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Abstract This paper proposes a fractional-order reset

element whose architecture allows for the suppression

of nonlinear effects for a range of frequencies. Sup-

pressing the nonlinear effects of a reset element for

the desired frequency range while maintaining it for

the rest is beneficial, especially when it is used in

the framework of a “Constant in gain, Lead in phase”

(CgLp) filter. CgLp is a newly introduced nonlinear fil-

ter, bound to circumvent the well-known linear control

limitation—the waterbed effect. The ideal behaviour

of such a filter in the frequency domain is unity gain

while providing a phase lead for a broad range of fre-

quencies. However, CgLp’s ideal behaviour is based on

the describing function, which is a first-order approxi-

mation that neglects the effects of the higher-order har-

monics in the output of the filter. Although CgLp is

fundamentally a nonlinear filter, its nonlinearity is not

required for all frequencies. Thus, it is shown in this

paper that using the proposed reset element architec-

ture, CgLp gets closer to its ideal behaviour for a range
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of frequencies, and its performance will be improved

accordingly.
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1 Introduction

PID is still the workhorse of the industry when it comes

to the term “control.” However, in some fields, partic-

ularly, precision motion control, there is an increas-

ingly high demand for more precise, faster and more

robust controllers. The “waterbed effect” is the funda-

mental and well-known limitation of linear controllers

which is preventing them from meeting these demands

simultaneously [1]. In terms of steady-state precision,

increasing the system gain at lower frequencies while

decreasing it at higher frequencies will improve the

performance of the system. This is according to a well-

known frequency-based design method of controllers,

known as loop shaping [2]. However, according to

Bode’s gain-phase relationship for linear systems and

frequency response of the differentiator part of PID,

this desire is in contradiction with the stability of the

systems. In other words, improving the performance of

the system in terms of precision, speed or stability will

be at the cost of deteriorating at least one of the other

two.

Nonlinear controllers can be used to circumvent

this limitation. Among all of the different types of
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nonlinearities used by researchers to this end, a rela-

tively simple one was first used by Clegg [3] in his

special integrator. The idea was to reset the value of

the integrator whenever its input crosses zero. Clegg

showed that his integrator benefits from a phase lead

with respect to its linear counterpart. This category

of controllers, thereafter called reset controllers, has

been further developed and more sophisticated ele-

ments such as first-order reset element (FORE) in [4,5],

generalised FORE (GFORE) in [6] and second-order

reset element (SORE) in [7]. These reset elements

were used in different capacities such as phase lag

reduction, decreasing sensitivity peak, narrowband and

broadband phase compensation, control of position-

ing systems with friction see [8–15]. Reset elements

stability was also investigated in the literature [16,

17].

In almost all of the reset elements studied in the

literature, all of the coupled states of the reset ele-

ment reset [7,18,19]. In other words, there is no cou-

pling between a reset and a non-reset state in the

architecture of a reset element. However in [20], it

was shown that coupling a reset state, and a linear

one in an architecture of a SORE can cause the ele-

ment, called “Second-Order Single State Reset Ele-

ment”(SOSRE), to exhibit a linear behaviour in terms

of steady-state sinusoidal response at a certain fre-

quency. It was also shown that this phenomenon could

be used to the benefit of improving steady-state preci-

sion of the overall controller at that certain frequency.

However, this architecture cannot be used to suppress

higher-order harmonics in a broad range of frequen-

cies.

A new reset-based architecture was recently pro-

posed by [18], which has a constant gain while pro-

viding phase lead in a broad range of frequencies. This

architecture, named “Constant in gain, Lead in phase”

(CgLp), can completely replace or take up a significant

portion of derivative duties in the framework of PID.

In its ideal behaviour, this element robustly stabilises

the system by providing the phase lead required in the

bandwidth region; however, unlike the derivative part

of PID, it does not violate the loop-shaping require-

ments. Nonetheless, this ideal behaviour is based on the

assumptions of the describing function (DF) method,

which is a first-order approximation neglecting higher-

order harmonics in the output of a nonlinear ele-

ment. As it will be shown in this paper, DF approx-

imation can be totally unreliable in the cases where

the magnitude of higher-order harmonics are rela-

tively large. In some cases, the magnitude of higher-

order harmonics can be even larger than first-order

one.

