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Abstract— A fractional-order [proportional derivative] (FO-[PD])
controller is proposed for robust motion control systems. Focusing on
a class of simplified models for motion control systems, a practical
and systematic tuning procedure has been developed for the proposed
FO-[PD] controller synthesis. The fairness issue in comparing with
other controllers such as the traditional integer order PID (IO-PID)
controller and the fractional order proportional derivative (FO-PD)
controller has been for the first time addressed under the same number
of design parameters and the same specifications. Side-to-side fair
comparisons of the three controllers (i.e., IO-PID, FO-PD and FO-
[PD]) via both simulation and experimental tests have revealed some
interesting facts: 1) IO-PID controller designed may not always be
stabilizing to achieve flat-phase specification while both FO-PD and
FO-[PD] controllers designed are always stabilizing; 2) Both FO-PD
and FO-[PD] controllers outperform IO-PID controller designed in this
paper; 3) FO-[PD] controller outperforms FO-PD controller more when
the time constant of the motion control system increases. Extensive
validation tests on our real-time experimental test-bench illustrate the
same.

Index Terms— Fractional calculus; fractional order controller; mo-
tion control; robustness; controller tuning.

I. INTRODUCTION

In recent years, the application of fractional calculus have been
attracting more and more researches in science and engineering
[1] [2] [3] [4] [5]. Especially, the controllers making use of factional
order derivatives and integrals could achieve better performance and
robustness results over the conventional integer order controllers [6].
The fractional order PID controller was proposed in [2] as a
generalization of PID controller, where the expanding derivatives
and integrals to fractional orders can adjust the frequency response
of the control system directly and continuously. This great flexibility
makes it possible to demonstrate better performance and more
robust control in comparison with the traditional PID controller.
Reference [7] gives a fractional order PID controller by minimizing
the integral of the error squares. Some numerical examples of
the fractional order were presented in [8]. However, it is not
straightforward to set the parameters of the fractional order con-
trollers in systematic way because of the complexity [9][10][11][8].
Moreover, designing the fractional order PID controller properly
and comparing it with the traditional integer order PID controller
fairly to illustrate the advantage potential of the fractional calculus
is even more complicated. But we may be able to get a practical
parameters tuning scheme of fractional order controller for a certain
type of simplified motion control systems.

In this paper, a fractional-order [proportional derivative] (FO-
[PD]) controller is proposed for robust motion control systems.
Focusing on a class of simplified models for motion control
systems, a practical and systematic tuning procedure has been
developed for the proposed FO-[PD] controller synthesis. The
fairness issue in comparing with other controllers such as the
traditional integer order PID (IO-PID) controller and the fractional
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order proportional derivative (FO-PD) [6] controller has been for the
first time addressed under the same number of design parameters
and the same specifications. Side-to-side fair comparisons of the
three controllers (i.e., IO-PID, FO-PD and FO-[PD]) via both
simulation and experimental tests have revealed some interesting
facts: 1) IO-PID controller designed may not always be stabilizing
to achieve flat-phase specification while both FO-PD and FO-[PD]
controllers designed are always stabilizing; 2) Both FO-PD and
FO-[PD] controllers outperform IO-PID controller designed in this
paper; 3) FO-[PD] controller outperforms FO-PD controller more
when the time constant of the motion control system increases.
Extensive validation tests on our real-time experimental test-bench
illustrate the same.

II. THE MOTION CONTROL SYSTEM CONCERNED AND THE

SPECIFICATIONS FOR THE THREE CONTROLLERS DESIGN

A. The Motion Control System Considered

The motion control system focused on in this paper is

P (s) =
1

s(Ts + 1)
. (1)

which can approximately model a DC motor position servo system.
Note that, the plant gain is normalized to 1 without loss of generality
since the DC gain of the system concerned can be incorporated in
the proportional factor of the controller.

