model of the ship for further controller design using other
control techniques. For example, adaptive backstepping and backstepping-based integral
sliding mode control were combined with artificial neural networks and achieved steering
control over the ship. A Radian Basic Function (RBF) neural network was proposed with
fuzzy logic control [29–35].

Taking advantage of the functional equivalence of neural networks and fuzzy logic
systems, the neural fuzzy stable adaptive control method can inherit the equivalent results
in adaptive control of neural networks, and the converse is also true. Neural fuzzy systems
are mainly divided into two categories: static neuro-fuzzy systems and dynamic neuro-
fuzzy systems. The static neural fuzzy system is a neural network implementation of the
conventional fuzzy logic system, and there are three main types of representative ones. The
first one, fuzzy adaptive learning control network (FALCON) [36], was first proposed by
Lin to study the hybrid structural, parametric learning strategy. FALCON integrates the
basic elements and functions of conventional fuzzy control into a connectionist structure,
constituting a forward multilayer neural network with a distributed learning structure.
The second one, a fuzzy basis function network (FBFN) [37] was proposed by Wang and
Menel. In a fuzzy basis function network, the fuzzy system is represented by a level
expansion of fuzzy basis functions, which is an algebraic iteration of the affiliation function.
Each fuzzy basis function represents a fuzzy rule. The third one, adaptive network-based
fuzzy inference system (ANFIS) [38] proposed by Jang, is similar to the T-S fuzzy model
in structure and function, and its fuzzy rule posterior is a linear combination of anterior
states. The cooperative neural fuzzy Inference System (CANFIS) is a generalization of
the single-output ANFIS with multi-output nonlinear fuzzy rules. Due to the functional
equivalence and the complementarity of the mechanism between the neural network and
the fuzzy system, the combination of the two, the neuro-fuzzy system, is widely used in the
field of ship motion control and has achieved certain results [39–46]. In [39], a feed-forward
multilayered architecture of artificial neural networks was proposed and applied to ap-
proximate the inverse model of the ship, which used a cost function to generate artificial
neural network training data. In [40], a controller based on an artificial neural network was
proposed for automatic ship docking. Furthermore, the structure of the artificial neural
network was optimized by genetic algorithm. By generating reliable docking data, the
simulation module of ship docking was established. In [41], a deep learning method was
applied in the ship trajectory data restoration of an automatic identification system. By
using bi-directional long short-term memory recurrent neural networks, when multiple
points were missing, ship trajectories could be restored. In [42], a corrective system based
on artificial neural networks was used for the coordinates of the ship’s position and pre-
dicting ship trajectory. In [43], a deep neural network based on long–short-term-memory
was proposed to identify a ship motion model and predict ship maneuvering motion.
In [44], a course controller based on two-multilayered feed-forward neural network was
proposed. The first neural network was used for the ship forward dynamic approximator,
and the second neural network was used for the ship’s course. In [47], a fuzzy PID control
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was applied to the ship’s autopilot. In [48], three fuzzy controllers were proposed to ship
berthing. The first one was used to control the longitudinal direction movement of ship
toward to the normal of wharf by propeller. The second one was used to compute the
relative bearing error with tugboat. The last one was designed for bringing the ship into
wharf. In [49], a scheme based on observer-based adaptive fuzzy-output feedback was
developed and applied for ship autopilot. In [50], to adjust the transient performance, a
fuzzy logic system was proposed. In addition, a linear course-keeping controller based on
second-order closed-loop gain shaping algorithm was designed. However, these methods
are generally based on static networks; the network structure is first determined or the
number of fuzzy rules is pre-given, then the modeling accuracy is evaluated using general-
ization errors and then directly used for ship motion control. Such algorithms inherently
have large uncertainties and limitations due to the use of trial-and-error methods or relying
on the knowledge of domain experts to determine structures or rules.

Digital PID autopilot is a commonly used controller for ship course control. However,
this automatic rudder is too sensitive for ship models and high-frequency disturbances,
which leads to frequent steering, and it is difficult to achieve a good control effect [47]. With
the development of control theory, fractional calculus theory [51] was used in controller
design, resulting in a fractional-order PIλDµ controller [52]. In 1999, Podlubny I first
proposed a fractional-order PIλDµ controller. The introduction of the integral order λ

and the differential order µ makes the controller have two more adjustable parameters,
making the controller more flexible and robust. In [53], Pritesh Shah introduced the design
and tuning methods of the fractional-order PIλDµ controller, and software tools were also
discussed. In [54], different types of variable-order fractional operators were defined and
fractional-order PIλDµ controllers for linear dynamical systems was designed. In [55],
Davut Izci introduced fractional-order PIλDµ controllers based on an opposition-based
hunger games search algorithm, and applied it to a magnetic ball suspension system. In [56],
a fractional-order PIλDµ controllers based on combination of Lévy flight distribution and
simulated annealing algorithms was applied for buck converters.

