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A new theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of dual-
phase-lag heat conduction with fractional orders. �e theory is then adopted to study thermoelastic interaction in an isotropic
homogenous semi-in�nite generalized thermoelastic solids with variable thermal conductivity whose boundary is subjected to
thermal and mechanical loading. �e basic equations of the problem have been written in the form of a vector-matrix di	erential
equation in the Laplace transformdomain, which is then solved by using a state space approach.�e inversion of Laplace transforms
is computed numerically using the method of Fourier series expansion technique. �e numerical estimates of the quantities of
physical interest are obtained and depicted graphically. Some comparisons of the thermophysical quantities are shown in �gures to
study the e	ects of the variable thermal conductivity, temperature discrepancy, and the fractional order parameter.

1. Introduction

During the last �ve decades, nonclassical thermoelasticity
theories involving hyperbolic type heat transport equations
admitting �nite speed of thermal signals have been formu-
lated. According to these theories, heat propagation is to
be viewed as a wave phenomenon rather than a di	usion
phenomenon.

In order to overcome the paradox of an in�nite speed of
thermal wave inherent in CTE and CCTE (classical coupled
theory of thermoelasticity), e	orts weremade tomodify cou-
pled thermoelasticity, on di	erent grounds, to obtain a wave-
type heat conduction equation by di	erent researchers. Lord
and Shulman [1] formulated the generalized thermoelasticity
theory introducing one relaxation time in Fourier’s law of
heat conduction equation and thus transforming the heat
conduction equation into a hyperbolic type.

Green and Lindsay [2] used the theory of two di	erent
relaxation times in the constitutive relations for the stress
tensor and the entropy equation. Later Green andNaghdi [3–
5] have proposed three models, labeled as types I, II, and III.

When they are linearized, type I is the same as the classical
heat equation (based on Fourier’s law) whereas the linearized
versions of type-II and type-III theories permit propagation
of thermal waves at �nite speed. �e entropy �ux vector
in type-II (i.e., thermoelasticity without energy dissipation)
and type-III (i.e., thermoelasticity with energy dissipation)
models is determined in terms of the potential that also
determines stresses. When Fourier conductivity is dominant,
then the temperature equation reduces to classical Fourier’s
law of heat conduction and when the e	ect of conductivity
is negligible, then the equation has undamped thermal wave
solutions without energy dissipation.

Tzou [6] introduced two-phase-lag models to both the
heat �ux vector and the temperature gradient. According

to this model, classical Fourier’s law ⃗� = −�∇⃗� has been
replaced by ⃗�(�, � + 	�) = −�∇�(�, � + 	�), where the

temperature gradient ∇⃗� at a point � of the material at time� + 	� corresponds to the heat �ux vector ⃗� at the same point
at time � + 	�. Here � is the thermal conductivity of the
material.�e delay time 	� is interpreted as that caused by the
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microstructural interactions and is called the phase-lag of the
temperature gradient.�eother delay time 	� is interpreted as
the relaxation time due to the fast transient e	ects of thermal
inertia and is called the phase-lag of the heat �ux. �e case	� = 	� = 0 corresponds to classical Fourier’s law. If 	� =	 and 	� = 0, Tzou refers to the model as single-phase-
lag model. Recently Several researchers have attempted to
solve their problems on the basis of the theory of dual-phase-
lag model. Roychoudhuri [7] has studied one-dimensional
thermoelastic wave propagation in an elastic half-space in the
context of dual-phase-lagmodel.�e exponential stability [8]
and condition of the delay parameters in the dual-phase-lag
theory [9] under thismodel have been studied byQuintanilla.
Wang et al. [10, 11] have studied the well-posedness and
solution structure of the dual-phase-lag heat conduction
equation. Wang and Mingtian [12] have studied the thermal
oscillation and resonance in dual-phase-lag heat conduction
equation. Ailawalia and Budhiraja have studied a problem of
dual-phase-lag model with internal heat source [13].

Gurtin and Williams [14, 15] have suggested that there
is no a priori ground for assuming that the second law of
thermodynamics for continuous bodies involves only a single
temperature; that is, it is more logical to assume a second law
in which the entropy contribution due to heat conduction
is governed by one temperature, that of the heat supply by
another.