B. The Forms of the Three Controllers Discussed

As we know, the traditional integer order PID controller has the
following form of transfer function,

C1(s) = Kp1(1 +
Ki1

s
+ Kd1s). (2)

The FO-PD controller has the following transfer function,

C2(s) = Kp2(1 + Kd2s
λ), (3)

where λ ∈ (0, 2). Clearly, this is a specific form of the most

common PIγDλ controller which involves an integrator of order
γ (γ = 0, in this paper) and a differentiator of order λ.

The proposed FO-[PD] controller in this paper is defined as the
following,

C3(s) = Kp3[1 + Kd3s]
µ, (4)

where µ ∈ (0, 2).

C. Three Specifications for the Three Controllers Design

With the motion control system model P(s) in (1) and the
generalized form C(s) of the three controllers in II-B, the open-
loop transfer function G(s) has the form below,

G(s) = C(s)P (s). (5)

Here, three specifications to be respectively met by the above
three controllers are developed. From the basic definition of gain
crossover frequency and phase margin, the following rules can be
obtained.

1) Phase margin specification:

Arg[G(jωc)] = Arg[C(jωc)P (jωc)]

= −π + φm,

where ωc is the gain crossover frequency interested, and φm is the
phase margin required.
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2) Robustness to variation in the DC gain of the system:

(
d(Arg(C(jω)P (jω)))

dω
)ω=ωc = 0,

with the condition that the phase derivative w. r. t. the frequency is
zero, i.e., the phase Bode plot is flat, at the gain crossover frequency.
It means that the system is more robust to gain changes and the
overshoots of the response are almost the same.

3) Gain crossover frequency specification:

|G(jωc)|dB = |C(jωc)P (jωc)|dB = 0.

III. INTEGER ORDER PID CONTROLLER DESIGN

In this section, we restrict our attention to the motion control
model P (s) described by (1). The IO-PID controller has the form of
transfer function in (2). The phase and gain of the plant in frequency
domain can be given from (1) by

Arg[P (jω)] = − tan−1(ωT ) −
π

2
, (6)

|P (jω)| =
1

ω
√

1 + (ωT )2
. (7)

Integer order PID controller described by (2) can be written as

C1(jω) = Kp1(1 + Ki1
1

jω
+ Kd1(jω))

=
Kp1(Ki1 − Kd1ω

2) + jKp1ω

jω
, (8)

the phase and gain are as follows,

Arg[C1(jω)] = tan−1(
ω

Ki1 − Kd1ω2
) −

π

2
, (9)

|C1(jω)| =
Kp1

ω

√

ω2 + (Ki1 − Kd1ω2)2. (10)

The open-loop transfer function G1(s) is that

G1(s) = C1(s)P (s), (11)

from (6) and (9), the phase of G1(s) is as follows,

Arg[G1(jω)]

= tan−1(
ω

Ki1 − Kd1ω2
) − tan−1(ωT )− π. (12)

A. Numerical Computation Process

According to Specification II-C.1, the phase of G1(s) can be
expressed as

(Arg[G1(jω)])ω=ωc

= tan−1(
ωc

Ki1 − Kd1ω2
c

) − tan−1(ωcT ) − π

= −π + φm, (13)

so, the relationship between Kd1 and Ki1 can be established as
below,

Kd1 =
Ki1

ω2
−

1

ωc tan(Φm + tan−1(Tωc))
. (14)

According to Specification II-C.2 about the robustness to gain
variations in the system,

(
d(Arg(G1(jω)))

dω
)ω=ωc

=
Kd1 −

Ki1

ω2
c

1 + (
Kd1ω2

c−Ki1

ωc
)2

−
T

1 + (Tωc)2

= 0, (15)

we can establish another equation about Kd and Ki1 in the
following form,

A1ω
4
cK2

d1 − B1Kd1 + C1 = 0, (16)

that is

Kd1 =
B1 ±

√

B2
1 − 4A1ω4

cC1

2A1ω4
c

, (17)

where

A1 =
T

1 + (Tωc)2
,

B1 = (1 + 2A1Ki2)ω
2
c ,

C1 = A1ω
2
c + A1K

2
i1 − Ki1.