Considering the discussion provided above, in this article, we aim to propose a
network structure of adaptive neural fuzzy models to identify the inverse dynamics in
the course control of underactuated ships, taking the underactuated ships as the research
objects and addressing the uncertainty problem caused by the modeling parameters in
the ship’s course control with the time-varying sailing speed. The trained adaptive neural
fuzzy model is also used as an inverse controller in parallel with a fractional-order PIλDµ

controllers for ships’ course control. In order to illustrate the effectiveness of the proposed
design, comparative simulations are conducted to verify the advantages of the proposed
design. Above all, the main contributions can be summarized as follows:

(i) A novel identification method based on adaptive neural fuzzy model (ANFM) was
proposed to approximate the inverse dynamic characteristics of an underactuated
ship. The model had good generalization ability and could automatically divide
the input space, determine the number of membership functions and the number of
fuzzy rules.

(ii) Sine wave curve and sawtooth wave curve were used as input learning samples
of ANFM, respectively, and inverse dynamics simulation experiments of ship were
carried out to obtain two different sets of ANFM structures.

(iii) The trained ANFM was used as an inverse controller in parallel with a fractional-order
PIλDµ controllers. The ANFM-FOPID controller for course control was constructed
and the effectiveness was evaluated by simulation.

(iv) The effectiveness was further evaluated by comparative experiments of four different
controllers, which are the PID controller [57], the PID controller based on PSO algo-
rithm [58], the FO PIλDµ controller based on GA algorithm [59] and the FO PIλDµ

controller based on ANFM (proposed).
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2. Motion Model for Underactuated Ships

The ship movement has six degrees of freedom (DOF), which denote position and
direction. In the inertial frame, (x, y, z) denotes the position, and first-order differentiation
of (x, y, z) denotes translational motion along x, y and z. Surge, sway and heave are the
first three DOFs, (ϕ, θ, ψ) denotes the directions of ship, and first-order differentiation of
(ϕ, θ, ψ) denotes rotation of the ship. Roll, pitch and yaw are the last three DOF. The ship
motion description is shown in Figure 1.

Figure 1. Ship motion model.

For most control problems of ships, only sway, surge, and yaw are discussed. Therefore,
the ship’s motion is regarded as a plane motion with three degrees of freedom. The
maneuvering model of the ship [6] can be shown as:

.
x = u cos ψ− v sin ψ
.
y = u sin ψ + v cos ψ
.
ψ = r

(1)


.
u = m22

m11
vr− d11

m11
u + 1

m11
τu

.
v = −m11

m22
ur− d22

m22
v

.
r = m11−m22

m33
uv− d33

m33
r + 1

m33
τr

(2)

where x-surge, y-sway, ψ-course angle, u-surge velocity, v-sway velocity. r-yaw velocity;
τu-longitudinal force of propeller, τr-the torque of propeller; m11, m22, m33, d11, d22 and d33
are uncertainty parameters.

For course control of ships, the nonlinear model is a dynamic system. The responding
nonlinear ship model is shown in Figure 2. Input is rudder angle δ, output is course angle
ψ. By capturing the ship dynamics from δ→

.
ψ→ ψ , the differential equation retains non-

linear influences and allows wind and wave disturbances to be converted into a disturbing
rudder angle δD as an input signal that enters the ship model with the actual rudder
angle δ.

The Norrbin nonlinear model [57] for course control of underactuated ships can be
expressed as

..
ψ = −a1

.
ψ− a2

.
ψ

3
+ bδ (3)

where ψ and δ are the course angle and the control rudder angle respectively. a1 = αb,
a2 = βb, b = K/T are model parameters, K and T are ship indices, α and β are non-
linear coefficients, parameter K is proportional to speed V, while parameter T is inversely
proportional to speed V.
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Figure 2. Responding nonlinear ship model.

The model uncertainty conditions discussed in this section refer to the problem of
uncertainty in the four parameters K, T, α, β mentioned above that vary with the speed V,
thus causing a time-varying uncertainty in the modeling parameters.

Based on the NARX model [60], without considering the noise, Equation (3) can be
discretized and transformed as follows,

ψ(k + 1) = c1ψ(k) + c2ψ(k− 1)+c3ψ(k− 2)+
c4[ψ(k− 1)− ψ(k− 2)]3 + c5δ(k− 2)

(4)

where c1 = 2, c2 = −(1 + a1h), c3 = a1h, c4 = −a2/h, c5 = bh2, h is the sampling period
and k is the sampling moment. Obviously, the variation of parameters K, T, α, β lead to
the variation of parameter ci(i = 1, · · · , 5), which makes the mathematical model of ship
course control uncertain.

By deforming Equation (4) and simplifying the problem, the inverse model of the
ship’s motion can be deduced as

δ(k + 1) = d1ψ(k) + d2ψ(k− 1) + d3ψ(k− 2) + d4[ψ(k)− ψ(k− 1)]3 (5)

where d1 = (1 + a1h)/bh2, d2 = −(2 + a1h)/bh2, d3 = 1/bh2, d4 = a2/bh3.

