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Abstract  

In this work, a quasi-static uncoupled theory of thermoelasticity based on time fractional heat 

conduction equation is used to model a thin circular plate, whose lower surface is maintained at 

zero temperature whereas the upper surface is insulated. The edge of the circular plate is fixed 

and clamped. Integral transform technique is used to derive the analytical solutions in the physi-

cal domain. The numerical results for temperature distributions and thermal deflection are com-

puted and represented graphically for Copper material. 
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1. Introduction 

During the second half of the twentieth century, considerable amount of research in fractional 

calculus was published in engineering literature. Indeed, recent advances of fractional calculus 

are dominated by modern examples of applications in differential and integral equations, physics, 

signal processing, fluid mechanics, viscoelasticity, mathematical biology, and electrochemistry. 

There is no doubt that fractional calculus has become an exciting new mathematical method of 

solution of diverse problems in mathematics, science, and engineering. It is generally known that 

integer-order derivatives and integrals have clear physical and geometric interpretations. Howev-

er, in case of fractional-order integration and differentiation, it is not so. Since the appearance of 

the idea of differentiation and integration of arbitrary (not necessary integer) order, there was not 

any acceptable geometric and physical interpretation of these operations for more than 300 year. 

In Podlubny (2002), it is shown that geometric interpretation of fractional integration is ‘Shad-

ows on the walls’ and its Physical interpretation is ‘Shadows of the past’.  

 

The classical theory of thermoelasticity has aroused much interest in recent times due to its nu-

merous applications in engineering discipline such as nuclear reactor design, high energy particle 

accelerators, geothermal engineering, advanced aircraft structure design, etc. The heat conduc-

tion of classical coupled theory of thermoelasticity is parabolic in nature and hence predicts infi-

nite speed of propagation of heat waves. Clearly, this contradicts the physical observations. 

Hence, several non-classical theories such as, Lord-Shulman (1967) theory, Green Lindsay theo-

ry (1972) have been proposed, in which the Fourier law and the parabolic heat conduction equa-

tion are replaced by more complicated equations, which are hyperbolic in nature predicting finite 

wave propagation. Green and Naghdi (1993) developed the theory of thermoelasticity without 

energy dissipation. Chandrasekaraiah (1986) gave reviews of thermoelasticity with second 

sound. Tripathi et al. (2015a, 2015b, 2016) studied various problems in cylindrical domain in the 

context of generalized thermoelastic theories. Recently, Tripathi et al. (2016) studied a dynamic 

problem in fractional order thermoelasticity with finite wave speeds. In the last decade, study on 

Quasi-static thermoelasticity incorporating the time fractional derivative has gained momentum. 

Povstenko (2005, 2009a, 2009b, 2010, 2011, 2012) studied various problems on quasi static frac-

tional order thermoelasticity.  Boley and Weiner (1960) studied the problems of thermal deflec-

tion of an axisymmetric heated circular plate in the case of fixed and simply supported edges. 

Roy choudhury (1973) discussed the normal deflection of a thin clamped circular plate due to 

ramp type heating of a concentric circular region of the upper face. This satisfies the time-

dependent heat conduction equation.  Deshmukh and Khobragade (2005) determined a quasi-

static thermal deflection in a thin circular plate due to partially distributed and axisymmetric heat 

supply on the outer curved surface with the upper and lower faces at zero temperature. 

Deshmukh et al. (2009) studied a quasi-static thermal deflection problem of a thin clamped cir-

cular plate due to heat generation.  Deshmukh et al. (2014) discussed the thermal stresses in a 

simply supported plate with thermal bending moments with heat sources. 

 

It is seen that the literature dealing with problems of quasi-static uncoupled fractional order 

thermoelasticity is limited to infinite domains and so far no one has studied problems on thermal 

deflection in the context of fractional order thermoelasticity. Hence, in the present study an effort 

has been made to develop a mathematical model to study thermal deflection in the context of 

fractional order thermoelasticity for a finite thin circular plate under constant temperature distri-
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bution by quasi static approach. Copper material is chosen for numerical purposes and the results 

for temperature and thermal deflection are discussed and illustrated graphically. 