According to Specification II-C.3, we can establish an equation
about Ki1, Kd1 and Kp1,

|G1(jωc)| = |C1(jωc)||P (jωc)|

=
Kp1

√

ω2
c + (Ki1 − Kd1ω2

c )2

ω2
c

√

1 + (Tωc)2

= 1. (18)

Clearly, we can solve equations (14), (17) and (18) to get Kp1,
Kd1 and Ki1.

B. Tuning Procedure Summary

From the two equations (14) and (17), we can see that it is
complicated to get the analytical solution of the parameters Kd1 and
Ki1. Fortunately, a graphical method can be used as a practical and
simple way to get Kd1 and Ki1 because of the plain forms about
(14) and (17). The procedure to tune the parameters of the integer
order PID controller is as follows:

1) Given ωc, the gain crossover frequency;
2) Given Φm, the desired phase margin;
3) Plot the curve 1, Kd1 w. r. t Ki1, according to (14);
4) Plot the curve 2, Kd1 w. r. t Ki1, according to (17);
5) Obtain the Kd1 and Ki1 from the intersection point on the
above two curves;
6) Calculate the Kp1 from (18).

Remark 3.1: The parameters of IO-PID controller designed fol-
lowing the developed procedure may be negative, if so, the closed-
loop transfer function will exist a negative characteristic root, thus
the system will be unstable using this designed IO-PID controller.

C. Parameters Design Example and Bode Plot Validation of the
IO-PID Controller

The motion control system time constant T in (1) is 0.04s, and the
specifications of interest are set as ωc = 10(rad./sec.), Φm = 70o.
According to (14) and (17), two curves are plotted easily to obtain
the Kd1 and Ki1 from the intersection point, Kd1 = 0.1018 and
Ki1 = −4.625. Then Kp1 can be calculated from (18), that is
Kp1 = 23.0782. We can draw the Bode plot to validate that the gain
crossover frequency specification ωc = 10(rad/sec), phase margin
specification Φm = 70o, and the flat-phase specification are all
fulfilled. However, when the parameter Ki1 = −4.625 < 0, there
will exist a negative characteristic root of the closed-loop transfer
function, thus the system using this designed IO-PID controller
could be unstable. So, we can not obtain a properly designed IO-
PID controller which can guarantee the system stable and achieve
the flat-phase specification at the interested gain across frequency.

IV. FRACTIONAL ORDER PD CONTROLLER DESIGN

In this section, we also focus on the motion control system model
P (s) described by (1). The FO-PD controller has the form of
transfer function in (3). The numerical computation process can
be seen in [6]. So, the details are omitted except some important
equations below.
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According to Specification II-C.1, the first relationship between
Kd and λ can be established,

Kd2 =
1

ωλ
c

tan[φ + tan−1(ωcT ) −
λπ

2
+ π] cos

(1 − λ)π

2

−
1

ωλ
c

sin
(1 − λ)π

2
. (19)

According to Specification II-C.2, we can get the second rela-
tionship between Kd2 and λ in the following form,

A2ω
2λ
c K2

d2 + B2Kd2 + A2 = 0, (20)

that is,

Kd2 =
−B2 ±

√

B2
2 − 4A2

2ω
2λ
c

2A2ω2λ
c

, (21)

where

A2 =
T

1 + (ωcT )2
,

B2 = 2A2ω
λ
c sin

(1 − λ)π

2
− λωλ−1

c cos
(1 − λ)π

2
.