3. Adaptive Neural Fuzzy Model

The adaptive neural fuzzy model (ANFM) proposed in this paper is a neural network
implementation of a dynamic fuzzy logic system. Because dynamic fuzzy logic systems
contain feedback of states or output quantities, their connectionist structure corresponds
to recurrent neural networks (RRN). Therefore, ANFM is more suitable for modeling and
control of nonlinear dynamic systems. This paper proposes an ANFM for approximating
the inverse dynamics of the ship’s course. The “adaptive” nature of ANFM means that
the structure of the model is not pre-determined, but adjusted simultaneously with the
parameters as it is learned. Meanwhile, the number of fuzzy rules is also uncertain, the
fuzzy rules grow gradually during the learning process, the number of rules does not
increase with the number of input variables, and automatic modeling can be achieved
without the need for expert knowledge.

3.1. ANFM Structure

In Figure 3, the structure of ANFM is a “deformed” RBF neural network, which is
functionally equivalent to a T-S fuzzy model. The “deformation” mainly refers to the fact
that the network has more than three layers, and the weights are a function of the input
and not constants.
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Figure 3. ANFM structure.

Layer 1: The input layer, where each node represents an input linguistic variable
respectively, and the total number of input variables is r. In this paper, the output course
angle ψ(k) generated by the ship, its previous step ψ(k− 1) and rudder angle δ(k) are used
as sample data for the training of ANFM.

Layer 2: The membership function layer, where each node represents a respective RBF
membership function. In this paper, the Gaussian function is chosen as the membership
function of ANFM.

µij(xi) = exp[−
(xi − cij)

2

σ2
j

] (6)

where, µij is the jth membership function of xi, cij is the center of the jth Gaussian member-
ship function of xi, σj is the width of the jth Gaussian membership function of xi, and u is
the number of membership functions for each variable.

Layer 3: the fuzzy rule layer, where each node represents a possible antecedent of
a fuzzy rule, namely the IF part. Here, the T-norm product operator is used, which is
multiplied by the Gaussian membership function of each input variable, and the width of
the membership function of each variable corresponding to each rule is the same.

ϕj = exp[−
∑r

i=1 (xi − cij)
2

σj
2 ] (7)

Which is

ϕj = exp[−
‖X− Cj‖2

σ2
j

] (8)

where, X = (x1, x2, · · · , xr) ∈ <r, Cj =
(
c1j, c2j, · · · , crj

)
∈ <r is the center of the jth RBF

neural unit. In terms of neural networks, each node in the layer is an RBF neural unit
node and the number of neural units is time-varying in the dynamic process. Therefore, in
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ANFM, the number of RBF neural unit nodes is equal to the number of rules of the fuzzy
system, and the two concepts are interchangeable.

Layer 4: Normalization layer, where each node represents an N node respectively.
Each N node is the output of its corresponding previous layer of rules as a proportion of
the sum of the outputs of all rules. It is easy to know that the number of N nodes is equal
to the number of fuzzy rules. The output of the jth node Nj is

φj =
ϕj

∑u
k=1 ϕk

(9)

Layer 5: The output layer, where each node represents a respective output variable.
This layer represents the latter part of the fuzzy rule, namely the THEN part. In this paper,
only the single output mode is used as an example for derivation. The output of ANFM
is a linear superposition of all the input signals of the previous layer according to the
connection weights.

y(X) = ∑u
k=1 ωkφk (10)

where, y is the output variable and ωk is the connection weight of the kth (k = 1, 2, · · · , u)
rule. In ANFM, the connection weights are not simply real constants, but a function of all
input variables about the whole ANFM, expressed as a linear combination of each input vari-
able according to a corresponding set of weight coefficients, with the following expression.

ωk = ak0 + ak1x1 + ak2x2 + · · ·+ akrxr (11)

Substituting Equations (8), (9) and (11) into Equation (10), the detailed expression for
the output variable is obtained as

y(X) =
∑u

i=1[(ai0 + ai1x1 + · · ·+ airxr)exp(− ‖X−Cj‖2

σ2
i

)]

∑u
i=1 exp(− ‖X−Cj‖2

σ2
i

)

(12)

The “adaptive” nature of ANFM focuses on the number of membership functions for
each input variable in layer 2, the number of fuzzy rules or RBF neural units in layer 3, the
number of normalized nodes in layer 4 and the number of connection weights in layer 5, all
of which are equal and time-varying, denoted here by u. During the modeling or control
process, u is constantly changing according to a specific learning algorithm, so that the
entire middle three layers of the ANFM structure is also constantly changing, thus being
able to learn the uncertainty of the ship model and thus produce the appropriate output to
obtain a satisfactory modeling result.

3.2. ANFM Learning Algorithm

Because the structure of the 2nd, 3rd and 4th layers of ANFM changes all the time,
the learning algorithm of ANFM in this paper identifies the structure of ANFM from three
aspects: generating fuzzy rules, determining weights and pruning fuzzy rules, so that it
can automatically to determine the fuzzy rules and achieve the specific performance of
the system.