 

 

2. Formulation of the problem 
  

Consider a thin circular plate of thickness h occupying space D  defined by hzbr  0,0 , 

whose lower surface is maintained at zero temperature whereas the upper surface is insulated. 

The constant heat flux 0Q  is applied on the fixed circular boundary  br   and a mathematical 

model is prepared considering non-local Caputo type time fractional heat conduction equation of 

order  for a thin circular plate.  

 

The definition of Caputo type fractional derivative is given by Podlubny (1999) 

  

 
nnd

d

fd
t

nt

tf
n

nt

n 








 













1,
)(

)
)(

1)(

0

1
. (1)

 
 

For finding the Laplace transform, the Caputo derivative requires knowledge of the initial values 

of the function )(tf  and its integer derivatives of the order  1,2,..., 1,k n   
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where, the asterisk denotes the Laplace transform with respect to time, s  is the Laplace trans-

form parameter. 

 

The temperature of the plate  tzrT ,,  is satisfying time fractional order differential equation,   
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with boundary conditions, 
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z

T
         at   hz   ,   (6) 

 

and under zero initial condition  
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 0T           at    0, 0 1t    ,

 

(7)

  0




t

T
        at    21,0  t .                                             (8) 

 

2.1. Thermal deflection  tr,   

 

The differential equation satisfying the deflection function  tr,  is given as Deshmukh et al. 

(2009), 
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where TM  is the thermal moment of the plate defined as,  

  

h

tT dzztzrTEaM
0

,, . (10)

 
 

D  is the flexural rigidity of the plate denoted as,  
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Eat ,  and   are the coefficients of the linear thermal expansion, the Young’s modulus and Pois-

son’s ratio of the plate material respectively and 
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Since, the edge of the circular plate is fixed and clamped, i.e., built-in edge, 
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
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 at br  .                                                                              

 

(13)

 
 

Equations (3) to (13) constitute the mathematical formulation of the problem. 

 

3. Solution 
 

To obtain the expression for temperature function  tzrT ,, ; we first define the finite Fourier 

transform and its inverse transform over the variable z  in the range hz 0  defined in Boley 

and Weiner (1960) as 
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where  
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and ,..., 21  , are the positive roots of the transcendental equation  
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Taking the integral transform of Equations (3) – (8) and with the aid of transform Equation (14), 

one obtains, 
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Secondly, we define the finite Hankel transform and its inverse transform over the variable r  in 

the range br 0  as, 
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and ,..., 21  , are the positive roots of the transcendental equation 
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   01 bJ m .

 
 

 

Now, we apply the integral transform to Equations (16) - (19) and with the aid of transform 

Equation (20), one obtains, 
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Taking the Laplace transform of Equation (22) and applying initial conditions (23) - (24), we get 

the solution as follows, 
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On rearranging the terms in Equation (25), we get, 
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On applying inverse Laplace transform to Equation (26), we get, 

 

     
  taEQbabKsT pmmpm )(1),(,, 22

00  ,

 

(27)

  

where 

 

   





taE

ass
L pm

pm

)(1
)]([

1 22

22

1 














 .

 

(28)

 
 

Here (.)E represents the Mittag-Leffler function. 

 

The resulting double transform of temperature is inverted successively by means of the inversion 

formulae (15) and (21). We obtain the expression of temperature ),,( tzrT  as,  
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3.1. Determination of thermal deflection  tr,  

 

Using Equation (29) in Equation (10), one obtains 
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Assume that the solution of Equation (9), satisfies the condition (13) as  
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where m   are the positive roots of the transcendental equation   01 bJ m . 

 

It can be easily shown that 
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Hence, the solution (31) satisfies the condition (13). Now,  

 

 
      bJrJtC

rrr
mm

m

m  00

1

2

2

2
4 1


















 





.   (34)

 

 

        

Using the following well known result   
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On simplifying above equation, we get,                                                  
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Substituting Equations (36) and (38) into Equation (9), one obtains, 
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Substituting Equation (40) into Equation (31), one obtains, 
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   (41)

 

 

4. Numerical calculations 
 

4.1. Dimensions 

 

For the sake of convenience, we choose: 

 

radius of a thin circular plate 1mb  , and 

thickness of a thin circular plate  0.1 mh  . 