Fractional-order derivatives and integrals have been

used for control designs like Fractional PID [21–

24] or CRONE control [25–27]. Recently, fractional-

order elements have also been used within reset ele-

ments [19,28–30] in order to approximate complex-

order behaviour.

The main contribution of this paper is to use con-

cept of fractional order calculus within reset elements

to suppress the nonlinear effects, i.e., higher-order har-

monics. As an extension to SOSRE, this paper couples

a fractional-order integrator with a reset one which cre-

ates the ability to selectively higher-order harmonics, in

a range of frequencies where nonlinearity does not have

a clear benefit. In the framework of CgLp, nonlinearity

is mainly used to create phase lead in the crossover fre-

quency region; however, it is shown that it can have ill

effects for other regions, especially, lower frequencies

which are important for tracking performance. More-

over, the nonlinear architecture proposed in this paper

can be tuned to behave completely linear at a particular

frequency which means higher-order harmonics will be

zero. Suppressing higher-order harmonics at lower fre-

quencies and eliminating them at a particular frequency

will improve the performance of the system in terms of

steady-state tracking precision.

The remainder of this paper is organised as follows.

The second section presents the preliminaries. The fol-

lowing one introduces and discusses the architecture of

the introduced element. The fourth section will investi-

gate the benefits of the architecture in suppressing the

higher-order harmonics at a wide range of frequencies.

The following one will introduce an illustrative exam-

ple and verify the discussions in simulation. Finally, the

paper concludes with some remarks and recommenda-

tions about ongoing works.

2 Preliminaries

In this section, the preliminaries of this study will be

discussed.
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2.1 General reset controller

Following is a general form of a rest controller [31]:

∑

R
:=

⎧

⎪
⎨

⎪
⎩

ẋr (t) = Axr (t) + Be(t) if e(t) �= 0,

xr (t
+) = Aρxr (t) if e(t) = 0,

u(t) = Cxr (t) + De(t)

(1)

where A, B, C, D are the state space matrices of the

base linear system and Aρ = diag(γ1, . . . , γn) is called

reset matrix. This contains the reset coefficients for

each state which are denoted by γ1, . . . , γn . The con-

troller’s input and output are represented by e(t) and

u(t), respectively. In the spacial case of Aρ = I , no

reset will happen and the result is called “base linear

system.”

2.2 Hβ condition

The quadratic stability of the closed loop reset system

when the base linear system is stable can be examined

by the following condition [31,32].

Theorem 1 There exists a constant β ∈ ℜnr ×1 and

positive definite matrix Pρ ∈ ℜnr ×nr , such that the

restricted Lyapunov equation

P > 0, AT
cl P + P Acl < 0 (2)

BT
0 P = C0 (3)

has a solution for P, where C0 and B0 are defined by

C0 =
[

βC p 0nr ×nnr Pρ

]

, B0 =

⎡

⎣

0n p×nr

0nnr ×nr

Inr

⎤

⎦ .

(4)

And

AT
ρ Pρ Aρ − Pρ ≤ 0 (5)

Acl is the closed loop A-matrix. nr is the number of

states being reset and nnr being the number of non-

resetting states and n p is the number states for the

plant. Ap, Bp, C p, Dp are the state space matrices of

the plant.
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Fig. 1 Concept of using combination of a reset lag and a linear

lead element to form a CgLp element. The figure is adopted

from [18]

2.3 Describing functions

Because of its nonlinearity, the steady-state response

of a reset element to a sinusoidal input is not sinu-

soidal. Thus, its frequency response should be anal-

ysed through approximations like describing function

(DF) method [6]. However, the DF method only takes

the first harmonic of Fourier series decomposition of

the output into account and neglects the effects of

the higher-order harmonics. As shown in [20], this

simplification can sometimes be significantly inaccu-

rate. To have more accurate information about the fre-

quency response of nonlinear systems, a method called

“Higher Order Sinusoidal Input Describing Function”

(HOSIDF) has been introduced in [33]. This method

was developed in [34,35] for reset elements defined

by (1) as follows:

Gn(ω) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

C( jωI − A)−1(I + jΘD(ω))B + D n = 1

C( jωnI − A)−1 jΘD(ω)B odd n > 2

0 even n ≥ 2

ΘD(ω) = −
2ω2

π
�(ω)[Γr (ω) − Λ−1(ω)]