3.2.1. Generation of Fuzzy Rules

In ANFM, the number of fuzzy rules directly affects the identification ability of the
system. Too few fuzzy rules will not fully encompass the input/output state space and the
performance of ANFM will deteriorate; too many fuzzy rules will increase the complexity
of the system and lead to poor generalization of ANFM. Therefore, output error is an
important factor in determining whether a new rule should be generated.
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For the ith observation (Xi, oi), where Xi is the input vector and oi is the desired
output, the full output yi of the existing structure of ANFM can be calculated according to
Equation (12).

‖ei‖ = ‖oi − yi‖ (13)

If ‖ei‖ > ke, add a new rule. Here ke is the error index, the value of which is predeter-
mined according to the desired accuracy of ANFM.

In addition, the coverage of the Gaussian function is another important factor in
determining whether a new rule should be added.

For the ith observation (Xi, oi), calculate the distance di(j) between the input value Xi
and the centre Cj of the existing RBF neural unit, that is

di(j) = ‖Xi − Cj‖ (14)

Find out
dmin = argmin(di(j)) (15)

and this dmin is the coverage scope. If dmin > kd, a new fuzzy rule should be considered.
Otherwise, the observed data Xi can then be represented by the nearest available RBF
neural unit. Here kd denotes the effective radius of dmin.

Thus, the error index ke and the effective radius kd play important roles in determining
the generation of new rules. In this paper, we adopt the idea of “graded learning” [61],
based on a monotonically decreasing function, gradually reducing the error index ke and
the effective radius kd of each RBF neural unit as follows.

ke = max[emax × βi, emin] (16)

kd = max[dmax × γi, dmin] (17)

where emax is the predefined maximum error, emin is the desired accuracy of ANFM, and
0 < β < 1 is the convergence constant; dmax is the maximum length of the input space,
dmin is the minimum length, and 0 < γ < 1 is the decay constant. These parameters will
be set prior to the ANFM learning. The key idea of graded learning is to first determine
the position that generates a large output error without being covered by the existing
fuzzy rules. This stage is called rough learning. When ke and kd reaches emin and dmin,
respectively, this stage is called detailed learning. Because the width of the RBF unit is
very important for the generalization capacity of the system, the width is too small to fully
divide the input space, making the system’s generalization ability worse. The width is too
large and easily falls into saturation, and the correct output cannot be produced. Therefore,
the initial parameters of the new rules are determined by the formulas.

Ci = Xi (18)

σi = ks × dmin (19)

where, ks is a predetermined overlap factor; the width of the first rules is also a pre-set
constant. From (16) and (17), it can be seen that graded learning is the transition process
from rough to detailed learning. Only when ‖ei‖ > ke and dmin > kd, an additional fuzzy
rule is needed. For the other three cases, the followings are discussed:

(i) ‖ei‖ ≤ ke and dmin ≤ kd, ANFM can fully accommodate the observation data, no need
to do anything;

(ii) ‖ei‖ ≤ ke and dmin > kd, this situation indicates that the establishment of ANFM
has a good generalization ability, and only the parameters of the post-rules need to
be adjusted;

(iii) ‖ei‖ > ke and dmin ≤ kd, this situation indicates that the generalization ability of the
RBF neural unit covering Xi is not very good. Therefore, the RBF neural unit and
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results parameters will be updated at the same time. For the kth RBF neural unit
closest to Xi, adjust by the following equation.

σi
k = kω × σi−1

k (20)

where, kω is a pre-set constant and kω > 1.

3.2.2. Determination of Weights

Assuming that n observations produce u fuzzy rules, the network output of the fourth
layer can be obtained from Equation (9), which can be expressed in matrix form as follows.

φ =

φ11 · · · φ1n
...

...
...

φu1 · · · φun

 (21)

For any input Xj
(
x1j, x2j, · · · xrj

)
, the output yj of the system is calculated from

Equation (10), which can be rewritten in compact form as follows.

Y = WΨ (22)

Ẽ = ||O−Y|| (23)

where W and Ψ are given by the following equation,

W =
(
a10 · · · au0 a11 · · · au1 · · · a1r · · · aur

)
(24)

Ψ =



φ11 · · · φ1n
...

...
...

φu1 · · · φun
φ11 · x11 · · · φ1n · x1n

...
...

...
φu1 · x11 · · · φun · x1n

...
...

...
φ11 · xr1 · · · φ1n · xrn

...
...

...
φu1 · xr1 · · · φun · xrn



(25)

The ideal output is assumed to be O = (o1, o2, · · · , on) ∈ <n. The Linear least-square
is used to approximate an optimal weight vector Ψ∗ ∈ <u×(r+1), such that the error is
minimized.

W∗ = O(ΨTΨ)
−1

ΨT (26)

3.2.3. Pruning of Fuzzy Rules

Pruning techniques are necessary for the identification of dynamic time-varying
nonlinear systems in order to avoid overfitting. In this section, the error rate of decline
method [62] is used to prune the fuzzy rules, and the basis for pruning is the importance of
the fuzzy rules.

Given n pairs of input/output data (Xi, oi), i = 1, 2, · · · , n, Equations (22) and (23) are
used as a special case of the linear regression model.