Chen and Gurtin [16] and Chen et al. [17, 18] have
formulated a theory of heat conduction in deformable bodies,
which depends on two distinct temperatures: the conductive
temperature 
 and the thermodynamic temperature �. For
time-independent situations, the di	erences between these
two temperatures are proportional to the heat supply, and
in the absence of any heat supply, the two temperatures
are identical [18]. For time-dependent problems, however,
and for wave propagation problems in particular, the two
temperatures are, in general, di	erent, independent of the
presence of a heat supply. �e key element that sets the two-
temperature thermoelasticity (2TT) apart from the classical
theory of thermoelasticity (CTE) is the material parameter�(≥)0, called the temperature discrepancy [18]. Speci�cally, if� = 0, then 
 = � and the �eld equations of the 2TT reduce
to those of CTE.

�e linearized version of the two-temperature theory
(2TT) has been studied by many authors. Warren and
Chen [19] have investigated the wave propagation in the
two-temperature theory of thermoelasticity. Lesan [20] has
established uniqueness and reciprocity theorems for the 2TT.
Puri and Jordan [21] have studied propagation of plane waves
under the 2TT. �e existence, structural stability, and spatial
behavior of the solution in 2TT have been discussed by
Quintanilla [22].

It should be pointed out that both CTE and 2TT su	er
from the so-called paradox of heat conduction, that is, the
prediction that a thermal disturbance at some point in a body
is felt instantly, but unequally, throughout the body. Mondal
et al. [23, 24] have studied problems on two-temperature
Green Naghdi III and dual-phase-lag model with variable
thermal conductivity. Pal et al. [25], Islam et al. [26], Das and
Kanoria [27], and Banik and Kanoria [28] have studied on

two-temperature generalized thermoelasticity. Kumar et al.
[29, 30] have established variational and reciprocal principles
and some theorems in two-temperature generalized ther-
moelasticity. Recently Ailawalia et al. have solved a dynamic
problem on Green-Naghdi (Type III) half-space with two-
temperature [31] theory.

In this work, we have studied the thermoelastic stress,
strain, displacement, conductive temperature, and the ther-
modynamic temperature in an in�nite, isotropic, homoge-
neous elastic half-space under thermal shock using two-
temperature dual-phase-lag generalized thermoelasticity in
the context of fractional heat conduction equation. �e gov-
erning equations of two-temperature generalized thermoe-
lasticity theory are formed in the Laplace transform domain
which are then solved by state space approach. �e inversion
of the transformed solutions is carried out numerically, apply-
ing a method based on a Fourier series expansion technique
[32]. Finally, numerical estimate for di	erent thermophysical
quantities are obtained for copper materials. A complete and
comprehensive analysis of the results is presented and the
e	ects of fractional order parameter, two-type temperature,
and variable thermal conductivity are discussed.

2. Development of Fractional Order Theory

Di	erential equations of fractional order have been the focus
of many studies due to their frequent appearance in vari-
ous applications in �uid mechanics, viscoelasticity, biology,
physics, and engineering. �e most important advantage of
using fractional di	erential equations in these and other
applications is their nonlocal property. It is well-known that
the integer order di	erential operator is a local operator but
the fractional order di	erential operator is nonlocal. �is
means that the next state of a system depends not only upon
its current state, but also upon all of its historical states.�is is
more realistic, and this is one reason why fractional calculus
has become more and more popular [33–35].

Fractional calculus has been used successfully to modify
many existing models of physical processes. One can state
that the whole theory of fractional derivatives and integrals
was established in the second half of the nineteenth century.
�e �rst application of fractional derivatives was given by
Abel who applied fractional calculus in the solution of
an integral equation that arises in the formulation of the
tautochrone problem. �e generalization of the concept
of derivative and integral to a noninteger order has been
subjected to several approaches, and some various alternative
de�nitions of fractional derivatives have appeared [36–39].
In the last few years, fractional calculus has been applied
successfully in various areas to modify many existing models
of physical processes, for example, chemistry, biology, mod-
eling and identi�cation, electronics, wave propagation, and
viscoelasticity. One can refer to Podlubny [35] for a survey of
applications of fractional calculus.