According to Specification II-C.3, we can obtain an equation
about Kp2, Kd2 and λ,

|G(jωc)|

= |C(jωc)||P (jωc)|

=
Kp2

√

(1 + Kd2ωλ
c cos λπ

2
)2 + (Kd2ωλ

c sin λπ
2

)2

ωc

√

1 + (ωcT )2

= 1. (22)

Clearly, we can solve equations (19), (21) and (22) to get λ, Kd2

and Kp2.

A. Design Procedure Summary

The graphical method can also be used as a practical and simple
way to get Kd2 and λ. The procedure of the FO-PD controller
tuning is as follows:

1) Given ωc, the gain crossover frequency;
2) Given Φm, the desired phase margin;
3) Plot the curve 1, Kd2 w. r. t λ, according to (19);
4) Plot the curve 2, Kd2 w. r. t λ, according to (21);
5) Obtain the Kd2 and λ from the intersection point on the
above two curves;
6) Calculate the Kp2 from (22).

B. Parameters Design Example and Bode Plot Validation of the
FO-PD Controller

The time constant T in (1) is also 0.04s, and the specifications of
interest are set as ωc = 10(rad./sec.), Φm = 70o. According to
(19) and (21), obtain the Kd2 and λ obviously from the intersection
point, that is Kd2 = 0.368 and λ = 0.835. Then Kp2 can be
calculated from (22), Kp2 = 13.8601.

We can draw the Bode plot to validate that the three specifications
in (II-C) are all fulfilled.

V. FRACTIONAL ORDER [PD] CONTROLLER DESIGN

In this section, the motion control system model P (s) described
by (1) are also considered. The proposed FO-[PD] controller has
the transfer function form of (4). The phase and gain of the motion
control system model in frequency domain can be given in (6) and
(7) respectively.

The FO-[PD] controller described by (4) can be written as

C3(jω) = Kp3[1 + Kd3(jω)]µ, (23)

The phase and gain are as follows,

Arg[C3(jω)] = µ tan−1(ωKd3), (24)

|C3(jω)| = Kp3[1 + (Kd3ω)2]
µ
2 . (25)

The open-loop transfer function G3(s) is that

G3(s) = C3(s)P (s), (26)

from (6) and (24), we can get the phase of G3(s),

Arg[G3(jω)]

= µ tan−1(ωKd3) − tan−1(ωT ) −
π

2
. (27)

A. Numerical Computation Process

According to Specification II-C.1, the phase of G3(s) can be
expressed as

(Arg[G3(jω)])ω=ωc

= µ tan−1(ωcKd3) − tan−1(ωcT ) −
π

2
= −π + φm, (28)

from (28), we can establish one relationship between Kd3 and µ,

Kd3 =
1

ωc

tan(
1

µ
(Φm −

π

2
+ tan−1(Tω))). (29)

According to Specification II-C.2 about the robustness to gain
variations in the plant,

(
d(Arg(G3(jω)))

dω
)ω=ωc

=
µKd3

1 + (Kd3ωc)2
−

T

1 + (Tωc)2

= 0, (30)

another relationship between Kd3 and µ can be obtained in the
following form,

A3ω
2
cK2

d3 − µKd3 + A3 = 0, (31)

that is

Kd3 =
µ ±

√

µ2 − 4A3ω2
c

2A3ω2
c

, (32)

where

A3 =
T

1 + (Tωc)2
.

According to Specification II-C.3, we can establish an equation
about Kp3, Kd3 and µ,

|G3(jωc)| = |C3(jωc)||P (jωc)|

=

√

(Tω2
c)2 + ω2

c

(1 + (Kd3ωc)2)
µ
2

= 1. (33)

Clearly, we can solve equations (29), (32) and (33) to get Kp3,
Kd3 and µ.