D = Hθ + E (27)

where, D = OT ∈ <n is the desired output, H = ΨT = (h1 · · · hv) ∈ <n×v, v = u× (r + 1)
is called the regression vector, θ = WT ∈ Rv contains the parameters and E ∈ Rn is
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assumed to be an error vector uncorrelated with the regression quantity hi. For a matrix H,
by QR decomposition.

H = QA (28)

Substituting Equation (28) into Equation (27) gives

D = QAθ + E = QG + E (29)

The linear least-squares solution for G is

G = (QTQ)
−1

QT D (30)

Or

gi =
qT

i D
qT

i qi
(31)

where, i = 1, 2, · · · , v and G and θ satisfy the following equations.

Aθ = G (32)

when i 6= j, since qi and qj are orthogonal, the sum of squares of D is given by

DT D = ∑v
i=1 g2

i qT
i qi + ETE (33)

After removing the mean, the variance of D is given by the following equation.

n−1DT D = n−1 ∑v
i=1 g2

i qT
i qi + n−1ETE (34)

Therefore, the rate of error decline can be defined as

erri =
g2

i qT
i qi

DT D
(35)

Substituting Equation (31) into Equation (35), we get

erri =
(qT

i D)
2

qT
i qiDT D

(36)

Let φi be the angle between vector qi and D. Then

cos2φi = erri =
(qT

i D)
2

qT
i qiDT D

(37)

If φi = 0 and erri = 1, it means that the influence is maximum. Otherwise φi = 90◦, if
erri = 0, the two vectors are orthogonal, indicating that qi has no effect on D.

Rearrange the newly obtain erri(i = 1, 2, · · · (r + 1)u) into a matrix ∆ = (δ1, δ2, · · · , δu) ∈
<(r+1)×u, the ith column δi of ∆ is the (r + 1) error rate of decline associated with the ith
rule. Further definition is

ηi =

√
δT

i δi

r + 1
(38)

It can be seen that ηi reflects the importance of the ith rule: the larger the value of ηi,
the more important the ith rule is. If ηi < kerr then the ith rule can be eliminated. kerr is a
pre-defined threshold value.

The flowchart of ANFM algorithm is shown in Figure 4.
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Figure 4. Flow of ANFM learning algorithm.

4. Inverse Model Identification of Ship Motion

According to Equation (5), the process of ANFM learning is shown in Figure 5. ANFM
is used to learn the inverse model of ship course control with time-varying uncertainty in
the modelling parameters, namely the dynamics of ψ→ δ .

Figure 5. Progress of ANFM learning.

When learning, the system first generates suitable sample data (Xi, oi). Here Xi and oi
denote the input and output values of the ANFM corresponding to the ith sample data,
respectively. For the generation of sample data, sine and sawtooth waves can be used in
this paper. The ship module in the figure is set to model conditions where the parameters K,
T, α, β are time-varying with speed V. Let the input data of the ship be δ(k), and each input
rudder angle δ(k) produces an output course response ψ(k) within a certain learning time
Nk. ψ(k) together with its previous step ψ(k− 1) and δ(k) are used as the input quantity
of the ANFM learning algorithm module for determining the structure of ANFM, namely
the number of fuzzy rules at each moment, and further from which the center Cj, the
width σj and the weight matrix W of the output layer of each fuzzy rule, namely the RBF
neural unit, are determined. The identification of ANFM as ψ(k) and ψ(k− 1) as two input
quantities is to expand the sample learning range of ANFM, thus effectively improving its
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generalization ability. Once the learning algorithm has determined these parameters, the
ANFM response module produces the corresponding network output values δANFM(k).
The difference between the input rudder angle of the ship δ(k) and the output rudder angle
of ANFM δANFM(k) is the discrimination error err(k), which characterizes the learning
efficiency and approximation performance of ANFM. ANFM is considered to be able to
approximate the inverse dynamics of ψ→ δ for ship course control during this learning
process when err(k) enters within the set desired error range [−errd, errd] and can be
maintained until the end of learning. The trained ANFM can fix the network structure,
that is, the number of RBF nodes in the third layer, and further use it in the online control
system in the next stage.

The flowchart of the dynamic approximation inverse dynamics model is shown in
Figure 6. After the training, the model can be obtained and the number of fuzzy rules and
the initial weights, centers and widths are obtained for the following work.

Figure 6. Flow of the approximation process.

5. Course Control Based on ANF-FOPID Controller

5.1. FO PIλDµ Controller

There are four main types of representative fractional-order controllers: the TID con-
troller [63], the CRONE controller [64], the fractional-order PIλDµ controller and the lead
lag compensator [65]. This paper adopts the fractional-order PIλDµ controller proposed
by Podlubny I. Compared with the traditional PID controller, the fractional-order PIλDµ

controller has two more parameters, namely the integral order λ and differential order µ
make the control system more flexible and robust. The fractional-order PIλDµ controller
transfer function is

Gc(s) = Kp +
Ki

sλ
+ Kdsµ (39)

λ > 0, µ > 0 is the order of the controller, taking any real number.
In order to apply the theory of integer-order controllers to fractional-order controllers,

the fractional-order calculus needs to be approximated to integer order. This paper uses a
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modified Oustaloup approximation [66] to construct a continuous rational transfer function
model for the fractional order calculus operator sα, in the fitted frequency range (ωb, ωh).