Λ(ω) = ω2 I + A2

�(ω) = I + e
π
ω A

�r (ω) = I + Aρe
π
ω A

Γr (ω) = �r
−1(ω)Aρ�(ω)Λ−1(ω)

(6)

where Gn(ω) is the nth harmonic describing function

for sinusoidal input with frequency of ω.
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2.4 CgLp

According to [18], CgLp is a broadband phase compen-

sation element whose first harmonic gain behaviour is

constant while providing a phase lead. Originally, two

architectures for CgLp are suggested using FORE or

SORE, both consisting in a reset lag element in series

with a linear lead filter, namely R and D. For FORE

CgLp:

R(s) =
✟

✟
✟

✟
✟✟✯

Aρ

1

s/ωrα + 1
, D(s) =

s/ωr + 1

s/ω f + 1
(7)

For SORE CgLp:

R(s) =

✘✘✘✘✘✘✘✘✘✘✘✘✘✿
Aρ

1

(s/ωrα)2 + (2sβ/ωrα) + 1

D(s) =
(s/ωr )

2 + (2sβ/ωr ) + 1

(s/ω f )
2 + (2s/ω f ) + 1

(8)

In (7) and (8), ωrα = ωr/α, α is a tuning parameter

accounting for a shift in corner frequency of the filter

due to resetting action, β is the damping coefficient and

[ωr , ω f ] is the frequency range where the CgLp will

provide the required phase lead. The arrow indicates

that the states of element are reset according to Aρ ; i.e.

are multiplied by Aρ when the reset condition is met.

The main idea behind the CgLp is taking the phase

advantage of reset lag element over its linear counter

part and use it in combination with a corresponding

lead element to create broadband phase lead. Ideally,

the gain of the reset lag element should be cancelled out

by the gain of the corresponding linear lead element,

which create a constant gain behaviour. The concept is

depicted in Fig. 1.

It can be seen that since this idea is based on DF

approximation, the ideal behaviour of CgLp will not be

achieved when DF is not a reliable approximation, i.e.,

when the higher-order harmonics are relatively large

and not negligible. Nevertheless, the main idea of CgLp

is not restricted to FORE and SORE by nature and can

be generalised to any reset lag and linear lead filter.

This paper uses fractional ones to reduce higher order

harmonics in a large range of frequencies and conse-

quently create a CgLp element that has close-to-ideal

behaviour in a larger range of frequencies.

2.5 Second-order single state reset element (SOSRE)

This reset element is a special case of a SORE, in which

only one integrator resets in a specific architecture. This

element is presented in [20] and is used in the frame-

work of a CgLp as the reset lag element. The state space

representation and the reset matrix of the element is as

follows:

A =

[

0 1

−ω2
rα −2βωrα

]

, B =

[

0

1

]

, C =
[

ωrα 0
]

, D= [0] ,

Aρ =

[

1 0

0 γ

]

. (9)

As shown in [20], assuming a sinusoidal input at fre-

quency of ωrα to a SOSRE, the steady-state output will

be a sinusoidal with the same frequency and no phase

shift; thus, the magnitude of higher-order harmonics at

ωrα is zero.

2.6 Fractional-order calculus and CRONE

approximation of sλ

Fractional order calculus developed by generalising

the integration and differentiation to non-integer order

operators. Behaviour of such an element should be

approximated for application in control. This paper

uses CRONE approximation of sλ, λ ∈ ℜ−, which cre-

ates fractional behaviour using real stable poles and real

minimum phase zeros for this purpose. The approxima-

tion is valid in a frequency range of [ωl , ωh]. Referring

to [36], the approximation will be:

sλ ≈ C

N
∏

m=1

1 + s
ωz,m

1 + s
ωp,m

(10)

ωz,m = ωl

(
ωh

ωl

) 2m−1−λ
2N

(11)

ωp,m = ωl

(
ωh

ωl

) 2m−1+λ
2N

(12)

where N is number poles and zeros, and for an accept-

able approximation, it should one unit more than the

number of the decades in approximation. CRONE

makes sure that the poles and zeros are placed in equal

distance in logarithmic scale. C is the tuning parameter

for adjusting the gain of the approximation. Consider-

ing the range where approximation is valid, CRONE
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e(t) x2

γ

(

s
ωl

+ 1
)λ x1

2βωrα

ω2
rα

ω2
rα

+

−

+

+

D(s)
u(t)

Fractional-Order Single
State Reset Element

1

s

Fig. 2 Block diagram of the a FOSRE CgLp. λ ∈ (0 − 1]

is actually approximating the

(
s
ωl

+1

s
ωh

+1

)λ

. Assuming a

large enough ωh , in this paper the CRONE is used to

approximate
(

s
ωl

+ 1
)λ

.