Youssef [40] introduced the formula of heat conduction
given by

�� + 	0 
��
� = −���−1�,�, 0 < � ≤ 2, (1)
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where the notation �� is the Riemann-Liouville fractional
integral, introduced as a natural generalization of the
well-known �-fold repeated integral ���(�) written in a
convolution-type form as in [41] which is written as follows:

��� (�) = 1Γ (�) ∫
�

0
(� − 	)�−1� (	) �	, 0 < � ≤ 2,

= � (�) , � = 0,
(2)

where Γ(�) is the Gamma function. A uniqueness theorem
also has been proved. Sur and Kanoria have employed the
theory to study problems on functionally graded [42] and
viscoelastic material [43].

Ezzat and El-Karamany [44, 45] established a new model
of fractional heat conduction equation by using the new
Taylor series expansion of time-fractional order, developed
by Jumarie [46] as

�� + 	�0�! 

���
�� = −��,�, 0 < � ≤ 1. (3)

El-Karamany and Ezzat [47] introduced two general models
of fractional heat conduction law for a nonhomogeneous
anisotropic elastic solid. Uniqueness and reciprocal theorems
are proved, and the convolutional variational principle is
established and used to prove a uniqueness theorem with no
restriction on the elasticity or thermal conductivity tensors
except symmetry conditions. For fractional thermoelasticity
not involving two-temperature, El-Karamany and Ezzat [48]
established the uniqueness, reciprocal theorems and convo-
lution variational principle. For two-temperature theory the
formula of heat conduction has been replaced by

�� + 	0 
��
� = −���−1
,�, 0 < � ≤ 2, (4)

where 
 is the conductive temperature. Two-temperature
fractional order thermoelasticity problem of LS and Green
Naghdi models (types II and III) have been solved by Sur and
Kanoria [49].

Several researchers have solved di	erent problems [50–
54] using fractional order generalized thermoelasticity the-
ory. More detailed discussion on the subject is available in
the books of Hetnarski and Eslami [55], Eslami et al. [56], and
Ignaczak and Ostoja-Starzewski [57].

3. Basic Formulation

�e constitutive equations are

��� = 2���� + (�� − ��) ���, �, � = 1, 2, 3, (5)

where ��� = (1/2)( �,� +  �,�) and � = �		.
In the context of two-temperature dual-phase-lag

(2TDPL) generalized thermoelasticity theory, the equation
of motion in the absence of body forces and the heat
conduction equation in absence of heat sources for a linearly

isotropic generalized thermoelastic solid based on the theory
of fractional integral are, respectively, given by [58]

" ̈� = (� + �)  �,�� + � �,�� − ��,�, �, � = 1, 2, 3, (6)

[���−1 (1 + 	� 

� +
	2�2 
2
�2)
,�]

,�

= (1 + 	� 

� +
	2�2 
2
�2)(�5 ̇� + �70 ̇�) ,

(7)

where " is the density, � and � are Lamé’s constants, � is
thermal conductivity, � = (3�+2�)9�, 9� being the coe�cient
of linear thermal expansion, 70 is the reference temperature,
and 5 = �/":
, :
 being the speci�c heat at constant strain.

�e relation between conductive temperature (
) and
thermodynamic temperature (�) is given by


 − � = �
,�� � = 1, 2, 3, (8)

where �(≥0) is the two-temperature parameter, called tem-
perature discrepancy.

We will consider the thermal conductivity as a linear
function of thermodynamical temperature as follows [59]:

� (�) = �0 [1 + �1�] , (9)

where �0 is a constant which is equal to the thermal
conductivity of the material when it does not depend on
thermodynamical temperature (�) and �1 is a nonpositive
small parameter.

Substituting from (8) into (9), we get

� (�) = �0 [1 + �1
 − ��1
,��]
or � (�) = �0 [1 + �1
] − ��0�1
,��
or � (�) = � (
) − ��0�1
,��.