G(s) = K
(

ds2 + bωhs
d(1− α)s2 + bωhs + dα

) N

∏
k=−N

1 + s/ω′k
1 + s/ωk

(40)

where K = (ωbωh)
α, ωk and ω′k are given by

ω′k =

(
b
d

) 2k−α
2N+1

ωh
N+k+ 1

2 (1−α)

2N+1 ωb
N−k+ 1

2 (1+α)

2N+1 (41)

ωk =

(
b
d

) 2k+α
2N+1

ωh
N+k+ 1

2 (1+α)

2N+1 ωb
N−k+ 1

2 (1−α)

2N+1 (42)

5.2. Course Control Based on ANF-FOPID Controller

The ANFM trained in Section 4 is connected in parallel with the FO PIλDµ controller
to construct ANF-FOPID controller for ship course control. The structure of ANF-FOPID
controller is shown in Figure 7.

Figure 7. ANF-FOPID control system.

After learning the inverse dynamics model of the ship course, the ANFM I with trained
structure and parameters is obtained and copied into ANFM II, as shown in the dashed
box in the Figure 7, and connected in parallel with the FO PIλDµ controller (ANF-FOPID
controller) to achieve course control of ship.

In the control process, an adaptive law with the output of the FO PIλDµ controller as
the independent variable is introduced to update the ANFM output layer weight matrix
W online to compensate for modelling errors and to cope with the effects of time-varying
uncertainty in the modelling parameters. ANF-FOPID controller generates the control
input rudder angle δ as

δ = δFOPID + δANFM (43)

In which, ANFM is used to generate the control compensation signal and is the master
controller, the detailed expression of which is shown in Equation (22). The FO PIλDµ

controller is introduced to achieve faster and more accurate tracking performance and to
ensure reliable control.

The squared error term between the expected control quantity and the actual control
quantity of ANFM is

E(k) =
1
2
[δ(k)− δANFM(k)]2 (44)
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Substituting Equation (44), that is

E(k) =
1
2

δ2
FOPID(k) (45)

The adaptive law for designing the online adjustment weight matrix W using the
gradient descent method is as follows,

W(k + 1) = W(k)− η
∂E(k)
∂W(k)

(46)

where, η > 0 is the learning rate.
From Equations (22), (44) and (46), it follows that

∂E(k)
∂W(k)

=
∂E(k)

∂δANFM(k)
· ∂δANFM(k)

∂W(k)
(47)

that is
∂E(k)
∂W(k)

= −[δ(k)− δANFM(k)] ·Ψ(k) (48)

The adaptive law is as follows, which is expressed as a function of the output of the
fractional PIλDµ controller and the output matrix vector of the ANFM normalization layer:

W(k + 1) = W(k) + ηδFOPID(k) ·Ψ(k) (49)

Therefore, the ANF-FOPID controller achieves online control of the course by adjusting
the output layer weight matrix of the ANFM that meets the training requirements, in
conjunction with the FO PIλDµ controller.

6. Simulations

In this paper, the simulation is conducted with the real ship data of COSCO 5446
TEU, a large container ship. As the ship uncertainty parameters K, T, α, β vary with the
speed V, the values of parameters K, T, α, β corresponding to different speeds between
V = 16.3 knots and V = 27.1 knots(1 knot = 1.852 km/h) can be derived from the ship
state space model and the maneuverability of the ship [67], as shown in Table 1.

Table 1. Uncertain model parameters under different ship speed V.

V (Konts) K T α β

27.1 0.2676 186.9556 10.4915 7.5343
26.5 0.2617 191.1885 10.7291 8.0578
24.5 0.2419 206.7958 11.6049 10.1966
22.5 0.2222 225.1776 12.6366 13.1644
19.8 0.1955 255.8837 14.3601 19.3172
17.8 0.1758 284.6346 15.9748 26.5858
16.3 0.1609 310.8280 17.4475 34.6171

To identify the inverse dynamics of the ship’s course according to Figure 5, the simu-
lation time is taken to be Nk = 600 s, and the ship’s working condition is assumed to be
a smooth acceleration state, namely the speed is kept at V = 16.3 knot during the initial
120 s of the simulation, and as the speed is constant, the modeling parameters at this time
are taken to correspond to the constant values in Table 1. During the 121~480 s of the simu-
lation, the ship gradually accelerates from V = 16.3 knot to V = 27.1 knot. The change in
speed causes a change in the modelling parameters, and this section linearizes the trend
according to the values of each parameter corresponding to the speed V = 16.3 knot and
V = 27.1 knot in Table 1. And during the period 481~600 s of the simulation, the speed was
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kept at V = 27.1 knot. The speed change curve is shown in Figure 8, and the uncertainty
parameters K, T, α, β at different speeds are shown in Figure 9.

Figure 8. Changing curve of ship speed V.

Figure 9. Changing curve of uncertain parameters T, α, βV.