3 Fractional-order single state reset element

(FOSRE)

This sections introduces a new structure for reset ele-

ments in the framework of CgLp and discusses the

architecture, frequency response and its superiority

over FORE and SORE in the framework of CgLp.

3.1 Architecture

The architecture of the FOSRE is similar to that of the

SORE with the difference being that the second linear

integrator is replaced with a fractional one, and only

first integrator, which is a linear one is reset. Figure 2

shows the block diagram of the element. The follow-

ing defines the FOSRE (the reset lag element) and its

corresponding lead element to form a CgLp.

F O S RE(s) =

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿
Aρ

1

(s/ωl + 1)−λ
(

s/ω2
rα + 2β/ωrα

)

+ 1

D(s) =
(s/ωl + 1)−λ

(

s/ω2
r + 2β/ωr

)

+ 1

(s/ω f )2 + (2s/ω f ) + 1

(13)

A matching state space representation of FOSRE with

the architecture of Fig. 2 is as follows:

A =

[

−2βωrα 01×N

B N×1 AN×N

]

− ω2
rα

[

1

0N×1

]

×
[

D1×1 C1×N

]

,

B =

[

1

0N×1

]

, C = ω2
rα

[

D1×1 C1×N

]

, D = 0

Aρ = diag(γ, 1, . . . , 1
︸ ︷︷ ︸

N

) (14)

where A, B, C and D are state space matrices of the

CRONE approximation of
(

s
ωl

+ 1
)λ

.

3.2 Linear behaviour of FOSRE at a certain frequency

The architecture of FOSRE, along with the non-

identical reset of its states, creates a peculiar phe-

nomenon which can be used to the benefit of the per-

formance of the system.

Lemma 1 Reset control system Eq. (1) in open loop

has a globally asymptotically stable 2π/ω-periodic

solution under sinusoid input with arbitrary frequency,

ω > 0 if and only if

∣
∣
∣λ

(

AρeAδ
)∣
∣
∣ < 1 ∀δ ∈ ℜ+ (15)

where λ (.) stands for eigenvalues [6].

Remark 1 Let us define

ψ(ω) := �
X2( jω)

E( jω)
for Aρ = I. (16)

Assuming a sinusoidal input, sin(ωlbt), to a reset ele-

ment, the reset action will be of no effect in steady state

response, and thus the reset element can be regarded as

a linear system in terms of steady state response at that

certain frequency if:

ψ(ωlb) = 0. (17)

The proof of this is trivial, since the reset element under

such circumstances will reset its output, when its out-

put is at zero, resulting in no change from the resetting

action. Figure 3 shows an example of this situation,

where steady state output of the base linear element

and the reset element itself will be the same. At such

circumstance, the reset element can be regarded as a lin-

ear element at that certain frequency in terms of steady

state output.

Remark 2 Assuming a sinusoidal input, sin(ωlbt), to

a reset element where ψ(ωlb) = 0, the higher-order

harmonics will be zero.
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Fig. 3 Assuming that the

output of the base linear

element for a reset element

has no phase shift with

respect to its input, the

output of the reset element

itself will match the base

linear element output at

steady state

0 1 2 3 4 5 6 7 8 9 10

Time

-1.5

-1

-0.5

0

0.5

1

1.5

Input

Output of the base linear

element and reset element

Fig. 4 HOSIDF

comparison of a SOSRE

and a FOSRE CgLp along

with corresponding ψ

which is � X2
E

of the base

linear system. For FOSRE

CgLp, ωrα = 3.18 Hz, β =

1, α = 0.94, ωl = 0.8 Hz,

λ = − 0.1 and γ = 0.2. For

SOSRE CgLp, ωrα =

6.5 Hz, β = 1, α = 1.12

and γ = 0.2 10
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Since the reset action has no effect at steady state,

the steady-state output is sinusoidal. Such an output can

be completely described by first harmonic of Fourier

series and all higher-order harmoincs are zero.