(10)

We now use the following mapping [59]:


̃ = 1�0 ∫
�

0
� (	) �	, (11)

�̃ = 1�0 ∫
�

0
� (	) �	. (12)

Di	erentiating (11) with respect to @�, we get
�0
̃,� = � (
) 
,�. (13)

Di	erentiating again the above equation, we obtain

�0
̃,�� = [� (
) 
,�],�. (14)

Di	erentiating (12) with respect to @�, we get
�0�̃,� = � (�) �,�. (15)

Di	erentiating (12) with respect to �, we get
�0 ̇̃� = � (�) ̇�. (16)
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Substituting from (14) and (16) into (7), we obtain

��−1 (1 + 	� 

� +
	2�2 
2
�2) 
̃,��

= (1 + 	� 

� +
	2�2 
2
�2)( ̇̃�5 + �70�0 ̇�)

+ ��0�12 [��−1 (1 + 	� 

� +
	2�2 
2
�2) (
,�)2] .

(17)

Neglecting the last term on right hand side of the above
equation due to nonlinearity, we get

��−1 (1 + 	� 

� +
	2�2 
2
�2) 
̃,��

= (1 + 	� 

� +
	2�2 
2
�2)( ̇̃�5 + �70�0 ̇�) .

(18)

Using (15) in (6), we get

" ̈� = (� + �)  �,�� + � �,�� − ��0� (�) �̃,�. (19)

For linearity we can approximate last equation to the follow-
ing form:

" ̈� = (� + �)  �,�� + � �,�� − ��̃,�. (20)

Now to transform (8) by using (11) and (12), we �rst
replace the dummy variable � with A and then di	erentiating
with respect to @� and �nally multiplying by�(�) we get

� (�) 
,� − � (�) �,� = �� (�) 
,		�, �, A = 1, 2, 3. (21)

Now substituting from (10) into (21) we have

�(
) 
,� − � (�) �,�
= �� (
) 
,		� + ��0�12 [{(
,�)2},� − �{(
,		)2},�] .

(22)

For linearity we can approximate the last equation as

�(
) 
,� − � (�) �,� = �� (
) 
,		�. (23)

Retaining only the linear terms, (14) can be written as

�0
̃,		� = � (
) 
,		�. (24)

Now substituting from (13), (15), and (24) into (23) we have


̃,� − �̃,� = �
̃,		�, �, A = 1, 2, 3. (25)

Now integrating with respect to @� we get

̃ − �̃ = �
̃,��, � = 1, 2, 3. (26)

4. Formulation of the Problem

We consider a half space (0 ≤ @ < ∞) with @-axis pointing
to the medium. �is half-space is subjected to thermal and
mechanical loads on the bounding plane (@ = 0) that depends
on the time � and is linearly quiescent. We will consider one-
dimensional thermoelastic deformation of the body so that
the displacement components can be taken in the following
form:

( 
,  �,  �) = ( (@, �) , 0, 0) . (27)

�e strain displacement relation is

�

 = 
 
@ (28)

and the constitutive relation (5) takes the form

�

 = (� + 2�) 
 
@ − ��. (29)

�e equation of motion, heat transport equation, and
relation between conductive temperature and thermody-
namic temperature can be written as

" ̈ = (� + 2�) 
2 
@2 − �
�̃
@ ,
��−1 (1 + 	� 

� +

	2�2 
2
�2) 
2
̃
@2
= (1 + 	� 

� +

	2�2 
2
�2)( ̇̃�5 + �70�0 ̇�) ,


̃ − �̃ = �
2
̃
@2 .

(30)

We now use the following nondimensional variables, to
make the above equations nondimensional:

@� = :05 @,  � = :05  , �� = :205 �,
	�� = :205 	�, 	�� = :205 	�, ��

 = �

� + 2� ,

� = 
70 , 
̃� = 
̃70 , �� = �70 ,
�̃� = �̃70 , :20 = � + 2�" .