After the uncertainty condition is set, the input rudder angle signal is generated in
Figure 5. As the rudder angle variation range is generally between [−35◦, 35◦], in order to
ensure the training data contain as wide a range of inputs as possible, the control rudder
angle is first taken to be a sin wave curve as follows,

δ(k) = 35sin(2πk/600) (50)

where k ∈ [0, 600] is the training time, and let the simulation step h = 1 s. The output ψ(k)
generated by the ship, its previous step ψ(k− 1) and δ(k) are used as sample data for the
training of ANFM. That is

(Xi, oi) = ((ψ(k), ψ(k− 1)), δ(k)) (51)

Take the pre-set parameters for ANFM as follows: emax = 5, emin = 0.1, β = 0.9764,
dmax = 251.2381, dmin = 0.2, γ = 0.9809, σ0 = 106.1584, ks = 2, kω = 1.05, kerr = 0.0001.
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And the learning accuracy is set to errd = 0.01. In doing so, ANFM continuously approxi-
mates the inverse dynamics of the ship under uncertainty.

The input sine wave curve is shown in Figure 10 and the simulation results are shown
in Figures 11–14.

Figure 10. Input samples curve of sine wave.

Figure 11. Comparison curve between input samples and ANFM actual outputs.

Figure 12. Generating fuzzy rules in training.
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Figure 13. Output error in training.

Figure 14. Root mean squared error in training.

The approximation between the input rudder angle and the output rudder angle of
the ANFM is given in Figure 11. From Figure 11, the ANFM shows a strong approximation
capability, with its output rudder angle almost always covering the ideal rudder angle.
Figure 12 gives the changes in the structure of ANFM during the learning process. Rule
numbers indicate the number of fuzzy rules in the third layer of ANFM or the number of
RBF neural units in that layer. In Figure 12, the number of fuzzy rules gradually increases
from 1 to 8, and then is pruned to 6 and saved until the end of the final learning, from
which it can be argued that ANFM requires only six fuzzy rules, or only six RBF neural
units to describe the inverse dynamics of ψ→ δ when the learning is complete. This result
largely reflects the simplicity of the ANFM structure. From Figures 13 and 14, the errors are
always kept within a reasonable error margin, indicating that ANFM can adequately learn
the ψ→ δ inverse dynamics of ship course control. Through offline learning, the initial
values of the center C, width σ and weight matrix W of each ANFM rule at this point are
the corresponding values at the end of offline learning, respectively, as follows

C =

[
3.9551 43.3226 138.7384 321.2632 304.0374 294.7533
2.9910 42.7975 137.8617 322.2676 305.1702 295.9340

]
(52)

σ =
[
405.39 111.97 269.37 38.477 14.531 26.192

]
(53)
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W =

−562.799 89.394 −156.248 1154.4 46.487 48.629
86.734 −35.134 −75.125 20.336 20.771 21.047
−85.027 35.127 −86.289 71.988 −20.496 −20.938

 (54)

To further verify the effectiveness of the ANFM structure, the paper then takes the
input rudder angle as a sawtooth wave curve, with the rudder angle varying between
[−35◦, 35◦].

δ(k) =


7k/24, 0 ≤ k < 120
−7k/24 + 70, 120 ≤ k < 360
7k/24 + 140, 360 ≤ k ≤ 600

(55)

The preset parameters of ANFM are kept constant and the input sawtooth wave curve
is shown in Figure 15 and the simulation results are shown in Figures 16–19.

Figure 15. Input samples curve of sawtooth wave.

Figure 16. Comparison curve between input samples and ANFM actual outputs.

Figure 17. Generating fuzzy rules in training.
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Figure 18. Output error in training.

Figure 19. Root-mean-squared error in training.

As can be seen from the figure, the number of fuzzy rules gradually increases from 1
to 13 and then is pruned to 7 and saved until the end of the final learning, from which it
can be argued that ANFM requires only seven fuzzy rules, or only seven RBF neural units,
to describe the inverse dynamics of ψ→ δ after the learning is complete. Through offline
learning, the initial values of the center C, width σ and weight matrix W of each ANFM
rule at this point are the corresponding values at the end of offline learning, respectively, as
follows

C =

[
3.9551 40.4649 135.5329 231.7632 304.0374 78.9814 84.1322
2.9910 39.8792 134.6732 231.5733 305.1702 80.3030 85.4312

]
(56)

σ =
[
205.68 103.80 268.51 273.13 111.67 20.016 13.031

]
(57)

W =

−584.013 87.696 −215.734 1280.1 37.295 35.594 43.125
90.3475 −34.491 85.637 −79.283 21.341 21.262 25.173
−88.312 34.463 −85.267 75.568 −21.474 −21.387 −25.323

 (58)

The parameters of the fractional-order PIλDµ controller are taken to be: Kp = 0.083,
Ki = 0.02, Kd = 1.23, λ = 0.012, µ = 0.93, learning rate η = 0.04, and the fractional-order
calculus operator fitting frequency range (ωb, ωh) is set to (0.001, 1000), while the weight
matrix W of ANFM is adjusted online by Equation (49). The initial values of the different
the center C, width σ and weight matrix W obtained from the two different input learning
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samples mentioned above are used as structural parameters for ANFM respectively. Set
the desired course angle to be tracked to