For the case of a FOSRE, if e(t) = sin(ωlbt), the

reset action of the first integrator will be of no effect if:

ψ(ωlb) = 0 ⇒

�
1

jωlb/ω2
rα + 2β/ωrα + ( jωlb/ωl + 1)λ

= 0 ⇒
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ωlb = −ω2
rα

(

ω2
lb

ω2
l

+ 1

) λ
2

sin

(

λtan−1

(
ωlb

ωl

))

.

(18)

Thus, FOSRE exhibits a linear behaviour at a fre-

quency, ωlb, which depends on ωrα , β, ωl and λ.

3.3 HOSIDF of FOSRE CgLp

Reset elements are nonlinear elements because of the

discontinuity in their state values and output. This dis-

continuity or in other term, jumps, creates higher-order

terms in Fourier decomposition of the output. These

jumps also create large peaks in controller’s output

which is a known characteristic for reset elements.

There are many situations where the system’s

behaviour is not predictable based on DF. As an exam-

ple, for the mass-spring-damper systems with a reso-

nance peak atωn , the 3rd HOSIDF of the open-loop sys-

tem has a peak at ωn/3 and the 5th HOSIDF has a peak

at ωn/5 and so on. If the resonance peak of the system

is large enough, higher-order harmonics will probably

dominate the first one at ωn/3, ωn/5, …. (See [20,34]).

Therefore, it can be concluded that the smaller higher-

order harmonics are, the closer the system is to what it

is designed for.

The main benefit of using FOSRE is that tuning its

parameters, one can reduce higher-order harmonics at

a range of frequency where nonlinearity not only does

not have a clear benefit but also deteriorates the tracking

precision of the system.

In [20], it was shown that eliminating higher-order

harmonics using the concept of Remark 1 at one fre-

quency in a SOSRE CgLp element, results in improve-

ment of steady-state tracking precision. While FOSRE

enjoys the same benefit, HOSIDF analysis in this sec-

tion shows that structure of FOSRE allows reduction

in the higher-order harmonics at a wider range of fre-

quencies.

In FOSRE, the concept of Remark 1 can be gener-

alised. According to Remark 1, when ψ is zero, the

higher-order harmonics will be zero. On top of that it

can be seen empirically that closer the ψ is to zero,

smaller the gain of the higher-order harmonics is. Fig-

ure 4 shows this relation by comparing HOSIDF of

FOSRE and a SOSRE CgLp along with their ψ plot.

All the even harmonics are zero for reset elements, and

Fig. 4 only depicts the 1st and the 3rd harmonic for the

sake of the clarity of the figure since all the other odd

harmonics will follow the same trend as the 3rd one

and are descending with respect to their order.

Three main conclusions can be drawn from this fig-

ure.

– Both of the ψ plots cross zero between 6 and 7 Hz

and correspondingly higher-order harmonics will

be zero at ωlb which validates Remarks 1 and 2.

– For the range of 0.1 till 500 Hz, ψ of FOSRE CgLp

is closer to zero than that of SOSRE CgLp, corre-

spondingly its magnitude of higher-order harmon-

ics is smaller than SOSRE CgLp.

– As the ψ approaches more negative values, the

phase advantage of CgLp elements increases. Hence,

comparing two CgLp elements, especially between

10 and 100 Hz, the closer value of ψ to zero results

in less phase advantage.

The same line of reasoning has been tested and is

valid comparing any two FOSRE CgLp elements. The

relation between ψ and higher-order harmonics can

be justified by considering the fact that closer the ψ

to zero is, smaller the jumps of the reset element will

be. Furthermore, the biggest jump and thus, the largest

higher-order harmonics will happen when ψ = ± 90◦.

This concept is shown in Fig. 5, by comparing the time

response of x2 in FOSRE CgLp and SOSRE CgLp to

a sinusoidal input of 1 Hz. It is readily obvious that

due to the smaller value of ψ in FOSRE CgLp at this

frequency, the jumps are smaller and thus justifies the

smaller magnitude of higher-order harmonics.