(31)
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�en the corresponding nondimensional equations, a�er
omitting the primes, are

�

 = 
 
@ − I2�,
 ̈ = 
2 
@2 − I2 
�̃
@ ,

��−1 (1 + 	� 

� +
	2�2 
2
�2) 
2
̃
@2

= (1 + 	� 

� +
	2�2 
2
�2)( ̇̃� + I1 ̇�) ,


̃ − �̃ = L
2
̃
@2 ,

(32)

where

I1 = �5�0 , I2 = �70(� + 2�) , L = �:2052 . (33)

Initial and regularity conditions for the problem are given
by

 = � = 
 = 0 at � = 0 for @ ≥ 0,

 
� = 
�
� = 


� = 0 at � = 0 for @ ≥ 0,

 = � = 
 = 0 as @ M→ ∞.
(34)

5. Method of Solution

Applying the Laplace transform de�ned by

� (O) = ∫∞
0

�−��� (�) ��, Re (O) > 0 (35)

to both the sides of (32), we obtain

�

 = � − I2�, (36)

�2��@2 = O2� + I2 �2�̃�@2 , (37)

(1 + 	�O + 12	2�O2) �2
̃�@2
= O� (1 + 	�O + 12	2�O2)(�̃ + I1�) ,

(38)


̃ − �̃ = L�2
̃�@2 . (39)

Eliminating �̃ from (37)–(39) we get

�2
̃�@2 = 91
̃ + I191�,
�2��@2 = 92
̃ + 93�,

(40)

where

� = ( 1 + 	�O + (1/2) 	2�O21 + 	�O + (1/2) 	2�O2) ,

91 = �O�
1 + �LO� , 92 = 91I2 (1 − L91)[1 + L91I1I2] ,

93 = O2 + 91I1I2 (1 − L91)[1 + L91I1I2] .

(41)

5.1. State Space Approach. �e equations (40) can be written
in the form of a vector matrix di	erential equations [60] as
follows:

�2Q (@, O)�@2 = R (O) Q (@, O) , (42)

where

Q (@, O) = [
̃ (@, O)� (@, O)] , R (O) = [91 I19192 93 ] . (43)

�e formal solution of system (42) bounded at in�nity can
be written as

Q (@, O) = exp [−√R (O)@]Q (0, O) , (44)

where

Q (0, O) = [
̃ (0, O)� (0, O)] = [
̃0�0] ,

0 = 
 (0, �) , �0 = � (0, �) .

(45)

We will use the well-known Cayley-Hamilton theorem to
�nd the form of the matrix

exp [−√R (O)@] . (46)

�e characteristic equation for the matrix R(O) can be
written as

A2 − A (91 + 93) + (9193 − I19192) = 0. (47)

�e roots of this equation, namely, A1 and A2, satisfy the
following relations:

A1 + A2 = 91 + 93,
A1A2 = 9193 − I19192. (48)

�eTaylor series expansion for thematrix exponential in (44)
is given by

exp [−√R (O)@] = ∞∑
�=0

[−√R(O)@]�
�! . (49)

Using Cayley-Hamilton theorem, we can express R2 and
higher powers of the matrix R in terms of � and R, where� is the unit matrix of the second order.
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�us the in�nite series in (49) can be reduced to the form

exp [−√R (O)@] = �0 (@, O) � + �1 (@, O) R (O) , (50)

where �0 and �1 are coe�cients depending on O and @.
By Cayley-Hamilton theorem, the characteristic roots A1

and A2 of the matrix Rmust satisfy (50); thus we have

exp(−√A1@) = �0 + �1A1,
exp(−√A2@) = �0 + �1A2.

(51)

By solving the above linear system of equations, we get

�0 = A1�−√	2
 − A2�−√	1
A1 − A2 ,

�1 = �−√	1
 − �−√	2
A1 − A2 .
(52)

Hence from (50) we get

exp [−√R (O)@] = Z �� (@, O) , �, � = 1, 2, (53)

where

Z11 = �−√	2
 (A1 − 91) − �−√	1
 (A2 − 91)A1 − A2 ,

Z12 = I191 (�−√	1
 − �−√	2
)
A1 − A2 ,

Z21 = 92 (�−√	1
 − �−√	2
)
A1 − A2 ,

Z22 = �−√	1
 (93 − A2) − �−√	2
 (93 − A1)A1 − A2 .

(54)

Using (53) we can write the solution in (44) in the
following form:

Q (@, O) = Z �� (@, O) Q (0, O) . (55)

Hence the solution for 
̃(@, O) and �(@, O) can be obtained
from (55) as follows:


̃ (@, O) = 1A1 − A2 [�
−√	1
 {I191�0 − (A2 − 91) 
̃0}
− �−√	2
 {I191�0 − (A1 − 91) 
̃0}] ,

(56)

� (@, O) = 1A1 − A2 [�
−√	1
 {92
̃0 − (A2 − 93) �0}
− �−√	2
 {92
̃0 − (A1 − 93) �0}] .