B. Design Procedure Summary

The graphical method can be also used as a practical and simple
way to get Kd3 and µ. The procedure to tune the parameters of the
FO-[PD] controller is as follows:

1) Given ωc, the gain crossover frequency;
2) Given Φm, the desired phase margin;
3) Plot the curve 1, Kd3 w. r. t µ, according to (29);
4) Plot the curve 2, Kd3 w. r. t µ, according to (32);
5) Obtain the Kd3 and µ from the intersection point on the
above two curves;
6) Calculate the Kp3 from (33).
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C. Parameters Design Example and Bode Plot Validation of the
FO-[PD] Controller

The time constant T in (1) is 0.04s, and the specifications of
interest are also set as ωc = 10(rad./sec.), Φm = 70o. According
to (29) and (32), two curves are plotted easily to obtain the Kd3

and µ from the intersection point, Kd3 = 0.2991 and µ = 0.7825.
Then Kp3 can be calculated from (33), that is Kp3 = 16.7839.

Again, we can draw the Bode plot to validate that the gain
crossover frequency specification, ωc = 10(rad/sec), and phase
margin specification, Φm = 70o, are fulfilled, and the phase is
forced to be flat at ωc.

VI. IMPLEMENTATION OF TWO FRACTIONAL ORDER

OPERATORS FOR THE TWO FRACTIONAL ORDER CONTROLLERS

In this paper, the fractional order operators sλ for the FO-PD
controller and (1+τs)µ for the FO-[PD] controller are implemented
by the impulse response invariant discretization methods in time
domain.

A. Implementation of sλ for FO-PD Controller

In [6], the fractional order operator sλ in (3) for the FO-PD
controller is implemented by the frequency domain approxima-
tion method with the Oustaloup Recursive Algorithm [12], which
is a band-limit finite dimensional approximation, and a proper
range of frequency of practical interest is needed. In this paper,
sλ is realized by the Impulse Response Invariant Discretization
(IRID) method [13] in time domain, where a discrete-time finite
dimensional (z) transfer function is computed to approximate the
continuous irrational transfer function sλ, s is the Laplace transform
variable, and λ is a real number in the range of (-1,1). sλ is called
a fractional order differentiator if 0 < λ < 1 and a fractional order
integrator if −1 < λ < 0. This approximation keeps the impulse
response invariant.

B. Implementation of (1 + τs)µ for FO-[PD] Controller

The proposed fractional order operator (1 + τ )s)µ in (4) for the
FO-[PD] controller is implemented by modifying the code of the
IRID of fractional order low-pass filters (IRID-FOLPF) [14]. In the
code of IRID-FOLPF, a discrete-time finite dimensional (z) transfer
function is computed to approximate a continuous-time fractional

order low-pass filter (LPF) [1/(τs+1)]µ
′

, s is the Laplace transform
variable, and µ′ is a real number in the range of (0,1), τ is the
time constant of LPF. This approximation also keeps the impulse
response invariant and only supports when µ′ in (0,1). That is the
fractional order low pass filter.

When µ′ is in (-1,0), [1/(τs + 1)]µ
′

is just the fractional order
operator for the FO-[PD] controller. The implementation of this

operator [1/(τs + 1)]µ
′

is realized as follows. First, FO-LPF

[1/(τs + 1)]−µ′

(µ′ ∈ (−1, 0)) is realized via the IRID-FOLPF
introduced above, we can obtain the discretized transfer function
of the FO-LPF,

GF O−LPF =
A(z)

B(z)
.

Then, FO-[PD] operator [1/(τs+1)]µ
′

=(τs+1)µ (µ ∈ (0, 1)) can
be obtained,

GF O−[PD] =
B(z)

A(z)
,

where GF O−[PD] is the discretized transfer function of the FO-
[PD] operator.

VII. SIMULATION

The tuning procedures above for the three controllers are illus-
trated via numerical simulation in this section.

In order to compare the IO-PID controller, FO-PD controller and
the proposed FO-[PD] controller fairly, two simulation cases are
presented.

A. Step Response Comparison Using the Three Controllers with the
Motion Control System Time Constant T = 0.4

In the case, the motion control system time constant T in (1) is
0.4s. The specifications of interest are set as ωc = 10(rad./sec.),
Φm = 70o, and the robustness to gain variations in the system is
required.