According to aforementioned discussion, ψ plot

contains important information about higher-order har-

monics and phase advantage created by CgLp elements,

and hence can be used to tune the FOSRE parame-

ters so that FOSRE CgLp element has a closer-to-ideal

behaviour.

The following section will discuss the effect of

FOSRE parameters on ψ plot and thus higher-order

harmonics.

4 Suppressing higher-order harmonics at low

frequencies

The main advantage of FOSRE with respect to SOSRE

is that the nonlinearity effects, i.e., the higher-order har-

monics, can be suppressed at low frequencies. This can
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Fig. 5 Comparing x2 of the

FOSRE CgLp and SOSRE

CgLp for an input of

sin(2π t)
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Fig. 6 Effect of λ on ψ in

FOSRE.

ωrα = 3.18 Hz, β = 1 and

ωl = 0.001 Hz
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Fig. 7 Effect of ωl on ψ in

FOSRE.
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Fig. 8 Stage whose transfer function is used for simulation

be done by manipulating the ψ values at lower frequen-

cies. This is made possible for FOSRE by additional

two parameters, namely λ and ωl . In the following, the

effects of these two parameters on the ψ plot are dis-

cussed.

The effect of λ on higher-order harmonics and phase

advantage created by a FOSRE can be depicted by

plotting ψ versus input frequency for different val-

ues of λ. See Fig. 6. As λ approaches −1, ψ deviates

more from zero in lower frequencies which indicates

larger higher-order harmonics at low frequencies and

thus deterioration of tracking precision. Nevertheless,

ψ will approach − 90◦ faster, in turn, phase advantage

of CgLp element will be available at a wider range

of frequency. For example, designing a controller for

100 Hz bandwidth, a FOSRE depicted in Fig. 6 with

λ = − 0.2 will have less phase margin comparing to

the one with λ = − 0.8. Notice that ωlb varies with λ

and for λ = 0, ωlb = 0 which means FOSRE will not

show linear behaviour for such a configuration.

Changing λ, suppressing higher-order harmonics

comes at the cost of losing phase advantage. How-

ever, tuning ωl , one can circumvent this limitation. Fig-

ure 7 depicts ψ plot for different values of ωl when

λ = − 0.4. Increasing ωl to a certain point, ψ gets

closer to zero for frequencies below ωlb, while it will

not cause loss of phase advantage in the crossover fre-

quency region. It should be noticed that ωlb according

to (18) depends on ωl .

The ideal tracking performance of a CgLp will hap-

pen at ωlb where higher-order harmonics are zero, and

hence, the tracking error can be accurately calculated

using DF. If tracking at a certain frequency is impor-

tant for a system, one may consider designing ωlb to

match that frequency. Otherwise, as suggested in [20],

ωlb can be designed to match and cancel out the peak

of the 3rd order harmonic.

4.1 Tuning guidelines

Tuning of FOSRE can be done through optimisation or

several iteration of trial and error. The first parameter

to choose is ωlb. As aforementioned this frequency can

be a working frequency of the system or peak of the 3rd

harmonic. The cost function to minimise is ψ(ω) in the

range of lower frequencies till ωlb. Denoting cross-over

frequency as ωc, one can follow the following steps as

a rule of thumb to achieve a favourable configuration:

1. Choose ωlb.

2. Set λ to be −0.1.

3. Set β to be 1.

4. Optimise ωl and ωrα to minimise |ψ(ω)| at fre-

quencies lower than ωlb, constrained toψ(ωlb) =

0.

5. Is ψ(ωc) < −85◦? If yes, proceed to 7, if not,

decrease β by 0.1.

6. Is β = 0? if yes, decrease λ by −0.1 and return

to 3, if not, return to 4.

7. Choose γ in [−1 1) to achieve the phase margin

required.