(57)

Using (56), the solution for �̃ can be obtained from (39)
as follows:

�̃ = 1A1 − A2 [�
−√	1
 {I191�0 − (A2 − 91) 
̃0} (1 − LA1)
−�−√	2
 {I191�0 − (A1 − 91) 
̃0} (1 − LA2)] .

(58)

5.2. Application to 	ermal Shock Problem. We will consider
the bounding plane of the medium at @ = 0 subjected to
thermal shock in the following nondimensional form:


 (0, �) = 
1](�) , (59)

where 
1 is constant. Now applying the Laplace transform to
(59) we get


 (0, O) = 
1O . (60)

Using (9), (11), and (60) we get


̃ (0, O) = Ô , (61)

where ^ = 
1 + (�1/2O)
21 .
5.3. 	e Mechanical Boundary Condition. �e mechanical
boundary condition is taken in the form

� (0, �) = 0. (62)

�is implies

� (0, O) = �0 = 0. (63)

Applying the boundary conditions (61) and (63) to (56)–(58)
we get


̃ = ^O (A1 − A2) [(91 − A2) �−√	1
 − (91 − A1) �−√	2
] , (64)

� = ^92O (A1 − A2) [�
−√	1
 − �−√	2
] , (65)

�̃ = ^O (A1 − A2) [(91 − A2) (1 − LA1) �−√	1

− (91 − A1) (1 − LA2) �−√	2
] .

(66)

Displacement component  can be obtained from (28)
using (65) in the following form:

 = −^92O (A1 − A2) [
�−√	1
√A1 − �−√	2
√A2 ] . (67)
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Using (9), (11), and (64) the solution for 
 can be obtained
as follows:


 = 1�1 [(1 +
2�1^O (A1 − A2)

× [(91 − A2) �−√	1


− (91 − A1) �−√	2
])
1/2 − 1] , �1 < 0

= ^O (A1 − A2) [(91 − A2) �−√	1

− (91 − A1) �−√	2
] , �1 = 0.

(68)

Again using (9), (12), and (66) the solution for � can be
obtained in the following form:

� = ^O (A1 − A2) [(91 − A2) (1 − LA1) �−√	1

− (91 − A1) (1 − LA2) �−√	2
]

= �̃0 (say) , �1 = 0
= 1�1 [√1 + 2�1�̃0 − 1] , �1 < 0.

(69)

�e solution for �

 can be obtained from (36) using (65)
and (69) in the following form:

�

 = ^92O (A1 − A2) [�
−√	1
 − �−√	2
]

− I2�1 [√1 + 2�1�̃0 − 1] , �1 < 0;
= ^92O (A1 − A2) [�

−√	1
 − �−√	2
] − I2�̃0,
�1 = 0.

(70)

�is completes the solution of the thermal shock problem
in Laplace transform domain.

6. Numerical Inversion of Laplace Transform

It is di�cult to �nd the analytical inverse of Laplace transform
of the complicated solutions for the displacement, thermo-
dynamic temperature, conductive temperature, stress, and
strain in Laplace transform domain. So we have to resort
to numerical computations. We now outline the numerical

procedure to solve the problem. Let �(@, O) be the Laplace
transform of a function �(@, �).

�en the inversion formula for Laplace transform can be
written as

� (@, �) = 12c� ∫
�+�∞

�−�∞
���� (@, O) �O, (71)

where � is an arbitrary real number greater than real parts of

all the singularities of �(@, O).
Taking O = � + �d, the preceding integral takes the form

� (@, �) = ���2c ∫∞
−∞

����� (@, � + �d) �d. (72)

Expanding the function ℎ(@, �) = �−���(@, �) in a Fourier
series in the interval [0, 27] we obtain the approximate
formula [32]

� (@, �) = �∞ (@, �) + h�, (73)

where

�∞ (@, �) = 12:0 +
∞∑
	=1

:	 for 0 ≤ � ≤ 27,

:	 = ���7 [��	��/� �(@, � + �Ac�7 )] .
(74)

�e discretization error h� can be made arbitrary small
by choosing � large enough [32]. Since the in�nite series in
(74) can be summed up to a �nite number k of terms, the
approximate value of �(@, �) becomes

�� (@, �) = 12:0 +
�∑
	=1

:	 for 0 ≤ � ≤ 27. (75)

Using the preceding formula to evaluate �(@, �) we
introduce a truncation error h� that must be added to the
discretization error to produce total approximation error.