ψd(k) =


30◦, 0 ≤ k < 120
45◦, 120 ≤ k < 360
60◦, 360 ≤ k ≤ 600

(59)

The initial course angle is taken as 0◦ and the left rudder is positive. It can be seen from
Equation (59) that, while the modelling parameters are time-varying, the desired course
angle is not perfectly synchronized with the speed and modeling parameters and is also
time-varying in segments. The setting of this variation rule is to appropriately increase the
difficulty of the control problem and to verify the adaptation of the ANF-FOPID controller
to uncertainty.

The course tracking control curves with different learning samples are shown in
Figures 20 and 21 and the control effects are shown in Tables 2 and 3.

Figure 20. Course-tracking curves in two different learning samples.

Figure 21. Rudder curves in two different learning samples.

Table 2. Performance in learning sample of Sine wave.

Sine Wave Adjust Time ts Rise Time tr Overshoot M Ess

30◦ 32 18 4.27% 0.09
45◦ 52 16 3.31% 0.02
60◦ 43 18 2.93% 0.08
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Table 3. Performance in learning sample of sawtooth wave.

Sawtooth Wave Adjust Time ts Rise Time tr Overshoot M Ess

30◦ 57 17 2.64% 0.31
45◦ 55 16 2.49% 0.018
60◦ 51 23 2.02% 0.051

It can be seen from Figures 20 and 21 and Tables 2 and 3, the ANF-FOPID controller
can drive the ship to respond quickly to the desired course angle by first generating a
maximum control rudder angle and then gradually reducing it and enabling the ship to
accurately track the desired course ψd. When the desired course angle setting is changed,
the control effect has some oscillation, but the actual course of the ship can achieve fast and
dynamic tracking with little overshoot. It is shown that the ANF-FOPID controller based
on the ANFM offline learning mode can overcome the influence of uncertainty conditions
arising from the variation of modeling parameters with speed and achieve satisfactory
control results.

In order to fully validate the effectiveness of the ANF-FOPID controller, four different
control strategies are used for ship course, which are the PID controller [57], the PID
controller based on PSO algorithm [58], the FO PIλDµ controller based on GA algorithm [59]
and the FO PIλDµ controller based on ANFM (proposed). The ship’s speed increases from
V = 19.8 knots to V = 24.5 knots at a constant speed, the maximum rudder angle restricts
to −35◦ to +35◦, and desired course angle is 30◦ when time is 0–600 s. The comparison
results can be seen in Figures 22 and 23 and Table 4.

Figure 22. Comparison of course keeping using four different controllers.

Figure 23. Comparison of rudder angle using four different controllers.
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Table 4. Performance of four different controllers.

Controller Type Adjust Time ts Rise Time tr Overshoot M Ess

ANFM -FOPID
(proposed) 32 18 4.27% 0.009

PSO-PID 416 67 31.16% 0.024
PID 519 71 14.25% 0.007

GA-FOPID 163 65 9.53% 0.086

The simulation results show that the FO PIλDµ controller based on ANFM (proposed)
has significantly better control effect than the automatic rudder PID controller, PID con-
troller based on PSO algorithm and FO PIλDµ controller based on GA algorithm. The FO
PIλDµ controller based on ANFM has the advantages of small overshoot, short adjustment
time, and accurate control.

7. Conclusions

This paper has discussed the construction of a novel identification method based
on ANFM for approximating the inverse dynamics of the ship’s course motion. Firstly,
the simulation experiments of ship inverse dynamics have been carried out and obtained
two groups of different ANFM structures by using sine wave curve and sawtooth wave
curve as input learning samples of ANFM, respectively. The results have shown that
the ANFM had a strong approximation capability, with its output rudder angle almost
always covering the ideal rudder angle. Secondly, the trained ANFM has been used as
inverse controller, and the fractional-order PIλDµ controller has been connected in parallel
for course tracking control of underactuated ships. The simulation results have shown
that the proposed method can effectively overcome the influence of uncertainty of ship
modeling parameters, track the desired course quickly and effectively, and had a good
control effect. Finally, in ship course control, the effectiveness has been further evaluated by
comparative experiments of four different controllers, which are the PID controller, the PID
controller based on PSO algorithm, the FO PIλDµ controller based on GA algorithm and
the FO PIλDµ controller based on ANFM (proposed).In terms of future works, because the
system needs to set the trend of uncertain parameters artificially, and the control conditions
and training conditions should be the same, but tend to be idealized, the online control
mode after offline learning shows certain limitations. This method does not guarantee
good control when the uncertainties no longer vary according to the established working
conditions. To solve this problem, the next step is to change to an online control model,
where modeling and control are carried out simultaneously to achieve full adaptivity of the
intelligent controller in order to improve the generalization capability and control efficiency
of ANFM and to cope with the effects of non-normative uncertainties.
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