5 An illustrative example

In order to validate the increase in performance of

the system in terms of steady-state tracking by sup-

pressing the higher-order harmonics, three controllers

Fig. 9 Designed control

architecture to compare the

performance of two sets of

controllers
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Table 1 Parameters of the designed controllers

Controller ωi ωd ωt ω f ωrα β γ λ ωl

PID 15 32 705 1500 N/A N/A N/A N/A N/A

SOSRE No. 1 15 100 225 1500 2 1 0.2 N/A N/A

SOSRE No. 2 15 100 225 1500 0.8 1 0.2 N/A N/A

FOSRE No. 1 15 100 225 1500 2 1 0.2 −0.4 2.5

FOSRE No. 2 15 100 225 1500 1.2 1 0.2 −0.4 1.3

All frequencies are in Hz
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Fig. 12 Steady-state error of designed systems for tacking sinusoidal inputs
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Table 2 RMS and IAE of steady state error for controllers in set No. 1 for tracking the sinusoidal references of 0.5, 0.8, 2 and 4 Hz

Frequency 0.5 Hz 0.8 Hz 2 Hz 4 Hz

Metric RMS IAE RMS IAE RMS IAE RMS IAE

FOSRE CgLp 9.36e−6 1.68e−5 1.47e−5 2.68e−5 1.36e−5 1.84e−5 1.31e−4 5.99e−5

SOSRE CgLp 1.62e−5 2.22e−5 3.64e−5 4.30e−5 1.53e−5 2.07e−5 4.76e−4 1.44e−4

PID 2.51e−5 4.52e−5 3.96e−5 7.21e−5 3.66e−5 4.94e−5 3.21e−4 1.44e−4

Table 3 RMS and IAE of steady state error for controllers in set No. 2 for tracking the sinusoidal references of 0.5, 0.8, 2 and 4 Hz

Frequency 0.5 Hz 0.8 Hz 2 Hz 4 Hz

Metric RMS IAE RMS IAE RMS IAE RMS IAE

FOSRE CgLp 9.37e−6 1.68e−5 1.47e−5 2.68e−5 1.60e−5 2.11e−5 3.95e−4 1.15e−4

SOSRE CgLp 1.47e−4 1.63e−4 1.64e−5 2.99e−5 9.34e−5 6.13e−5 8.72e−4 2.28e−4

PID 2.51e−5 4.52e−5 3.96e−5 7.21e−5 3.65e−5 4.94e−5 3.21e−4 1.44e−4

Fig. 13 Control input of

controllers in set No. 1 for

r(t) = sin(8π t)
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were designed and studied in simulation. This section

presents the results of the comparison of a FOSRE

CgLp with a SOSRE CgLp and a PID.

5.1 Plant

The plant which is simulated is a custom-designed pre-

cision stage that is actuated with the use of a Lorentz

actuator. This stage is linear-guided using two flexures

to attach the Lorentz actuator to the base of the stage

and actuated at the centre of the flexures. With a laser

encoder the position of the fine stage is read out with

10nm resolution. A picture of the setup can be found

in Fig. 8. The identified transfer function for the plant

is:

G(s) =
3.038e4

s2 + 0.7413s + 243.3
. (19)

This plant has a relatively high resonance peak around

2.5 Hz which will cause high peaks in higher-order

harmonics in frequencies below 1 Hz.

5.2 Controller design approach

Two sets of controllers have been designed, each con-

taining a FOSRE CgLp, a SOSRE CgLp and a PID. All

of the controllers have designed for a bandwidth of 150

Hz and 45◦ of phase margin considering a sensitivity

peak below 6 dB criteria for robustness.
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In set No. 1, assuming a main working frequency of

2 Hz, FOSRE CgLp and SOSRE CgLp are designed in

a manner to have ωlb = 2 Hz. This means the reset con-

trollers will behave linearly in terms of steady-state out-

put and will generate no higher-order harmonics at said

frequency. In set No. 2, reset controllers are designed

to have ωlb = 0.8 Hz, which is the frequency of the

peak of the third harmonic. Considering the discussion

in Sect. 4, parameters of the FOSRE are chosen in a

manner that ψ stays as close as possible to zero in fre-

quencies below ωlb. mentioned, such a design is not

possible for SOSRE. Figure 9 and Table 1 show the

closed-loop block diagram and the parameters for each

controller.

In order to be able to verify the stability of the reset

systems through the so-called Hβ condition, a relatively

weak derivate has been added to the design of CgLp’s

to provide a phase margin of 5◦ for the base-linear sys-

tem. Thus, the CgLp’s are providing the remaining 40◦

required.