Two methods are used to reduce the total error. First the
“Korrektur”method is used to reduce the discretization error.
Next the l-algorithm is used to accelerate convergence [32].

�e Korrektur method uses the following formula to
evaluate the function �(@, �):

� (@, �) = �∞ (@, �) − �−2���∞ (@, 27 + �) + h��, (76)

where the discretization error |h��| ≪ |h�|. �us, the
approximate value of �(@, �) becomes

��� (@, �) = �� (@, �) − �−2����� (@, 27 + �) , (77)

wherek� is an integer such thatk� < k.
We will now describe the l-algorithm that is used to

accelerate the convergence of the series in (75). Let k =2� + 1, where � is a natural number, and let O� = ∑�	=1 :	
be the sequence of partial sum of series in (75).

We de�ne the l-sequence by
l0,� = 0, l1,� = O�,

l�+1,� = l�−1,�+1 + 1l�,�+1 − l�,� , o = 1, 2, 3, . . . . (78)

It can be shown that [32] the sequence

l1,1, l3,1, l5,1, . . . , l�,1 (79)
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Figure 1: �e thermodynamic temperature (�) for di	erent �1 at� = 0.2.
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Figure 2:�e conductive temperature (
) for di	erent�1 at � = 0.2.
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Figure 3: �e displacement ( ) for di	erent �1 at � = 0.2.
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Figure 5: �e strain (�) for di	erent �1 at � = 0.2.
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Figure 8: �e displacement ( ) for di	erent � at � = 0.2.

converges to �(@, �) + h� − (:0/2) faster than the sequence of
partial sums O�, p = 1, 2, 3, . . ..

�e actual procedure used to invert the Laplace transform
consists of using (77) together with the l-algorithm. �e
values of � and 7 are chosen according to the criterion
outlined in [32].

7. Numerical Results and Discussion

To get the solution for strain (�), thermal displacement
component ( ), conductive temperature (
), thermodynamic
temperature (�), and thermal stress (�

) in the space time
domain we have applied Laplace inversion formula to (65),
(67), (68), (69), and (70), respectively, which have been done
numerically using a method based on Fourier series expan-
sion technique [32]. �e numerical code has been prepared
using Fortran 77 programming language. For computational
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Figure 9: �e stress (�

) for di	erent � at � = 0.2.
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Figure 10: �e strain (�) for di	erent � at � = 0.2.

purpose copper material has been taken into consideration.
�e values of the material constants are taken as follows [61]:

� = 7.76 × 1010Nm−2,
� = 3.86 × 1010Nm−2,
" = 8954Kgm−3,

�0 = 386Wm−1 K−1,
:
 = 383.1 JKg−1 K−1, 70 = 293K,
9� = 1.78 × 10−5 K−1, l1 = 1.618,
l2 = 0.01041, L = 0.1,
	� = 0.02, 	� = 0.015.

(80)

Also we take time � = 0.2, 
1 = 1 for computational purpose.
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Figure 11: �e comparison of thermodynamic temperature (�)
between 1TT and 2TT at � = 0.2.
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Figure 12: �e comparison of conductive temperature (
) between
1TT and 2TT at � = 0.2.

Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and
15 are drawn to represent the variation of said thermo-
physical quantities versus the space variable @ for di	erent�1 (=0,−2,−4), � (=0.5, 1.0, 1.6), and L (=0.0, 0.1). Here� = 0.5, 1.0, and 1.6 corresponds to week conductivity,
normal conductivity, and super conductivity, respectively;L = 0.0 and 0.1 corresponds to one-temperature and two-
temperature theory, respectively.