The parameters of the IO-PID, FO-PD and FO-[PD] controllers
are already calculated in the examples of sections III-C, IV-B and
V-C respectively.

In Fig. 1, applying the FO-PD controller, the unit step responses
are plotted with the open-loop plant gain varying from 11.0881
to 16.6321 (±20% variations from the desired value 13.8601). In
Fig. 2, applying FO-[PD] controller, the unit step responses are
plotted with open-loop gains changing from 13.4271 to 20.1407
(±20% variations from desired value 16.7839).

It can be seen from Fig. 1 and Fig. 2 that the both the FO-PD and
the FO-[PD] controllers designed following the proposed method in
this paper are effective. The overshoots of the step responses remain
almost constant under gain variations, i.e. the iso-damping property
is exhibited, that means the system is robust to gain changes.
Furthermore, from Fig. 3, it can be seen obviously that the over
shoot of the red line with the proposed FO-[PD] controller is smaller
then that of the blue line with the FO-PD controller. So, we can
see the FO-[PD] controller outperforms the FO-PD controller.
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Fig. 1. Simulation. Step responses with FO-PD controller (T=0.4)
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Fig. 2. Simulation. Step responses with FO-[PD] controller (T=0.4)
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B. Step Response Comparison Using the Three Controllers with the
Motion Control System Time Constant T = 0.04

In the case, the motion control system time constant T in (1) is
0.04s. The specifications of interest are set as ωc = 10(rad./sec.),
Φm = 70o, and the robustness to gain variations in the system is
also required.

1) Parameters design for the three controllers: Following the
tuning procedure summary in (III-B), we can get the three parameter
values of the IO-PID controller, Kd1 = 0.0189, Ki1 = 1.5670
and Kp1 = 10.7649. In this case, as the three parameters Kd1,
Ki1 and Kp1 are all positive, so, this designed IO-PID controller
can guarantee the system stable and satisfy the three specifications
in (II-C) at the same time.

According to the tuning procedure summaries in (IV-A) and (V-
B), we can get the three parameter values of the FO-PD controller,
Kd2 = 0.0057, λ = 0.7796, Kp2 = 10.6417, and the three
parameter values of the FO-[PD] controller, Kd2 = 0.0057, λ =
0.7796, Kp2 = 10.6417, respectively.

2) Step responses comparison: In Fig. 4, applying the IO-PID
controller, the unit step responses are plotted with the open-loop
plant gain varying from 8.6199 to 12.9179 (±20% variations from
the desired value 10.7649). In Fig. 5, applying the FO-PD controller,
the unit step responses are plotted with the open-loop plant gain
varying from 8.5134 to 12.7701 (±20% variations from the desired
value 10.6417). And in Fig. 6, applying FO-[PD] controller, the
unit step responses are plotted with open-loop gains changing from
8.6082 to 12.9124 (±20% variations from desired value 10.7603).

It can be seen from Fig. 4, Fig. 5 and Fig. 6 that the IO-PID
controller designed following the procedure in III does work, the
overshoot just changes almost 1.2% as the open-loop plant gain
varies 20%. From Fig. 5 and Fig. 6, we can see that, the step
responses using the FO-PD and FO-[PD] controllers almost have
no overshoot, even the open-loop plant gains vary 20%. So the
iso-damping property is exhibited adequately, the robustness of the
system using the FO-PD and FO-[PD] controllers is better than
that using the IO-PID controller. Furthermore, from Fig. 3, it can
be seen obviously that, the performance using both of the FO-PD
and FO-[PD] controllers are much better than the IO-PID controller
which is designed by the same specifications with the FO-PD and
FO-[PD] controllers.
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Fig. 4. Simulation. Step responses with IO-PID controller (T=0.04)
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Fig. 5. Simulation. Step responses with FO-PD controller (T=0.04)
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Fig. 6. Simulation. Step responses with FO-[PD] controller (T=0.04)
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Fig. 7. Simulation. Step responses comparison with three controllers
(T=0.04)