The HOSIDF analysis of the open loop of the

designed system sets are presented in Fig. 10. As

expected, SOSRE CgLp’s produce larger higher-order

harmonics at low frequencies than the FOSRE ones,

while they both have the same first-order DF and pro-

vide the same phase margin. The presence of large

higher-order harmonics can jeopardise the tracking per-

formance of the controller, as it invalidates the assump-

tion of design based on DF.

To better clarify the frequencies at which the track-

ing performance is weak and where it is the ideal,

one can refer to normalised magnitude of higher-order

harmonics with respect to first-order one in Fig. 11.

According to this figure, one can predict the lower val-

ues of this plot indicates closer-to-ideal behaviour for

CgLp. As a rule of thumb if the normalised magnitude if

higher-order harmonics are below −40 dB, their effect

is negligible provided that their magnitude is different

enough to prevent their constructive behaviour from

deteriorating the performance.

Referring to Figs. 10 and 11, it is clearly shown that

using FOSRE architecture in CgLp framework, higher-

order harmonics can be suppressed at lower frequen-

cies while maintaining them at the crossover frequency

region to provide the required phase margin. Notice that

the normalised higher-order harmonics are almost 0 dB

at their peaks for SOSRE, which shows that they are

almost equal to first-order one.

Furthermore, it is shown that at ωlb, higher-order

harmonics will be zero and this can be used to cancel out

the higher-order harmonics peaks as shown in Fig. 10b.

To validate the performance of the controllers in

closed loop, a simulation has been performed in the

Simulink environment of MATLAB for tracking four

sinusoidal waves of 0.5, 0.8, 2 and 4 Hz. The resulted

error plots are depicted in Fig. 12. Furthermore, the

Root Mean Square (RMS) and Integral Absolute Error

(IAE) for steady-state error is presented in Tables 2

and 3. The plots and tables verify that if higher-order

harmonics are small enough, the reset controllers out-

perform the linear controller in terms of steady-state

tracking error. A SOSRE CgLp designed for a sys-

tem with high resonance peak can outperform PID

around at ωlb; however, it has difficulties at other fre-

quencies. Nevertheless, FOSRE CgLp because of its

much smaller higher-order harmonics has a much wider

range of superiority, about 1.5 decades in this particular

example.

Since the direct relation of higher-order harmonics

and tracking performance can be observed, it has to be

noted that 0.5 and 0.8 Hz are the degenerate cases for

reset controllers, however designing ωlb to match and

cancel out the peaks, the ideal tracking performance

based on DF can be achieved. See Fig. 12d.

In order to compare the control actions of the

designed controllers, the control input for controllers

in set No.1 is depicted for a sinusoidal input of 4 Hz in

Fig. 13. Reset controllers are known for having large

peaks in their control actions; however, according to

Fig. 13, FOSRE CgLp shows smaller peaks due to

reduced higher-order harmonics. The same holds for

other frequencies and controllers in set No. 2; however,

they are not depicted for the sake of brevity.
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At last, the step response for designed controllers

in set No. 1 is shown in Fig. 14. FOSRE and SOSRE

CgLp show smaller overshoot and approximately the

same settling time compared to PID. Controllers in set

No. 2, show approximately the same step response.

6 Conclusion

This paper presented an architecture, named FOSRE,

for reset elements based on a fractional-order inte-

grator and the concept of having only one resetting

integrator. It was shown that using this architecture in

framework of CgLp; the higher-order harmonics can

be suppressed at lower frequencies based on tuning

the phase difference of input and output of the base

linear system of the element. It was shown that at

a particular frequency at which the mentioned phase

difference is zero, no higher-order harmonics would

be produced and the reset system would behave as

a linear one in terms of steady-state output. Using

this architecture, one can achieve the same phase

margin as CgLp’s introduced in the literature while

increasing their tracking performance. The closed-

loop performance of the FOSRE CgLp was com-

pared with a SOSRE one and a PID in two differ-

ent designs in simulation, and its superiority vali-

dated.

It was shown that one peak of higher-order harmon-

ics could be cancelled out using the linear behaviour

concept. However, this opens an opportunity for future

researches on architectures which can behave linearly

at more than one frequencies, as there are multiple

peaks in higher-order harmonics. As ongoing works,

the performance of the FOSRE CgLp is being will be

studied in the presence of noise and disturbance and

afterwards in a practical setup.
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