Figures 1–5 show the e	ect of �1 on the said �ve
thermophysical quantities for two-temperature theory (L =0.1) and fractional order parameter � = 0.5. From these
�gures it is clear that magnitude of all the quantities, that
is, thermodynamic temperature �, conductive temperature 
,
displacement  , stress component �, and strain component �,
is greater for smaller magnitude of�1.

Figures 6–10 show the e	ect of � for two-temperature (L =0.1) theory and�1 = −2 on those �ve quantities. Figures 6–9
show that the magnitude of thermodynamic temperature �,
conductive temperature 
, displacement component  , and
stress component � has greater value for smaller magnitude
of �. But from Figure 10 it is observed that in the region 0.0 ≤
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Figure 13: �e comparison of displacement ( ) between 1TT and
2TT at � = 0.2.
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Figure 14: �e comparison of stress (�

) between 1TT and 2TT at� = 0.2.

@ < 0.3 (approximate) strain component has larger value for� = 1.0 than for � = 0.5, which is again larger than for � = 1.6.
Figures 11–15 are drawn to compare between the results

of one-temperature (L = 0.0) theory and two-temperature(L = 0.1) theory for � = 0.5 and �1 = −2 for �ve di	erent
thermophysical quantities. Figures 11, 13, 14, and 15 show
that the magnitude of �,  , �, � is greater for one-temperature(L = 0.0) case than two-temperature (L = 0.1) case. �e only
exception is 
 here.

It is observed that at the boundary plane @ = 0, 
 = 1
(Figures 2, 7, and 12), and � = 0 (Figures 5, 10, and 15),
which satis�es our theoretical boundary condition. It ensures
the correctness of the numerical code used. In Figures 6–10
the results for � = 1 agree with the corresponding results of
Mondal et al. [24].

Figures 16 and 17 represent the variation of the thermo-
dynamic temperature � and conductive temperature
 against
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Figure 16: �e variation of thermodynamic temperature (�) with
time (�) at @ = 0.2 for L = 0.1; � = 0.5.

time � for di	erent value of�1, namely,�1 = −2, −5, −8, whenL = 0.1, � = 0.5, and @ = 0.2. It is observed from the �gures
that the magnitudes of � and 
 are oscillatory in nature and
the magnitude of peek of oscillation decreases with time.

8. Conclusion

State space approach has been applied to solve a general-
ized thermoelastic problem of an isotropic, half-space with
variable thermal conductivity. �e boundary (@ = 0) of
the half-space is subjected to thermal and mechanical loads.
Variation of thermal conductivity has been taken as linear
function of temperature.�e problem has been studied using
the two-temperataure dual-phase-lag model of generalized
thermoelasticity in consideration of fractional order heat
conduction equation.

(1) �e phenomenon of �nite speeds of propagation is
observed in all depicted �gures.�is is expected since
the thermal wave travels with �nite speed.
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Figure 17:�e variation of conductive temperature (
)with time (�)
at @ = 0.2 for L = 0.1; � = 0.5.

(2) �e e	ects of the fractional parameter on all the
studied �elds are very signi�cant.

(3) �e value of �1 has an essential role in changing the
value of the distributions.

(4) Signi�cant di	erences in the physical quantities are
observed between the one-temperature theory and
the two-temperature theory. �e two-temperature
theory is more realistic than the one-temperature
theory in the case of generalized thermoelasticity.

(5) Initially (at � = 0) the conductive temperature has the
value of 1 and strain has the value of 0. �ese results
agree with the boundary conditions.

Nomenclature

�, �: Lamé’s constant": Density:
: Speci�c heat at constant strain�: Time�: Parameter of the Riemann-Liouville
fractional integral
: Conductive temperature�: �ermodynamic temperature9�: Coe�cient of linear thermal
expansion���: Components of stress tensor���: Components of strain tensor �: Components of displacement vector�: �ermal conductivity	0: Relaxation time:0 = √(� + 2�)/": Longitudinal wave speed5 = �/":
: �ermal di	usivity�: Two-temperature parameterL = �:20 /52: Dimensionless two-temperature
parameterI2 = �70/(� + 2�): Dimensionless mechanical coupling
constant⃗�: Heat �ux vector

] = �/2(� + �): Poisson’s ratio.
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