VIII. EXPERIMENT

A. Introduction of the Experimental Platform

A fractional horsepower dynamometer was developed as a gen-
eral purpose experiment platform [15]. The architecture of the
dynamometer control system is shown in Fig. 8. The dynamometer
includes the DC motor to be tested, a hysteresis brake for applying
torque load to the motor, a load cell to provide force feedback, an
optical encoder for position feedback and a tachometer for velocity
feedback. The dynamometer was modified to connect to a Quanser
MultiQ4 terminal board in order to control the system through
Matlab/Simulink Real-Time Workshop (RTW) based software. This
terminal board connects with the Quanser MultiQ4 data acquisition
card. Then, use the Matlab/Simulink environment, which uses the
WinCon application from Quanser, to communicate with the data
acquisition card. This enables rapid prototyping and experiment
capabilities.

Without loss of generality, consider the motion control system
modeled by:

ẋ(t) = v(t), (34)

v̇(t) = Kuu(t) − Kbv. (35)

where x is the position state, v is the velocity, and u is the control
input, Ku and Kb are positive coefficients.

Through simple system identification process, the DC motor
velocity control system can be approximately modeled by a simple
first order transfer function 1.52

0.4s+1
.

Fig. 8. The dynamometer setup
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B. Experiments on the Dynamometer

Since we already have experimentally modeled the velocity con-
trol system of the dynamometer with a transfer function 1.52

0.4s+1
, the

position control system of the dynamometer has the same structure
of the motion control system model (1). Thus, the simulation results
in VII-A with the motion control system time constant T = 0.4 can
be validated via the real-time experiments on the dynamometer.

In Fig. 9, applying the FO-PD controller, the unit step responses
are plotted with the open-loop plant gain varying from 11.0881
to 16.6321 (±20% variations from the desired value 13.8601). In
Fig. 10, applying FO-[PD] controller, the unit step responses are
plotted with open-loop gains changing from 13.4271 to 20.1407
(±20% variations from desired value 16.7839).

It can be seen from Fig. 9 and Fig. 10 that the both of the FO-
PD and FO-[PD] controllers designed by the proposed method in
this paper are effective. The overshoots of the step responses remain
almost constant under gain variations, the systems are robust to gain
changes. Furthermore, from Fig. 11, it can be seen obviously that
the over shoot of the red line with the proposed FO-[PD] controller
is smaller than that of the blue line with the FO-PD controller.
So, we can see the FO-[PD] controller outperforms the FO-PD
controller.
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Fig. 9. Experiment. Step responses with FO-PD controller
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Fig. 10. Experiment. Step responses with FO-[PD] controller
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IX. CONCLUSIONS

In this paper, a new fractional-order [proportional derivative]
(FO-[PD]) controller is proposed for robust motion control systems.

Focusing on a class of simplified models for motion control
systems, a practical and systematic tuning procedure has been
developed for the proposed FO-[PD] controller synthesis. The
fairness issue in comparing with other controllers such as the
traditional integer order PID (IO-PID) controller and the fractional
order proportional derivative (FO-PD) controller has been for the
first time addressed under the same number of design parameters
and the same specifications. Side-to-side fair comparisons of the
three controllers (i.e., IO-PID, FO-PD and FO-[PD]) via both
simulation and experimental tests have revealed some interesting
facts: 1) IO-PID designed may not always be stabilizing to achieve
flat-phase specification while both FO-PD and FO-[PD] designed
are always stabilizing; 2) Both FO-PD and FO-[PD] outperform IO-
PID designed in this paper; 3) FO-[PD] outperforms FO-PD more
when the time constant of the motion control system increases.
Extensive validation tests on our real-time experimental test-bench
illustrate the same.
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