 

4.2. Material properties 

  

The numerical calculation has been carried out for a Copper (Pure) thin circular plate with the 

material properties as: 

 

thermal diffusivity )(1034.112 126  sma , 

thermal conductivity )/(386 mkWk  , 

density  
3/8954 mkg , 

specific heat  kgKJcp /383 , 

Poisson ratio 35.0 ,  

coefficient of linear thermal expansion 6 1
16.5 10ta

K

  , and 

Lamé constant 67.26 . 

 

4.3. Roots of transcendental equation 

 

470.16,3237.13,1735.10,0156.7,8317.3 54321   , and 

,18.32,0468.29,9037.25,7601.22,6159.19 109876    

 

are the roots of transcendental equation 0)(1 bJ  . 

 

We set for convenience,   1/ DhEaX t  . 

 

The graphs are plotted for fractional order parameter 5.1,1,5.0 , depicting weak, normal and 

strong conductivity and fixed time 5.0t . Figures 1 and 2 depict the distributions of tempera-

ture, thermal deflection along the radial direction for various values of fractional order parameter
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 . The numerical calculation has been carried out in Matlab 2013a programming environment. 

The Mittag-Leffler functions used in the paper were evaluated following Podlubny (1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Temperature Distribution Function 

 

 

. 

Figure 2. Thermal Deflection Function 
X

rr
 

 

Figure 1, represents the temperature distributions along the radial direction. For the case 

2,5.1,5.0 , the values of the temperature show an increase with respect to radius. For the 

case 1 , the values of the temperature initially increase up to 72.0r  and then, decrease in 

the range 172.0  r . For the case 1 , depicting classical thermoelasticity the pattern of 

graphs is completely different as compared to fractional thermoelasticity 2,5.1,5.0 . It 

should be noted that for range 10  , the graphs show weak conductivity. For 1 , the 

graphs describe normal conductivity and for 21  , the graphs depict strong conductivity. 

The case 2 coincides with Green and Naghdi theory. 

 

Figure 2, represents thermal deflection along the radial direction. It can be observed that for 

the cases 2,5.1,1,5.0 , the deflection increases with increase in radius and attains a max-
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imum at 3.0r and then, gradually decreases to zero at 1r . It is zero at the outer circular 

edge which coincides with the boundary condition imposed on the thin circular cylinder. 

When the fractional order parameter 5.0  (describing weak conductivity), its deflection is 

high whereas for cases 1  (normal conductivity) and 2,5.1 (strong conductivity), its 

deflection is less. Hence, one can say that, as thermal conductivity of metal decreases its de-

flection increases. 

 

It is noted from the graphs that changing values of fractional order parameter , the speed of 

wave propagation is affected. Hence, it can be an important factor for designing new materials 

applicable to real life situations.  

 

 

5. Conclusions 
 

The theory of Thermoelasticity based on time fractional heat wave equation proposed by Pov-

stenko [8] is used to model a finite cylinder. The cases 10  and 21  correspond to weak 

and strong conductivity, respectively, while 1  corresponds to normal conductivity. 

We restrict ourselves to the quasi-static uncoupled theory neglecting the inertia term in the equa-

tion of motion and the coupling term. The quasi-static statement of a thermoelastic problem is 

possible if the relaxation time of mechanical oscillations is considerably less than the relaxation 

time of the heat conduction process. The motivation behind the consideration of the fractional 

theory is that it predicts retarded response to physical stimuli, as seen in nature. 

In real life situations, the problems dealing with finite domains are important but unfortunately, 

due to the complexity involved in modeling a finite domain, the literature is limited to problems 

on infinite domains. Hence, this problem was developed for a finite cylinder.  

We can summarize that, in a thin circular plate, the temperature and deflection are inversely pro-

portional to the thermal conductivity of metal.  

In the case 21  , the time fractional heat conduction equation interpolates the standard para-

bolic heat conduction equation and the hyperbolic wave equations. Likewise, the thermoelastici-

ty interpolates the classical theory of thermal stresses without energy dissipation introduced by 

Green and Naghdi (1993) and admitting the propagation of second sound (see, Chandrasekaraiah 

(1986)). 
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